JPH0637446A - Surface treatment of copper - Google Patents

Surface treatment of copper

Info

Publication number
JPH0637446A
JPH0637446A JP19091892A JP19091892A JPH0637446A JP H0637446 A JPH0637446 A JP H0637446A JP 19091892 A JP19091892 A JP 19091892A JP 19091892 A JP19091892 A JP 19091892A JP H0637446 A JPH0637446 A JP H0637446A
Authority
JP
Japan
Prior art keywords
copper
treatment
copper surface
potential
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19091892A
Other languages
Japanese (ja)
Inventor
Hikari Kagiwada
光 鍵和田
Kiyonori Furukawa
清則 古川
Shozo Nohara
省三 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19091892A priority Critical patent/JPH0637446A/en
Publication of JPH0637446A publication Critical patent/JPH0637446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To provide a method of treating a copper surface to form a uniform layer capable of reliable adhesion to resin. CONSTITUTION:A copper surface is treated by oxidation, reduction and nickel plating to enhance its adhesion to resin and prevent haloing. The individual treatment steps are controlled while the potential of the copper surface is monitored. Each step is finished when the surface potential reaches a predetermined level. To this end, a potentiometer 10 is provided for each bath 11 so that it may be connected between a substrate 9 and an electrode 13 when the substrate is immersed in the bath containing a solution 12. This arrangement enables control of different conditions of chemical solution for different treatments by monitoring the respective surface potentials during oxidation, reduction and plating. Therefore, it is possible to carried out uniform treatment of a copper surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薬液処理による銅表面
処理法に係り、特に、多層プリント回路板の内層の銅表
面の処理に使用して好適な銅表面処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper surface treatment method by chemical treatment, and more particularly to a copper surface treatment method suitable for treating the copper surface of the inner layer of a multilayer printed circuit board.

【0002】[0002]

【従来の技術】コンピュータの高速化に伴い、それに使
用するプリント基板は、その対応として基板の多層化、
パターンの高密度化、材料の低誘電率化が図られてい
る。そして、基板の多層化に対して、基板上の銅表面
が、樹脂との優れた接着性、耐薬品性を備えることが要
求されている。
2. Description of the Related Art With the increase in speed of computers, the printed circuit boards used for them are correspondingly multi-layered.
Higher pattern density and lower dielectric constant of materials have been achieved. Further, in order to increase the number of layers of the board, it is required that the copper surface on the board has excellent adhesiveness to the resin and chemical resistance.

【0003】このような要求を満たすことのできる銅表
面処理法に関する従来技術として、例えば、特開平02
ー81627号公報等に記載された技術が知られてい
る。
As a conventional technique relating to a copper surface treatment method capable of satisfying such requirements, for example, Japanese Patent Laid-Open No. 02-202
The techniques described in Japanese Patent Publication No. 81627 are known.

【0004】この従来技術は、プリント基板の多層化接
着前の銅表面処理に関するもので、以下に説明する
(1)〜(4)の銅表面処理を行うことにより、樹脂と
の優れた接着性、耐薬品性を持った銅表面を得ることが
できるものである。
This prior art relates to copper surface treatment before multilayered adhesion of a printed circuit board, and by performing the copper surface treatments of (1) to (4) described below, excellent adhesion to resin is obtained. It is possible to obtain a copper surface having chemical resistance.

【0005】(1)まず、印刷法等により回路を形成し
た銅張り積層板の銅表面をソフトエッチングにより化学
的に粗化する。
(1) First, the copper surface of a copper-clad laminate having a circuit formed thereon by a printing method or the like is chemically roughened by soft etching.

【0006】(2)次に、粗化された銅表面に酸化銅皮
膜の微細な凹凸を形成する。
(2) Next, fine irregularities of a copper oxide film are formed on the roughened copper surface.

【0007】(3)前述で形成された酸化銅皮膜を化学
的に還元して金属銅にする。
(3) The copper oxide film formed above is chemically reduced to metallic copper.

【0008】(4)還元された金属銅上に薄いニッケル
皮膜を形成する。
(4) A thin nickel film is formed on the reduced metallic copper.

