JPH0636776A - Solid polymer electrolyte type fuel cell - Google Patents

Solid polymer electrolyte type fuel cell

Info

Publication number
JPH0636776A
JPH0636776A JP4187701A JP18770192A JPH0636776A JP H0636776 A JPH0636776 A JP H0636776A JP 4187701 A JP4187701 A JP 4187701A JP 18770192 A JP18770192 A JP 18770192A JP H0636776 A JPH0636776 A JP H0636776A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
fuel cell
catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4187701A
Other languages
Japanese (ja)
Other versions
JP3035079B2 (en
Inventor
Takafumi Shimada
隆文 嶋田
Kazuto Kobayashi
一登 小林
Hiroyuki Ozora
弘幸 大空
Isao Hirata
勇夫 平田
Takuya Moriga
卓也 森賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4187701A priority Critical patent/JP3035079B2/en
Publication of JPH0636776A publication Critical patent/JPH0636776A/en
Application granted granted Critical
Publication of JP3035079B2 publication Critical patent/JP3035079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make an electrolyte layer thin after a fuel cell is formed and improve the performance of the electrolyte type fuel cell by coating and impregnating an electrolyte liquid dispersed and mixed with solid acid grains carrying the sulfuric acid group on the insulator of an inorganic material on the surface of an electrode. CONSTITUTION:Hydrophilic reaction layers 2 made of hydrophilic and hydrophobic carbon black and polyethylene tetrafluoride and hydrophobic gas diffusion layers 3 made of hydrophobic carbon black and polyethylene tetrafluoride are laminated, pressed, and sintered, platinum acid chloride is coated on the surfaces of the reaction layers 2 for oxidation and hydrogen reduction process to obtain a catalyst carrying gas diffusion electrode carrying a platinum catalyst. A solution dispersed with solid acid grains having the sulfuric acid group containing titanium oxide as a base material in a Nafion solution is coated and impregnated on the reaction layer faces of the electrode. Two electrodes are heated and pressed with the impregnated faces faced to each other to obtain an electrode provided with a thin electrolyte layer l having a large ion exchange capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質型燃料
電池に関する。
FIELD OF THE INVENTION The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は電解質と
して固体高分子膜であるイオン交換樹脂膜を用いて、こ
の膜の両面に電極を接合したものであり、該燃料電池の
主な特徴は以下の通りである。 (1)操作温度が最高で約100〜120℃程度であ
り、ほぼ常温で操作できる。 (2)電解質膜を薄くすることによって、燃料電池の内
部抵抗を著しく低減できるため、高電流密度で運転でき
る。 (3)従って、電池がコンパクトになる。 (4)本質的に高分子膜がガスを通さないため、陰極と
陽極とで操作圧力を任意に設定できる。 このように、この固体高分子電解質型燃料電池は高分子
膜を電解質として用いているため、低温操作、陰極と陽
極間の差圧運転及び高分子膜を薄膜化することによる電
池内部抵抗の著しい低減が図れることが大きな特徴とな
っている。
2. Description of the Related Art A solid polymer electrolyte fuel cell uses an ion exchange resin membrane, which is a solid polymer membrane, as an electrolyte, and electrodes are bonded to both sides of this membrane. The main features of the fuel cell are: It is as follows. (1) The maximum operating temperature is about 100 to 120 ° C., and the operation can be performed at almost room temperature. (2) Since the internal resistance of the fuel cell can be remarkably reduced by making the electrolyte membrane thin, it is possible to operate at a high current density. (3) Therefore, the battery becomes compact. (4) Since the polymer membrane is essentially gas impermeable, the operating pressure can be arbitrarily set for the cathode and the anode. As described above, since the solid polymer electrolyte fuel cell uses the polymer membrane as the electrolyte, the internal resistance of the cell is remarkably reduced due to the low temperature operation, the differential pressure operation between the cathode and the anode, and the thinning of the polymer membrane. A major feature is the reduction.

