JPH0637921B2 - Flywheel equipment - Google Patents

Flywheel equipment

Info

Publication number
JPH0637921B2
JPH0637921B2 JP59039342A JP3934284A JPH0637921B2 JP H0637921 B2 JPH0637921 B2 JP H0637921B2 JP 59039342 A JP59039342 A JP 59039342A JP 3934284 A JP3934284 A JP 3934284A JP H0637921 B2 JPH0637921 B2 JP H0637921B2
Authority
JP
Japan
Prior art keywords
oil
moment
rotating body
signal
inertia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59039342A
Other languages
Japanese (ja)
Other versions
JPS60184745A (en
Inventor
中島  隆
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP59039342A priority Critical patent/JPH0637921B2/en
Publication of JPS60184745A publication Critical patent/JPS60184745A/en
Publication of JPH0637921B2 publication Critical patent/JPH0637921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/31Flywheels characterised by means for varying the moment of inertia

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は回転機械の軸系、例えば船用エンジンの推進
軸、往復動形圧縮機の駆動軸などに設けるフライホイー
ル装置、特に慣性モーメントが可変であるフライホイー
ル装置に関する。
The present invention relates to a flywheel device provided in a shaft system of a rotary machine, such as a propulsion shaft of a ship engine, a drive shaft of a reciprocating compressor, and the like. Which is a flywheel device.

[従来技術] 回転機械には、該回転機械軸系捩れ振動の固有振動数を
使用回転数よりずらす為、或は回転エネルギを蓄積する
為、フライホイールを設ける。
[Prior Art] A rotary machine is provided with a flywheel in order to shift the natural frequency of the torsional vibration of the rotary machine shaft system from the rotational speed in use, or to store rotational energy.

然し、従来のフライホイールではその慣性モーメントが
一定である為、回転機械の使用回転数領域が制限された
り、或は計算の誤差により使用回転数に捩れ振動が発生
した場合にも対処し得ない。更に、蓄積された回転エネ
ルギEは慣性モーメントIと回転角速度の2乗を乗じ
たもの(E=1/2I)で表現され、フライホイール
が回転エネルギを放出することにより、回転速度が変化
してしまうという不具合もあった。
However, since the inertial moment of the conventional flywheel is constant, it is not possible to deal with the case where the rotational speed range of the rotating machine is limited, or when torsional vibration occurs in the rotational speed due to calculation error. . Further, the accumulated rotational energy E is expressed by multiplying the inertia moment I by the square of the rotational angular velocity (E = 1 / 2I 2 ), and the rotational speed is changed by the flywheel releasing the rotational energy. There was a problem that it would end up.

[発明の目的] 本発明はフライホイールの慣性モーメントを自在に変化
させ得る様にし、上記した従来技術の問題点を解消する
ものである。
[Object of the Invention] The present invention solves the above-mentioned problems of the prior art by making it possible to freely change the moment of inertia of the flywheel.

[発明の構成] 本発明はアクチュエータにより回転体の軸心方向へ移動
し得るよう配設され且つ外周にラック歯が設けられた移
動体と、先端に重錘が設けられると共に基端に前記ラッ
ク歯と噛合するピニオン歯が設けられ、しかも前記移動
体の移動によりラック歯及びピニオン歯を介し回転して
重錘が回転体の回転中心に対し近接、離反し得るように
した重錘レバーと、回転体の回転数を検出する回転数ピ
ックアップと、該回転数ピックアップの検出信号から回
転体の平均回転数を検出すると共に慣性モーメントを演
算する演算器と、該演算器からの信号をアクチュエータ
駆動用の制御信号に処理して前記アクチュエータへ与え
る制御器を備える様にしたものである。
[Structure of the Invention] The present invention provides a moving body which is arranged so that it can be moved in the axial direction of a rotating body by an actuator and has rack teeth on its outer periphery, and a weight at the tip and the rack at the base end. A weight lever provided with pinion teeth that mesh with the teeth, and further, by the movement of the moving body, rotating through the rack teeth and the pinion teeth so that the weight can approach and separate from the center of rotation of the rotating body, A rotation speed pickup for detecting the rotation speed of the rotating body, a calculator for detecting the average rotation speed of the rotation body from the detection signal of the rotation speed pickup and calculating the moment of inertia, and a signal from the calculator for driving the actuator. Is provided with a controller which processes the control signal of 1 and supplies it to the actuator.