【0009】この従来技術は、銅表面に安定した接着性
を確保するために、前記処理(1)〜(4)のうち、処
理(2)の酸化銅膜の厚さ、処理(3)の還元の度合
い、処理(4)のニッケル膜の厚さの管理が重要なもの
である。このため、前述の各処理は、薬液濃度、処理温
度、処理時間等と皮膜の厚さ、還元度合いとの関係を実
験的に求めておき、この結果に基づいて処理時間を決
め、バッチ処理により行われるているのが通常である。
In this prior art, in order to secure stable adhesion on the copper surface, the thickness of the copper oxide film of the treatment (2) and the treatment (3) among the treatments (1) to (4) are performed. It is important to control the degree of reduction and the thickness of the nickel film in treatment (4). For this reason, in each of the above-mentioned treatments, the relationship between the chemical concentration, the treatment temperature, the treatment time, etc. and the film thickness, the degree of reduction is experimentally determined, and the treatment time is determined based on this result, and the batch treatment is performed. It is usually done.

【0010】[0010]

【発明が解決しようとする課題】一般に、研磨した銅表
面、あるいは、エッチング面は、平坦なため、樹脂に対
して充分な接着力を得ることができない。このため、銅
表面に酸化銅膜を形成し、それを金属銅に還元する処理
が行われ、銅表面を微細な凹凸形状とする。これによ
り、銅表面は、樹脂に対して充分な接着力と耐酸性とを
持つことができる。
Generally, since the polished copper surface or the etched surface is flat, it is impossible to obtain a sufficient adhesive force to the resin. For this reason, a process of forming a copper oxide film on the copper surface and reducing it to metallic copper is performed, and the copper surface is made into a fine uneven shape. As a result, the copper surface can have sufficient adhesive strength to the resin and acid resistance.

【0011】しかし、還元銅は、200℃以上の高温で
接着される樹脂に対して、熱応力等により破壊されて接
着強度が低下するという問題点を有している。その対策
として、還元銅表面にニッケル、コバルト等をめっきす
る処理が行われ、これにより、高温度で接着されても高
い強度を持ち、安定な銅表面を得ることができる。
However, the reduced copper has a problem that it is destroyed by heat stress or the like with respect to a resin which is adhered at a high temperature of 200 ° C. or higher and the adhesive strength is reduced. As a countermeasure against this, a treatment of plating nickel, cobalt or the like on the reduced copper surface is carried out, whereby a stable copper surface having a high strength even when bonded at a high temperature can be obtained.

【0012】このとき、酸化銅、還元銅の厚さは、10
0Å〜2000Å、めっきされるニッケル、コバルト
は、10Å〜1000Åの厚さで薄く均一になるように
コントロールするのが適当である。
At this time, the thickness of copper oxide and reduced copper is 10
It is appropriate to control 0Å to 2000Å, nickel and cobalt to be plated, to be thin and uniform at a thickness of 10Å to 1000Å.

【0013】前述の従来技術は、それぞれの膜の厚さ
を、薬液濃度、温度、処理時間を実験的に求め、実際の
処理としては、時間を決めてバッチ処理するものであ
る。
In the above-mentioned prior art, the thickness of each film is experimentally obtained for the chemical concentration, temperature, and processing time, and the actual processing is to carry out batch processing at a fixed time.

【0014】しかし、前述の従来技術は、処理に伴い薬
液の濃度が刻々と変化し、それと共に反応速度が変動す
るため形成される膜厚が変化してしまうという問題点を
有している。薬液濃度の変化に対応して処理時間等をコ
ントロールしてこの問題点を解決することは、技術的に
は可能ではあるが、前述の従来技術では、その応答速度
が遅いため非常に困難である。
However, the above-mentioned conventional technique has a problem that the concentration of the chemical solution changes from moment to moment with the treatment, and the reaction rate also fluctuates accordingly, resulting in a change in the film thickness formed. Although it is technically possible to solve this problem by controlling the processing time or the like in response to the change in the concentration of the chemical solution, the above-mentioned conventional technology is very difficult because of its slow response speed. .

【0015】一般に、処理の対象となるプリント基板が
高密度化になるに従い、高い信頼性が要求されてくるた
め、銅表面に安定した接着性が要求される。
Generally, as the density of the printed circuit board to be treated becomes higher, high reliability is required, and therefore stable adhesion is required on the copper surface.