【0003】この燃料電池用の高分子膜としては開発初
期にはイオン交換樹脂膜として広く利用されていたスチ
レン−ジビニルベンゼン樹脂を母核とし、これにイオン
交換基を導入したものが用いられていたが、燃料電池の
高分子膜表面および内部で生ずる電気化学的現象や反応
に対し物理的または化学的に不安定であったため電池寿
命が十分でなかった。そこで、近年になってスルホン酸
基をイオン交換基として有するパーフルオロカーボン樹
脂が物理的および化学的に耐久性がより優れていること
から一般的に利用されるようになった。
As the polymer membrane for this fuel cell, a styrene-divinylbenzene resin, which was widely used as an ion exchange resin membrane in the early stage of development, was used as a core, and an ion exchange group was introduced into this. However, the cell life was not sufficient because it was physically or chemically unstable with respect to electrochemical phenomena and reactions occurring on the surface and inside of the polymer membrane of the fuel cell. Therefore, in recent years, perfluorocarbon resins having a sulfonic acid group as an ion-exchange group have come to be generally used because they are physically and chemically more durable.

【0004】スルホン酸基をイオン交換基として有する
パーフルオロカーボン樹脂、すなわち、パーフルオロカ
ーボンスルホン酸樹脂は次のような構造で示される。
A perfluorocarbon resin having a sulfonic acid group as an ion exchange group, that is, a perfluorocarbon sulfonic acid resin has the following structure.

【0005】[0005]

【化1】 膜状に成形されたものとしてナフィオン117( Nafio
n 117:商品名 Du Pont社製)が従来よく用いられて
いる。また、電極としては電極表面に触媒を担持したガ
ス拡散電極を用いている。つぎにこれら従来の手段によ
る高分子電解質型燃料電池の製作実施例により該燃料電
池の従来技術を更に詳しく説明する。
[Chemical 1] As a film-shaped product, Nafion 117 (Nafio
n 117: a product name manufactured by Du Pont Co., Ltd.) is often used conventionally. A gas diffusion electrode having a catalyst supported on the electrode surface is used as the electrode. Next, the prior art of the fuel cell will be described in more detail with reference to manufacturing examples of the polymer electrolyte fuel cell by these conventional means.

【0006】(従来例)ロール圧延により、親水性カー
ボンブラックと疎水性カーボンブラック及びポリ四フッ
化エチレンからなる親水性反応層(約40〜50μm)
と、疎水性カーボンブラック及びポリ四フッ化エチレン
からなる疎水性ガス拡散層(約400〜500μm)を
積層、圧着し、ホットプレス(380℃、175kg/
cm2 、3秒)によって焼結し、撥水性を付与したガス
拡散電極を得る。つぎに、塩化白金酸を反応層の表面に
吸引塗布し、酸化、水素還元処理を行い、2mg/cm
2の白金触媒を担持する。こうして得た触媒担持ガス拡
散電極と電解質膜ナフィオン117(約0.175mm
厚)とを用いて、130〜145℃、60秒のホットプ
レスで接合し、従来型電極を得る。発電時には陰極及び
陽極にそれぞれ空気等の酸化剤、水素ガスからなる燃料
とを流し、電池温度を100℃以下に保ちながら電流を
得る。発電性能評価条件の一例を表1に示す。
(Conventional example) By roll rolling, a hydrophilic reaction layer (about 40 to 50 μm) comprising hydrophilic carbon black, hydrophobic carbon black and polytetrafluoroethylene.
And a hydrophobic gas diffusion layer (about 400 to 500 μm) composed of hydrophobic carbon black and polytetrafluoroethylene are laminated and pressure-bonded, and hot press (380 ° C., 175 kg /
Cm 2 for 3 seconds) to obtain a gas diffusion electrode having water repellency. Next, chloroplatinic acid is applied to the surface of the reaction layer by suction, and oxidation and hydrogen reduction treatments are performed to obtain 2 mg / cm 2.
Supports 2 platinum catalysts. The catalyst-supporting gas diffusion electrode thus obtained and the electrolyte membrane Nafion 117 (about 0.175 mm
Thickness) and are joined by hot pressing at 130 to 145 ° C. for 60 seconds to obtain a conventional electrode. At the time of power generation, an oxidizing agent such as air and a fuel composed of hydrogen gas are caused to flow through the cathode and the anode, respectively, and an electric current is obtained while maintaining the cell temperature at 100 ° C. or lower. Table 1 shows an example of the power generation performance evaluation conditions.