[実施例] 以下図面を参照しつつ本発明の実施例を説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図、第2図は本発明の1実施例を示しており、回転
軸の端部に実施した例である。
FIG. 1 and FIG. 2 show one embodiment of the present invention, which is an example implemented at the end of the rotary shaft.

図中1は回転軸2の軸端に設けたフランジであり、該フ
ランジ1にフライホイール装置3を取付ける。
Reference numeral 1 in the drawing denotes a flange provided on the shaft end of the rotary shaft 2, and a flywheel device 3 is attached to the flange 1.

該フランジ1に回転軸2と軸心を合致させて取付けられ
るスパイダ4は、その中心部が空洞となっており、空洞
の先端部には壁面を平滑に仕上げた油室穴5を形成して
ある。又、スパイダ4の外周には4対のブラケット6を
十字状に突設し、該ブラケット6にそれぞれピン7を嵌
着し、更に該ピン7にブッシュ8を介して重錘レバー9
を回転自在に枢支せしめる。
The spider 4, which is attached to the flange 1 with its axis aligned with the rotating shaft 2, has a hollow central portion, and an oil chamber hole 5 having a smooth wall surface is formed at the tip of the hollow. is there. Further, four pairs of brackets 6 are projected in a cross shape on the outer circumference of the spider 4, and pins 7 are fitted to the brackets 6, respectively, and further, a weight lever 9 is attached to the pins 7 via a bush 8.
Is rotatably supported.

該重錘レバー9の先端部に重錘10を形成せしめ、基部に
はピン7と同心のピニオン歯11を刻設し、該ピニオン歯
11は後述するラック歯12と噛合せしめる。
A weight 10 is formed at the tip of the weight lever 9, and pinion teeth 11 which are concentric with the pin 7 are formed on the base of the weight lever 9.
11 is engaged with a rack tooth 12 described later.

前記スパイダ4の基端面にシリンダカバー13を固着す
る。シリンダカバー13のスパイダ側には前記油室穴5と
同様な油室穴14を刳貫き、その中心部にはシリンダカバ
ー13を貫通し反スパイダ側を所要長さに亘って太径とし
た通孔15を穿設する。又、該通孔15と平行な油路16を穿
設し、油路16の1端を前記油室穴14に、他端を反スパイ
ダ側端の外周面に開口させてある。
A cylinder cover 13 is fixed to the base end surface of the spider 4. An oil chamber hole 14 similar to the oil chamber hole 5 is bored on the spider side of the cylinder cover 13, and the cylinder cover 13 is passed through the center of the spider side to make the anti-spider side a large diameter over the required length. A hole 15 is drilled. Further, an oil passage 16 parallel to the through hole 15 is bored, one end of the oil passage 16 is opened to the oil chamber hole 14, and the other end is opened to the outer peripheral surface on the side opposite to the spider.

前記油室穴5および14にピストン17を油密且摺動自在に
嵌合する。ピストン17の中央部の4面にラック歯12を刻
設し、前記ピニオン歯11と噛合させ、ピストン17の反ス
パイダ側に変位棒18を延出せしめ、前記通孔15に油密に
貫通させる。又、ピストン17の中心部には連通路19を穿
設し、1端を前記油室穴5に連通し、他端を前記通孔15
の太径部に開口させている。
A piston 17 is fitted in the oil chamber holes 5 and 14 in an oil-tight and slidable manner. Rack teeth 12 are engraved on the four faces of the central portion of the piston 17, mesh with the pinion teeth 11, and a displacement rod 18 is extended to the side opposite to the spider of the piston 17 so as to penetrate the through hole 15 in an oiltight manner. . A communication passage 19 is bored in the center of the piston 17 so that one end communicates with the oil chamber hole 5 and the other end communicates with the through hole 15.
Is opened in the large diameter part.