【0016】しかし、前述の従来技術は、すでに説明し
たように、基板の処理量が増加するに従い、処理液中の
薬品濃度が薄められ、処理銅の表面の状態に変動が発生
するため、樹脂との接着性に変動が発生すると共に、特
に、最近のように高温接着の要求されている材料に関し
ては接着強度の低下等を招くという問題点を有してい
る。
However, in the above-mentioned conventional technique, as already explained, the chemical concentration in the treatment liquid is thinned as the treatment amount of the substrate is increased, and the state of the surface of the treated copper fluctuates. There is a problem in that the adhesiveness with the material fluctuates, and particularly, in the case of materials which are required to be bonded at high temperature recently, the adhesive strength is lowered.

【0017】本発明の目的は、前述した従来技術の問題
点を解決し、回路銅と樹脂との安定した接着性を得るこ
とのできる安定した皮膜を形成することのできる銅表面
処理法を提供することにある。
An object of the present invention is to provide a copper surface treatment method capable of solving the above-mentioned problems of the prior art and forming a stable film capable of obtaining stable adhesion between circuit copper and resin. To do.

【0018】[0018]

【課題を解決するための手段】本発明によれば前記目的
は、回路銅表面に酸化銅皮膜を形成する処理、これを還
元する処理、ニッケル皮膜を形成する処理の各工程にお
いて、薬液処理時に処理表面の電位の変化をモニター
し、その結果により処理の終了を管理するようにするこ
とにより達成される。
According to the present invention, the above-mentioned object is to perform a chemical solution treatment in each step of forming a copper oxide film on a circuit copper surface, reducing the copper oxide film, and forming a nickel film. This is accomplished by monitoring changes in the potential of the treated surface and controlling the end of treatment accordingly.

【0019】[0019]

【作用】一般に、銅表面上の酸化、還元、ニッケル処理
時において、処理表面は、それぞれの処理時に固有の電
位を持っている。このため、前述の各処理時の処理表面
の電位をモニターすることにより皮膜の形成過程をモニ
ターすることができる。従って、この変動をモニターし
て、処理を管理する本発明は、処理液中の薬品濃度が薄
められるというような、処理液の状態が変化した場合に
も、容易にその処理時間をコントロールし、安定した膜
厚を付与することができ、銅表面の処理の度合いを一定
に管理して、安定した処理面を得ることができる。
In general, during the oxidation, reduction and nickel treatment on the copper surface, the treated surface has an electric potential specific to each treatment. Therefore, the process of film formation can be monitored by monitoring the potential of the treated surface during each of the above treatments. Therefore, the present invention, which monitors this fluctuation and manages the treatment, easily controls the treatment time even when the condition of the treatment liquid changes such that the chemical concentration in the treatment liquid is diluted, A stable film thickness can be given, and the degree of treatment of the copper surface can be controlled to a constant level to obtain a stable treated surface.

【0020】[0020]

【実施例】以下、本発明による銅表面処理法の一実施例
を、多層プリント回路基板の積層接着のための銅表面の
処理を例として図面により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the copper surface treatment method according to the present invention will be described in detail below with reference to the drawings by taking as an example the treatment of the copper surface for laminating and adhering a multilayer printed circuit board.

【0021】図1は本発明の一実施例の処理工程におけ
る銅表面の状態を示す断面図、図2は酸化、還元、ニッ
ケルめっき処理における銅表面の電位変化を説明する特
性図、図3は電位測定の概略を説明する図である。図1
〜図3において、1は銅張り積層板の銅、2はガラス布
入りポリイミド樹脂、3は酸化銅、4は酸化銅の還元
膜、5はニッケル膜、9は処理基板、10は電位計、1
1は処理槽、12は処理液、13は電極である。
FIG. 1 is a sectional view showing the state of the copper surface in the processing step of one embodiment of the present invention, FIG. 2 is a characteristic diagram for explaining the potential change of the copper surface during oxidation, reduction and nickel plating, and FIG. 3 is It is a figure explaining the outline of electric potential measurement. Figure 1
In FIG. 3, 1 is copper of a copper-clad laminate, 2 is a polyimide resin containing glass cloth, 3 is copper oxide, 4 is a reduction film of copper oxide, 5 is a nickel film, 9 is a processing substrate, 10 is an electrometer, 1
Reference numeral 1 is a processing tank, 12 is a processing liquid, and 13 is an electrode.