【0007】[0007]

【表1】 [Table 1]

【0008】一般に、燃料電池の性能は発電時に電流を
取り出すことによって生ずる電池内の電圧低下(過電
圧)の大きさによって評価され、この過電圧が小さいほ
ど性能がよいとされる。高分子電解質型燃料電池では理
論電圧が約1.23Vであるが、電流を取り出す場合に
は電池内の過電圧によって電圧が低下し、例えば、電流
密度0.3A/cm2 のときに電圧は0.6〜0.8V
となる。このような過電圧の主なものは以下の通りであ
る。 (1)主に陰極側での酸素の還元反応速度に支配される
反応過電圧 (2)電極の電気抵抗と電解質膜のイオン移動抵抗に起
因する電気抵抗過電圧 (3)電極内の反応ガスの移動抵抗に起因する濃度過電
Generally, the performance of a fuel cell is evaluated by the magnitude of the voltage drop (overvoltage) in the cell caused by the extraction of current during power generation. The smaller the overvoltage, the better the performance. In a polymer electrolyte fuel cell, the theoretical voltage is about 1.23 V, but when current is taken out, the voltage drops due to overvoltage in the cell. For example, the voltage is 0 when the current density is 0.3 A / cm 2. 6 ~ 0.8V
Becomes The main ones of such overvoltages are as follows. (1) Reaction overvoltage mainly controlled by oxygen reduction reaction rate on the cathode side (2) Electric resistance overvoltage caused by the electric resistance of the electrode and ion transfer resistance of the electrolyte membrane (3) Movement of reaction gas in the electrode Concentration overvoltage due to resistance

【0009】これら過電圧のうち、(3)の濃度過電圧
は主に約1A/cm2 以上の高電流側で顕著となり、ガ
ス拡散層を多孔質化することによって改善することがで
きる。(1)及び(2)の過電圧は電極、電解質構成材
料及び電解質膜と電極との接合方法の改良によって減少
させることができ、電池性能の向上に最も寄与するもの
である。 (1)の反応過電圧は酸素の還元反応速度を向上させれ
ば小さくなる。この反応速度は主に触媒の担持量、電解
質と触媒との接触面積(電気化学的反応界面積)、反応
部でのpH(水素イオン濃度)及び酸素分圧の影響を受
け、これらの値が大きいほど反応速度が大きくなる。 (2)の過電圧は電極材料の電気抵抗を下げれば小さく
することができる。また、電解質膜のイオン移動抵抗は
膜材料のイオン交換容量を上げ、薄膜化すれば小さくす
ることができる。
Among these overvoltages, the concentration overvoltage of (3) becomes remarkable mainly on the high current side of about 1 A / cm 2 or more, and can be improved by making the gas diffusion layer porous. The overvoltages of (1) and (2) can be reduced by improving the method of joining the electrode, the electrolyte constituent material, and the electrolyte membrane to the electrode, and contributes most to the improvement of battery performance. The reaction overvoltage of (1) becomes small if the reduction reaction rate of oxygen is improved. This reaction rate is mainly affected by the amount of catalyst supported, the contact area between the electrolyte and the catalyst (electrochemical reaction interface area), pH (hydrogen ion concentration) and oxygen partial pressure in the reaction part, and these values are The larger the value, the higher the reaction rate. The overvoltage of (2) can be reduced by lowering the electrical resistance of the electrode material. Further, the ion transfer resistance of the electrolyte membrane can be reduced by increasing the ion exchange capacity of the membrane material and thinning it.

【0010】そこで従来は次の方法によって(1)及び
(2)の過電圧を低減させていた。 (1)担持触媒粒子径をできるだけ小さくすることによ
って単位触媒重量あたりの反応界面積を大きくする。具
体的には、微粒子の白金を担持した親水性カーボンブラ
ックを用いて反応層を形成する。 (2)液状の電解質を反応層表面に塗布し触媒との接触
量を増加させる。 (3)白金との合金を触媒材料として用いる。 (4)電解質のイオン交換容量を増加させる。 (5)電解質膜を薄膜化する。
Therefore, conventionally, the overvoltages of (1) and (2) have been reduced by the following method. (1) The reaction interfacial area per unit weight of the catalyst is increased by reducing the supported catalyst particle size as small as possible. Specifically, the reaction layer is formed using hydrophilic carbon black carrying fine particles of platinum. (2) A liquid electrolyte is applied to the surface of the reaction layer to increase the amount of contact with the catalyst. (3) An alloy with platinum is used as a catalyst material. (4) Increase the ion exchange capacity of the electrolyte. (5) Thin the electrolyte membrane.