上記スパイダ4、重錘レバー9、シリンダカバー13はケ
ーーシング20に収納され、シリンダカバー13の先端部が
突出する様になっている。シリンダカバー13及び変位棒
18の先端部が挿入される様に給油筒21をケーシング20に
取付ける。該給油筒21の内部には仕切壁22が形成さ
れ、シリンダカバー13の先端は該仕切壁22の手前で終
り、変位棒18は仕切壁22を貫通している。給油筒21の仕
切壁22で仕切られた位置よりスパイダ側にオイルポート
23,24を穿設し、オイルポート23の両側及び仕切壁22に
油止リング25,25,26を設けて、オイルポート23,24が連
通する内部を油密にする。
The spider 4, the weight lever 9, and the cylinder cover 13 are housed in the casing 20, and the tip of the cylinder cover 13 is projected. Cylinder cover 13 and displacement rod
The oil supply cylinder 21 is attached to the casing 20 so that the tip portion of 18 is inserted. A partition wall 22 is formed inside the refueling cylinder 21, the tip of the cylinder cover 13 ends before the partition wall 22, and the displacement rod 18 penetrates the partition wall 22. Oil port on the spider side from the position partitioned by the partition wall 22 of the oil supply cylinder 21
23, 24 are bored, and oil stop rings 25, 25, 26 are provided on both sides of the oil port 23 and the partition wall 22 to make the inside communicating with the oil ports 23, 24 oil-tight.

前記変位棒18の先端に駒27を取付け、又給油筒21の端面
にはその軸心が変位棒18の軸心と平行となる様に変位検
出器28を取付ける。変位検出器28のスライドロッド29を
給油筒21の内部に突出させ、その先端を前記駒27に係合
させ変位棒18の動きが駒27を介してスライドロッド29に
伝達される様にする。
A piece 27 is attached to the tip of the displacement rod 18, and a displacement detector 28 is attached to the end face of the oil supply cylinder 21 so that its axis is parallel to the axis of the displacement rod 18. The slide rod 29 of the displacement detector 28 is projected into the inside of the oil supply cylinder 21, and its tip is engaged with the piece 27 so that the movement of the displacement rod 18 is transmitted to the slide rod 29 via the piece 27.

尚、図中30は回転数ピックアップ用歯車、31は回転数ピ
ックアップである。
In the figure, 30 is a gear for a rotational speed pickup, and 31 is a rotational speed pickup.

次に上記装置の作動を説明する。Next, the operation of the above device will be described.

先ず回転体の慣性モーメントIは、回転体の質量M、回
転中心から回転体の重心迄の距離R(回転半径)とする
と、 I=MR であり、同一の質量であれば回転半径の大きさによって
慣性モーメントが決定される。
First, when the inertial moment I of the rotating body is the mass M of the rotating body and the distance R (rotation radius) from the center of rotation to the center of gravity of the rotating body, I = MR 2 , and if the mass is the same, the radius of rotation is large. This determines the moment of inertia.

従って、上記装置の重錘レバー9を傾動させれば、回転
中心から重錘10迄の距離が変化、即ち回転半径が変化し
て慣性モーメントが変化する。
Therefore, if the weight lever 9 of the device is tilted, the distance from the center of rotation to the weight 10 changes, that is, the radius of rotation changes and the moment of inertia changes.