【0022】本発明の実施例により処理される処理基板
9は、ガラス布入りポリイミド樹脂2の両面に銅1を張
って構成されており、銅1の表面処理は、図1に示す工
程により行われる。
The treated substrate 9 to be treated according to the embodiment of the present invention is composed of a glass cloth-containing polyimide resin 2 and copper 1 placed on both sides thereof. The surface treatment of the copper 1 is performed by the steps shown in FIG. Be seen.

【0023】(1)ガラス布ポリイミド樹脂銅張り積層
板である処理基板9を、液温40℃の、CuCl22H2
O 50g/lと、HCl(35%) 500g/lと
を含む水溶液に浸漬して、銅1の表面をソフトエッチン
グする(図1a〜b)。
(1) A treated substrate 9 which is a glass cloth polyimide resin copper clad laminate is CuCl 2 2H 2 at a liquid temperature of 40 ° C.
The surface of the copper 1 is soft-etched by immersing it in an aqueous solution containing 50 g / l of O and 500 g / l of HCl (35%) (FIGS. 1 a and 1 b).

【0024】(2)銅1の表面をソフトエッチングした
処理基板9を水洗した後、液温75℃のNaClO2
30g/lと、Na3PO412H2O 10g/lと、
NaOH5g/lとを含む水溶液で処理し、銅1の表面
を酸化し微細な凹凸形状を持った酸化銅3を形成する
(図1−c)。
(2) After the treated substrate 9 having the surface of the copper 1 soft-etched is washed with water, NaClO 2 at a liquid temperature of 75 ° C.
30 g / l, Na 3 PO 4 12H 2 O 10 g / l,
It is treated with an aqueous solution containing 5 g / l of NaOH to oxidize the surface of copper 1 to form copper oxide 3 having fine irregularities (FIG. 1-c).

【0025】(3)銅1の表面に酸化銅3が形成された
処理基板9を水洗した後、液温40℃の(CH3)2NH
BH3 5g/lの処理液で処理し、酸化銅3を還元し
て還元膜4を形成する(図1−d)。
(3) After the treated substrate 9 having the copper oxide 3 formed on the surface of the copper 1 is washed with water, (CH 3 ) 2 NH at a liquid temperature of 40 ° C.
BH 3 is treated with a treatment solution of 5 g / l to reduce the copper oxide 3 to form a reduced film 4 (FIG. 1-d).

【0026】(4)還元膜4が形成された処理基板9を
水洗することなく、(CH3)2NHBH3 を含む水溶液
が付着したままの状態で、ニッケル塩30g/lと、カ
ルボン酸塩30g/lと、酢酸塩20g/lと、ホウ素
化合物5g/lとを含むNi−B液の原液を純水で20
%濃度に希釈した液温35℃の水溶液に浸漬してニッケ
ルを析出させ、ニッケル膜5を形成する(図1−e)。
(4) Nickel salt 30 g / l and carboxylic acid salt are treated with the aqueous solution containing (CH 3 ) 2 NHBH 3 being adhered without washing the treated substrate 9 on which the reduction film 4 is formed. A pure Ni-B solution containing 30 g / l, 20 g / l of acetate and 5 g / l of a boron compound was diluted with pure water.
The nickel film is formed by immersing it in an aqueous solution diluted to a concentration of 35% and having a liquid temperature of 35 ° C. (FIG. 1-e).

【0027】本発明の一実施例は、前述したような工程
により銅表面の処理を行うものであるが、さらに、前述
の工程2、3、4の処理時に銅表面の電位を図3により
説明するような方法で測定し、その電位が特定の値とな
ったときに、各工程の処理を終了とするものである。
In one embodiment of the present invention, the copper surface is treated by the steps described above. Further, the potential of the copper surface during the steps 2, 3 and 4 will be described with reference to FIG. When the potential reaches a specific value, the treatment of each step is terminated.