【0011】上記各方法は従来様々に適用されている
が、次のような問題点があった。 (1)白金の微粒子化には限界があり、粒子径を小さく
した場合には触媒粒子の焼結による触媒活性の低下が顕
著になる。 (2)液状の電解質を反応層に塗布する場合には反応界
面積は増加するものの反応層中に含浸した電解質が反応
ガス(酸素ガス)の触媒粒子上への拡散を妨げるため、
電流密度が上がるにつれ性能の改善が見られなくなる。 (3)白金との合金材料が検討されているが耐久性等に
課題がある。 (4)電解質はイオン交換容量を大きくしていくにつれ
電解質溶液から膜への成形性が悪くなるため、イオン交
換容量の増加には限界がある。 (5)電解質膜の薄肉化によりイオン移動距離が短くな
り、イオン移動抵抗が小さく、従って電気抵抗が小さく
なる。電気抵抗は電流密度を上げていく場合の電池の電
圧低下率に直接影響を与え、電気抵抗が小さいほど電圧
低下が小さい。しかし、電解質膜を薄肉化することは膜
上のピンホールの生成、差圧運転時の耐圧性、信頼性等
に問題が生ずる。
Although each of the above methods has been conventionally applied in various ways, it has the following problems. (1) There is a limit to making platinum into fine particles, and when the particle size is reduced, the catalytic activity is significantly reduced due to sintering of the catalyst particles. (2) When a liquid electrolyte is applied to the reaction layer, the reaction interfacial area increases, but the electrolyte impregnated in the reaction layer prevents the reaction gas (oxygen gas) from diffusing onto the catalyst particles.
As the current density goes up, no improvement in performance is seen. (3) Although alloy materials with platinum have been studied, there are problems in durability and the like. (4) Since the moldability of the electrolyte from the electrolyte solution to the membrane deteriorates as the ion exchange capacity increases, there is a limit to the increase in the ion exchange capacity. (5) The thinning of the electrolyte membrane shortens the ion migration distance, which reduces the ion migration resistance and thus the electrical resistance. The electric resistance directly affects the voltage drop rate of the battery when increasing the current density, and the smaller the electric resistance, the smaller the voltage drop. However, reducing the thickness of the electrolyte membrane causes problems such as formation of pinholes on the membrane, pressure resistance during differential pressure operation, and reliability.

【0012】[0012]

【発明が解決しようとする課題】上記従来の固体高分子
電解質膜型燃料電池では電池内の過電圧を低減するため
に様々な手段を適用しているが、従来の改善手段には上
記したような課題があった。
In the above-mentioned conventional solid polymer electrolyte membrane fuel cell, various means are applied to reduce the overvoltage in the cell, but the conventional means for improvement are as described above. There were challenges.

【0013】本発明は上記技術水準に鑑み、従来の固体
高分子電解質型燃料電池の有する不具合を解消した固体
高分子電解質型燃料電池を提供しようとするものであ
る。
In view of the above-mentioned state of the art, the present invention is to provide a solid polymer electrolyte fuel cell which solves the problems of the conventional solid polymer electrolyte fuel cells.

【0014】[0014]

【課題を解決するための手段】本発明は触媒担持ガス拡
散電極の触媒が担持された反応層面に、パーフルオロカ
ーボンスルホン酸樹脂の有機溶媒溶液中または該有機溶
媒と水との混合溶液中に無機材料からなる絶縁体上に硫
酸基を担持した固体酸粒子を混合分散させた混合分散溶
液を塗布、含浸させた後、二枚の電極についてこの塗布
面を向かい合わせ加熱圧着してなることを特徴とする固
体高分子電解質型燃料電池である。
Means for Solving the Problems The present invention is directed to the reaction layer surface of a catalyst-supporting gas diffusion electrode on which a catalyst is supported, in an organic solvent solution of a perfluorocarbon sulfonic acid resin or in a mixed solution of the organic solvent and water. Characterized by applying and impregnating a mixed dispersion solution in which solid acid particles supporting sulfuric acid groups are mixed and dispersed on an insulator made of a material, and then facing the coated surfaces of two electrodes by thermocompression bonding. And a solid polymer electrolyte fuel cell.