先ず、第1図中イで示す状態が重錘レバー9の標準位置
とし、この状態から慣性モーメントを減少させる場合オ
イルポート23より油路16を通して油室穴14へ圧油を供給
し、ピストン17を第1図中右方へ移動させる。ラック歯
12の移動により、重錘レバー9が反時計方向に回動して
重錘10が軸心に近付き、フライホイール装置3の回転半
径が減少、即ち慣性モーメントが減少する。尚、図中ロ
で示す重錘レバー9の位置は慣性モーメント最小の状態
を示す。
First, the state shown by a in FIG. 1 is the standard position of the weight lever 9, and when reducing the moment of inertia from this state, pressure oil is supplied from the oil port 23 through the oil passage 16 to the oil chamber hole 14, and the piston 17 Is moved to the right in FIG. Rack teeth
By the movement of 12, the weight lever 9 rotates counterclockwise and the weight 10 approaches the axis, and the radius of rotation of the flywheel device 3 decreases, that is, the moment of inertia decreases. The position of the weight lever 9 shown by B in the figure shows the state of the minimum moment of inertia.

次に、慣性モーメントを増大させる場合は、オイルポー
ト24より連通路19を通して油室穴5へ圧油を供給し、ピ
ストン17を左方へ移動させる。ラック歯12の移動によ
り、重錘レバー9が時計方向に回動して重錘10が軸心か
ら離れ、フライホイール装置3の回転半径が増大、即ち
慣性モーメントが増大する。尚、図中ハで示す重錘レバ
ー9の位置は慣性モーメント最大の状態を示す。
Next, when increasing the moment of inertia, pressure oil is supplied from the oil port 24 to the oil chamber hole 5 through the communication passage 19 to move the piston 17 to the left. Due to the movement of the rack teeth 12, the weight lever 9 is rotated in the clockwise direction, the weight 10 is separated from the axis, and the radius of rotation of the flywheel device 3, that is, the moment of inertia is increased. The position of the weight lever 9 shown by C in the figure shows the state of maximum inertia moment.

又、前記ピストン17の動き、その位置は駒27を介してス
ライドロッド29に伝達されて変位検出器28によって検知
される。該変位検出器28の検出信号を監視しながら圧油
を供給することにより、回転半径を任意の値とすること
ができる。
The movement of the piston 17 and its position are transmitted to the slide rod 29 via the bridge 27 and detected by the displacement detector 28. By supplying pressure oil while monitoring the detection signal of the displacement detector 28, the radius of gyration can be set to an arbitrary value.

更に回転数ピックアップ31は回転体の回転数を検出し
得、回転数或は回転数の変化に応じて、最適な慣性モー
メントの大きさとすることも可能である。
Further, the rotation speed pickup 31 can detect the rotation speed of the rotating body, and can set the optimum moment of inertia in accordance with the rotation speed or a change in the rotation speed.

本装置を用いれば、回転体の回転変動に対応させ迅速且
つ正確に慣性モーメントを増減させることにより回転変
動を少なくすること、低周波の捩れ振動による回転変動
を解消することが可能となる。
By using this device, it is possible to quickly and accurately increase or decrease the moment of inertia in response to the rotational fluctuation of the rotating body to reduce the rotational fluctuation, and to eliminate the rotational fluctuation due to the low-frequency torsional vibration.

斯かる回転制御を行う為の制御装置の第3図に示す。A control device for performing such rotation control is shown in FIG.

尚、第3図中第1図と同一のものに同符号を付してあ
る。
In FIG. 3, the same parts as those in FIG. 1 are designated by the same reference numerals.

前記オイルポート23,24にサーボ弁33が接続され、該サ
ーボ弁33にはモータ34によって駆動される油圧ポンプ35
が接続されている。36は油タンクを示す。
A servo valve 33 is connected to the oil ports 23 and 24, and a hydraulic pump 35 driven by a motor 34 is connected to the servo valve 33.
Are connected. 36 indicates an oil tank.