【0028】すなわち、この銅表面の電位の測定は、図
3に示すように、前述の各工程の処理時に、処理槽11
内の処理液12中に処理基板9と、Ag、AgCl、K
Clを構成成分とする電極13とを浸漬し、処理基板9
と電極13との間に電位計10を接続して、処理中の銅
表面の電位の変化を監視するように行うものである。
That is, as shown in FIG. 3, the measurement of the electric potential of the copper surface is carried out at the time of the treatment of each of the above-mentioned steps by the treatment tank 11
Processing substrate 9 and Ag, AgCl, K
The electrode 13 having Cl as a constituent is immersed in the treated substrate 9
The electrometer 10 is connected between the electrode 13 and the electrode 13 to monitor changes in the potential of the copper surface during the treatment.

【0029】この方法で測定された前述の工程2、3、
4の酸化、還元、ニッケルめっきにおける電位の変化
は、図2(a)〜図2(c)に示すような結果であっ
た。なお、図2に示す電位は、Ag、AgCl、KCl
による電極に対する値である。
The above-mentioned steps 2, 3 measured by this method,
The changes in the potential in the oxidation, reduction, and nickel plating of No. 4 were the results shown in FIGS. 2 (a) to 2 (c). The potentials shown in FIG. 2 are Ag, AgCl, KCl.
Is the value for the electrode.

【0030】すなわち、工程2の銅表面の酸化処理で
は、約1分の処理で、銅の電位から酸化銅の電位である
約−200mV〜−250mVに変動し、その後大きな
電位の変動は見られなかった。
That is, in the oxidation treatment of the copper surface in step 2, the potential of copper changes from about -200 mV to -250 mV which is the potential of copper oxide in about 1 minute, and a large potential change is observed thereafter. There wasn't.

【0031】工程3の酸化銅の還元処理では、約1分の
処理で、酸化銅の電位−200mV〜−250mVから
還元銅の電位約−1100mV〜−1300mVに変動
し、その後大きな電位の変動は見られなかった。
In the reduction treatment of copper oxide in step 3, the potential of copper oxide changes from -200 mV to -250 mV of reduced copper to the potential of reduced copper of about -1100 mV to -1300 mV in about 1 minute, and thereafter a large variation in potential occurs. I couldn't see it.

【0032】また、工程4のめっき処理では、約2分の
処理で、還元銅の電位−1100mV〜−1300mV
からニッケルの電位約−700mV−800mVに変動
し、その後大きな電位の変動は見られなかった。
In the plating process of step 4, the potential of reduced copper is -1100 mV to -1300 mV in about 2 minutes.
The potential of nickel fluctuated from about -700 mV to 800 mV, and no large potential fluctuation was observed thereafter.

【0033】本発明の実施例は、前述の結果、それぞれ
の電位の変化して、前述の値の範囲内となったとき(図
2の6、7、8の点)を処理の終了時間として、各工程
の処理を終了させる、すなわち、この例では、工程2の
酸化処理を約1分、工程3の還元処理を約1分、工程4
のめっき処理を約2分で終了させるものであり、これに
より、均質な銅表面の処理を行うことができる。
In the embodiment of the present invention, as a result of the above, when each potential changes and falls within the range of the above value (points 6, 7, and 8 in FIG. 2), the processing end time is set. The process of each step is completed, that is, in this example, the oxidation process of step 2 is about 1 minute, the reduction process of step 3 is about 1 minute, and the process of step 4 is
The plating treatment of (1) is completed in about 2 minutes, whereby a uniform treatment of the copper surface can be performed.

【0034】前述した各工程の処理において、銅の表面
電位が前述の値に達する時間は、処理液の状態によって
変化するものであるが、本発明の実施例は、処理液が薄
まる等処理液の状態が変化した場合にも、各処理時に、
銅の表面電位が前述の値に達したときに、処理を終了す
ることにより、均質に処理された処理表面を得ることが
できる。
In the treatment of each step described above, the time for the surface potential of copper to reach the above-mentioned value varies depending on the state of the treatment liquid, but in the embodiment of the present invention, the treatment liquid is diluted. Even if the state of changes,
When the surface potential of copper reaches the above-mentioned value, the treatment is terminated to obtain a uniformly treated treated surface.

【0035】そして、本発明の実施例は、前述の処理条
件において、酸化銅、還元銅の厚さを、100Å〜20
00Å、めっきされるニッケルの厚さを、10Å〜10
00Åの最適な厚さとすることができる。
In the embodiment of the present invention, the thicknesses of copper oxide and reduced copper are set to 100Å to 20 under the above-mentioned processing conditions.
00Å, the thickness of nickel plated is 10Å-10
The optimum thickness can be 00Å.