又、図中32は制御装置であり、該制御装置32には変位検
出器28、回転数ピックアップ31からの検出信号が入力さ
れ、両検出器からの信号を変換器37,38、演算器39、制
御器40に於いて適宜処理し、制御信号をサーボ弁33へ出
力する様になっている。
Further, reference numeral 32 in the figure is a control device, and the detection signals from the displacement detector 28 and the rotation speed pickup 31 are input to the control device 32, and the signals from both detectors are converted into converters 37, 38 and a calculator 39. The controller 40 appropriately processes and outputs a control signal to the servo valve 33.

上記制御装置に於いて、回転変動を小さくする為の制御
について説明する。
The control for reducing the rotational fluctuation in the control device will be described.

回転数ピックアップ31からの信号は変換器37において、
演算器399で処理するに適した信号、例えばアナログ信
号をデジタル信号に変換して演算器39に送出する。
The signal from the rotation speed pickup 31 is converted by the converter 37.
A signal suitable for processing by the arithmetic unit 399, for example, an analog signal is converted into a digital signal and sent to the arithmetic unit 39.

演算器39では変換器37からの信号に基づき、回転体の平
均回転数を計算すると共に変動回転数を計算する。更
に、この計算結果より変化させるべきフライホイール装
置3の慣性モーメント量(ピストンの位置)を演算し、
該演算結果を制御器40へ出力する。
The calculator 39 calculates the average rotation speed of the rotating body and the variable rotation speed based on the signal from the converter 37. Further, the amount of inertia moment (piston position) of the flywheel device 3 to be changed is calculated from the calculation result,
The calculation result is output to the controller 40.

制御器40では演算器39からの信号をサーボ弁駆動用の制
御信号に処理して、サーボ弁33に入力してサーボ弁33を
駆動する。
The controller 40 processes the signal from the calculator 39 into a control signal for driving the servo valve and inputs it to the servo valve 33 to drive the servo valve 33.

サーボ弁33が作動すると所要のオイルポート23,24より
圧油が送給されピストン17を移動する。ピストン17の移
動は変位検出器28で検出され、検出結果は制御装置32へ
入力される。制御装置32では、先ず変換器38により前記
した変換器37と同様な信号処理が行われ、更に演算器39
で変換器37からの信号に基づき演算した結果とを比較
し、偏差が零となる様サーボ弁33を作動させる。
When the servo valve 33 operates, pressure oil is supplied from the required oil ports 23 and 24 to move the piston 17. The movement of the piston 17 is detected by the displacement detector 28, and the detection result is input to the controller 32. In the control device 32, first, the converter 38 performs the same signal processing as that of the converter 37, and further, the arithmetic unit 39
Then, the result calculated based on the signal from the converter 37 is compared, and the servo valve 33 is operated so that the deviation becomes zero.

而して、フライホイール装置3の回転エネルギの放出、
蓄積に応じて迅速且つ正確に慣性モーメントを変化させ
るので回転数を一定に保持することができる。
Thus, the release of the rotational energy of the flywheel device 3,
Since the moment of inertia is changed quickly and accurately according to the accumulation, the rotation speed can be kept constant.

低周波の捩れ振動による回転変動についても、上記した
と同様な手順を行えば、該捩れ振動に起因する回転変動
を解消することができる。
With respect to the rotational fluctuation due to the low frequency torsional vibration, the rotational fluctuation due to the torsional vibration can be eliminated by performing the same procedure as described above.

又、従来は使用回転数領域内に捩れ振動の共振点があ
り、やむなく領域をせばめていることが多かったが、こ
のような場合には、演算器39に各使用回転毎に捩れ振動
の共振点をさけるような慣性モーメントを得るよう記憶
させておけば、捩れ振動をさけることができ、使用回転
数領域を従来より広くとることができる。
Further, in the past, there was a resonance point of torsional vibration within the range of rotational speed in use, and the area was often unavoidably confused. If it is stored so as to obtain a moment of inertia that avoids a point, it is possible to avoid torsional vibrations, and it is possible to make the operating speed range wider than before.