【0036】なお、前述した各処理を終了させる処理表
面の電位範囲は、測定器等の条件によりばらつきが見ら
れるので、設備の特性を把握して決定する必要がある。
The potential range of the surface to be treated for finishing each of the above-mentioned treatments may vary depending on the conditions of the measuring instrument and the like, so it is necessary to determine the characteristics of the equipment.

【0037】前述した本発明の一実施例により処理され
た処理基板を、水洗、乾燥した後、ポリイミド樹脂を含
浸させたプリプレグを介して積層し、200℃で30k
gf/cm2 の圧力を120分間かけて接着することに
より、多層基板を作成することができる。
The treated substrates treated according to the above-described embodiment of the present invention were washed with water and dried, and then laminated via a prepreg impregnated with a polyimide resin, and then 30 k at 200 ° C.
A multi-layer substrate can be prepared by adhering a pressure of gf / cm 2 for 120 minutes.

【0038】このようにして多層化接着した基板の銅箔
側とプリプレグ層とのピール強度を測定した結果、ピー
ル強度は1.2kgf/cmであった。さらに、耐酸性
をみるため、多層化接着後の基板に、貫通スルホールを
明け、17.5%濃度HClに浸漬した結果、3時間以
上浸漬してもスルホール壁からの浸み込みは見られなか
った。
As a result of measuring the peel strength between the copper foil side and the prepreg layer of the substrate thus laminated and adhered, the peel strength was 1.2 kgf / cm. Furthermore, in order to check the acid resistance, through-holes were opened on the substrate after multi-layer adhesion and immersed in 17.5% concentration HCl, and as a result, no infiltration from the through-hole wall was observed even after immersion for 3 hours or more. It was

【0039】前述したように本発明の一実施例によれ
ば、銅表面の処理中に、銅表面の電位をモニターして、
各処理の終了を管理することにより、各処理に使用され
る処理液の状態が変化した場合にも、銅表面上の酸化銅
膜、還元銅膜、ニッケル膜の厚さを常に一定に付与する
ことがすることができ、均質性の高い銅表面の処理を行
うことができる。そして、これにより、各基板間の接着
力の大きい多層基板を得ることができる
As described above, according to one embodiment of the present invention, the potential of the copper surface is monitored during the treatment of the copper surface,
By controlling the end of each treatment, the thickness of the copper oxide film, the reduced copper film, and the nickel film on the copper surface is always given constant even when the condition of the treatment liquid used for each treatment changes. The copper surface can be treated with high homogeneity. Then, by this, a multi-layer substrate having a large adhesive force between the substrates can be obtained.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、常
に、銅表面に安定した皮膜を形成することができ、回路
銅と樹脂との安定した接着性を得ることができる。
As described above, according to the present invention, a stable film can be always formed on the copper surface, and stable adhesion between the circuit copper and the resin can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の処理工程における銅表面の
状態を示す断面図である。
FIG. 1 is a cross-sectional view showing a state of a copper surface in a treatment process of an example of the present invention.

【図2】酸化、還元、ニッケルめっき処理における銅表
面の電位変化を説明する特性図である。
FIG. 2 is a characteristic diagram for explaining potential changes on the copper surface during oxidation, reduction, and nickel plating.

【図3】電位測定の概略を説明する図である。FIG. 3 is a diagram illustrating an outline of potential measurement.

【符号の説明】[Explanation of symbols]