又、第4図は本発明の他の実施例を示しており、フライ
ホイール装置3を軸端ではなく軸途中に設けた場合であ
る。
FIG. 4 shows another embodiment of the present invention, in which the flywheel device 3 is provided not in the shaft end but in the middle of the shaft.

本実施例は前記実施例と略同様な構成である。This embodiment has substantially the same configuration as the above embodiment.

該実施例ではピストン17、変位棒18を太径とし、中心部
に回転軸2を貫通させており、油室穴5への給油はピス
トン17、変位棒18と回転軸2との間を通して行ってい
る。
In this embodiment, the piston 17 and the displacement rod 18 have a large diameter, and the rotary shaft 2 is penetrated through the central portion. The oil chamber hole 5 is supplied with oil through the piston 17, the displacement rod 18 and the rotary shaft 2. ing.

尚、実施例はいずれも油圧によってピストンを移動させ
る様にしたが、スクリューによってピストン等を移動さ
せる様にしてもよい。
Although the piston is moved by hydraulic pressure in all the embodiments, the piston may be moved by a screw.

[発明の効果] 以上述べた如く本発明によれば下記の優れた効果を発揮
し得る。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects can be exhibited.

(i) 回転機械の使用回転数領域が広くなる。(i) The rotational speed range of rotating machinery is widened.

(ii) 設計上の計算誤差があっても、修正が可能であ
る。
(ii) Correction is possible even if there is a design calculation error.

(iii) 回転数を一定に保持し得る制御が可能となる。(iii) It becomes possible to control the rotation speed to be kept constant.

(iv) 低次の捩れ振動による回転変動を防止し得る。(iv) Rotational fluctuation due to low-order torsional vibration can be prevented.

(v) 回転数の制御を回転数の変化に応じてアクチュエ
ータを介して制御装置により直接的に行っているので、
迅速且つ正確にできる。
(v) Since the control of the rotation speed is directly performed by the control device via the actuator according to the change of the rotation speed,
Can be quick and accurate.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の一実施例を示し、第1図は一
部を断面した側面図、第2図は第1図のA−A矢視図、
第3図は同前実施例を作動させる為の制御装置のブロッ
ク図、第4図は他の実施例を示し一部を断面した側面図
である。 2は回転軸、3はフライホイール装置、9は重錘レバ
ー、10は重錘、11はピニオン歯、12はラック歯を示す。
FIGS. 1 and 2 show an embodiment of the present invention, FIG. 1 is a side view with a partial cross section, FIG. 2 is a view taken along the line AA of FIG.
FIG. 3 is a block diagram of a control device for operating the embodiment of the same, and FIG. 4 is a side view showing a part of another embodiment in a sectional view. Reference numeral 2 is a rotary shaft, 3 is a flywheel device, 9 is a weight lever, 10 is a weight, 11 is a pinion tooth, and 12 is a rack tooth.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アクチュエータにより回転体の軸心方向へ
移動し得るよう配設され且つ外周にラック歯が設けられ
た移動体と、先端に重錘が設けられると共に基端に前記
ラック歯と噛合するるピニオン歯が設けられ、しかも前
記移動体の移動によりラック歯及びピニオン歯を介し回
転して重錘が回転体の回転中心に対し近接、離反し得る
ようにした重錘レバーと、回転体の回転数を検出する回
転数ピックアップと、該回転数ピックアップの検出信号
から回転体の平均回転数を検出すると共に慣性モーメン
トを演算する演算器と、該演算器からの信号をアクチュ
エータ駆動用の制御信号に処理して前記アクチュエータ
へ与える制御器を備えたことを特徴とするフライホイー
ル装置。
1. A moving body, which is arranged so as to be movable in the axial direction of a rotating body by an actuator, and has rack teeth on its outer circumference, and a weight is provided at the tip and meshes with the rack teeth at the base end. And a rotating body, which is provided with a pinion tooth for rotating the moving body to rotate through the rack tooth and the pinion tooth so that the weight can move toward and away from the center of rotation of the rotating body. Number of revolutions for detecting the number of revolutions of the rotor, an arithmetic unit for detecting the average number of revolutions of the rotating body from the detection signal of the number of revolutions and calculating the moment of inertia, and a control signal for driving the actuator from the arithmetic unit. A flywheel device comprising a controller that processes a signal and supplies the signal to the actuator.
JP59039342A 1984-03-01 1984-03-01 Flywheel equipment Expired - Lifetime JPH0637921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039342A JPH0637921B2 (en) 1984-03-01 1984-03-01 Flywheel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039342A JPH0637921B2 (en) 1984-03-01 1984-03-01 Flywheel equipment