1 銅張り積層板の銅 2 ガラス布入りポリイミド樹脂 3 酸化銅 4 酸化銅の還元膜 5 ニッケル膜 9 処理基板 10 電位計(記録) 11 処理槽 12 処理液 13 電極 1 Copper of copper-clad laminate 2 Polyimide resin containing glass cloth 3 Copper oxide 4 Reduction film of copper oxide 5 Nickel film 9 Treated substrate 10 Electrometer (record) 11 Treatment tank 12 Treatment liquid 13 Electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ソフトエッチングする工程と、酸化銅膜
を形成する工程と、酸化銅を還元する工程と、ニッケル
膜を形成する工程とにより、銅表面を薬液内で処理する
銅表面処理法において、前記酸化銅膜を形成する工程、
酸化銅を還元する工程、ニッケル膜を形成する工程の各
処理時に、処理表面の電位の変動をモニターし、その結
果により処理の終了を制御することを特徴とする銅表面
処理法。
1. A copper surface treatment method in which a copper surface is treated in a chemical solution by a step of soft etching, a step of forming a copper oxide film, a step of reducing copper oxide, and a step of forming a nickel film. A step of forming the copper oxide film,
A copper surface treatment method, characterized in that during each treatment of the step of reducing copper oxide and the step of forming a nickel film, a change in the potential of the treated surface is monitored and the end of the treatment is controlled according to the result.
JP19091892A 1992-07-17 1992-07-17 Surface treatment of copper Pending JPH0637446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19091892A JPH0637446A (en) 1992-07-17 1992-07-17 Surface treatment of copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19091892A JPH0637446A (en) 1992-07-17 1992-07-17 Surface treatment of copper

Publications (1)

Publication Number Publication Date
JPH0637446A true JPH0637446A (en) 1994-02-10

Family

ID=16265872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19091892A Pending JPH0637446A (en) 1992-07-17 1992-07-17 Surface treatment of copper

Country Status (1)

Country Link
JP (1) JPH0637446A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3931136A1 (en) * 1988-09-16 1990-03-22 Aisin Aw Co HYDRAULIC CONTROL DEVICE FOR AN AUTOMATIC TRANSMISSION
US7806136B2 (en) 2005-12-12 2010-10-05 Kane Kougyou Co., Ltd. Wafer-type direct-acting valve
US8152131B2 (en) 2006-10-02 2012-04-10 Kane Kougyou Co., Ltd. Wafer-shaped pilot-type valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3931136A1 (en) * 1988-09-16 1990-03-22 Aisin Aw Co HYDRAULIC CONTROL DEVICE FOR AN AUTOMATIC TRANSMISSION
DE3931136C2 (en) * 1988-09-16 1998-03-26 Aisin Aw Co Hydraulic control device for an automatic transmission
US7806136B2 (en) 2005-12-12 2010-10-05 Kane Kougyou Co., Ltd. Wafer-type direct-acting valve
US8152131B2 (en) 2006-10-02 2012-04-10 Kane Kougyou Co., Ltd. Wafer-shaped pilot-type valve

Similar Documents

Publication Publication Date Title
EP0321067B1 (en) Process for treating copper surface
JP3370624B2 (en) Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil
KR930002910B1 (en) Printed circuit board and manufacturing method and device therefor
EP1175132B1 (en) Surface-treated copper foil and method for manufacturing the surface-treated copper foil
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
US7029761B2 (en) Bonding layer for bonding resin on copper surface
JPH08222857A (en) Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit
KR20090084517A (en) Copper foil for printed circuit improved in thermal resistance and chemical resistance property and fabrication method thereof
WO2003095714A1 (en) Process for producing high temperature heat resisting carrier foil clad electrolytic copper foil and high temperature heat resisting carrier foil clad electrolytic copper foil obtained by the process
JPH0637446A (en) Surface treatment of copper
EP1641329A1 (en) Printed wiring board
JP2000151096A (en) Manufacture of printed wiring board
JPH0573359B2 (en)
JPH06256960A (en) Production of copper-coated aramid substrate
JP2004330701A (en) Composite body having copper foil used for formation of printed circuit or others and manufacturing method thereof
JP4161904B2 (en) Resin film with copper foil, resin sheet with copper foil, copper-clad laminate
JP4026596B2 (en) Resin film with copper foil, resin sheet with copper foil, copper-clad laminate
EP0488299A1 (en) Method of manufacturing a multi-layered wiring board
JP2004006611A (en) Method for producing printed wiring board
JPH05235519A (en) Manufacture of wiring board
JP2007035658A (en) Polyimide resin base material and wiring board employing the polyimide resin base material
JPH04334093A (en) Manufacture of multilayered wiring board
JP2768123B2 (en) Method for manufacturing multilayer wiring board
JPS62270780A (en) Method for adhering resin to copper
JPH04179191A (en) Manufacture of wiring board