Publications (2)

Publication Number Publication Date
JPS60184745A JPS60184745A (en) 1985-09-20
JPH0637921B2 true JPH0637921B2 (en) 1994-05-18

Family

ID=12550409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039342A Expired - Lifetime JPH0637921B2 (en) 1984-03-01 1984-03-01 Flywheel equipment

Country Status (1)

Country Link
JP (1) JPH0637921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110332276A (en) * 2019-07-17 2019-10-15 重庆大学 Become used and holds variable damping damper

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725766A (en) * 1986-07-31 1988-02-16 The Boeing Company Multiple spoke energy storage system for space environment
US4926107A (en) * 1986-07-31 1990-05-15 The Boeing Company Variable inertia energy storage system
US4730154A (en) * 1986-07-31 1988-03-08 The Boeing Company Variable inertia energy storage system
US4995282A (en) * 1989-07-19 1991-02-26 Schumacher Larry L Controllable inertia flywheel
GB9107451D0 (en) * 1991-04-09 1991-05-22 Yang Tai Her The principle and structure of actively driving or centrifugal linear following dynamic flywheel effect
CH688582A5 (en) * 1997-05-09 1997-11-28 Werner Zwahlen Kinetic energy storage device using flywheel weights

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5569349A (en) * 1978-11-17 1980-05-24 Hitachi Ltd Flywheel
JPS5712142A (en) * 1980-06-25 1982-01-22 Makoto Minagawa Flywheel of variable inertia moment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110332276A (en) * 2019-07-17 2019-10-15 重庆大学 Become used and holds variable damping damper

Also Published As

Publication number Publication date
JPS60184745A (en) 1985-09-20

Similar Documents

Publication Publication Date Title
JPH0637921B2 (en) Flywheel equipment
JPS58128504A (en) Fluid driving device
SU912057A3 (en) Hydraulic drive
US20170276055A1 (en) Hydraulic pump/motor with rotation detection mechanism
EP0380479A1 (en) Multiturn absolute encoder
JPS62501227A (en) Differential transmission for constant speed drive
JPH06235422A (en) Rotation shaft deviation correction control device
KR20030086924A (en) Compensation apparatus
JP2943935B2 (en) Variable capacity swash plate compressor
US5007305A (en) Ring balancer
US4541393A (en) Apparatus for controlling fuel injection timing
CN114453959B (en) Main shaft vibration reduction automatic control system for eccentric cambered surface cam machining
JP5459533B2 (en) Unbalance measurement method and apparatus
GB2120324A (en) Variable-displacement rotary pump or motor
CN109630494A (en) Radial plunger piston motor tachometric survey control system and method based on the induction of double angles
JPH0542628B2 (en)
JPS6261788B2 (en)
JPS601453A (en) Control of revolution by v-belt type speed change system
JPS63231034A (en) Variable rotary inertia device
JPH10264024A (en) Grinding wheel unbalance measuring method
SU1035300A1 (en) Piston pneumatic-or-hydraulic motor
JP2576051Y2 (en) Line pressure supply device for automatic transmission
JPH03530Y2 (en)
JP3295272B2 (en) Moment compensator
Wen et al. Analysis and test of torque characteristics for force balance and multi input gear motor