【0015】すなわち、本発明は従来広く用いられてい
るパーフルオロカーボンスルホン酸樹脂中に、表面に硫
酸基を担持した無機材料の絶縁体、すなわち固体酸であ
って、イオン交換容量が該スルホン酸樹脂と同じかある
いは大きいものを分散混合させる。該固体酸粒子はその
密度がスルホン酸樹脂より大きいため、単位体積あたり
のイオン交換容量は樹脂のみの場合に比べ大きくなる。
該固体酸とスルホン酸樹脂との混合溶液を触媒担持ガス
拡散電極の表面に塗布、含浸させ、二枚の電極について
この塗布面を向かい合わせ加熱圧着し電池を形成させ、
予め電解質を膜に成形せずに電池を形成する。この結
果、イオン交換容量が従来の膜よりも大きい電解質及び
触媒と電解質との混合層を形成させようとするものであ
る。
That is, according to the present invention, a perfluorocarbon sulfonic acid resin which has been widely used in the past is used as an insulator of an inorganic material having a sulfuric acid group supported on the surface thereof, that is, a solid acid, which has an ion exchange capacity of the sulfonic acid resin. Disperse and mix the same as or larger than. Since the density of the solid acid particles is larger than that of the sulfonic acid resin, the ion exchange capacity per unit volume is larger than that of the resin alone.
A mixed solution of the solid acid and a sulfonic acid resin is applied to and impregnated on the surface of the catalyst-carrying gas diffusion electrode, and the application surfaces of the two electrodes are faced to each other by thermocompression to form a battery,
A battery is formed without previously molding the electrolyte into a membrane. As a result, an attempt is made to form an electrolyte and a mixed layer of a catalyst and an electrolyte having an ion exchange capacity larger than that of a conventional membrane.

【0016】[0016]

【作用】上記のごとく構成された本発明に係る固体高分
子電解質型燃料電池用電極は、触媒担持ガス拡散電極に
パーフルオロカーボンスルホン酸樹脂の有機溶媒溶液中
または該有機溶媒と水との混合溶液中に、硫酸基を有す
る固体酸粒子を混合分散させた混合分散溶液を塗布、含
浸することによって以下の作用が期待できる。 (1)形成された電解質層のイオン交換容量が従来電解
質より大きいため次の作用がある。 (a)電解質内のイオン移動抵抗が小さくなるため電気
抵抗が小さくなる。 (b)反応層表面の触媒担持領域における水素イオン濃
度が高くなるため反応速度が大きくなる。従って反応過
電圧が小さくなる。 (c)従来膜より厚肉の膜で同程度の性能が得られるた
め、電解質膜を極端に薄肉化する必要がなく膜の信頼性
が向上する。 (2)電解質を膜状に成形することなく単に電極上に塗
布、含浸させ加熱圧着させるため比較的薄肉状の電解質
層を形成でき、電気抵抗の低減が図れる。 (3)電極表面の触媒だけでなく表面近傍の電極内部に
存在する触媒上へも電解質が含浸するため、反応界面積
が広くなり反応抵抗を低減できる。
The electrode for a solid polymer electrolyte fuel cell according to the present invention configured as described above is used as a catalyst-supporting gas diffusion electrode in an organic solvent solution of perfluorocarbon sulfonic acid resin or a mixed solution of the organic solvent and water. The following effects can be expected by applying and impregnating a mixed dispersion solution in which solid acid particles having a sulfuric acid group are mixed and dispersed therein. (1) Since the formed electrolyte layer has a larger ion exchange capacity than the conventional electrolyte, it has the following effects. (A) Since the ion migration resistance in the electrolyte becomes small, the electric resistance becomes small. (B) Since the hydrogen ion concentration in the catalyst supporting region on the surface of the reaction layer is high, the reaction rate is high. Therefore, the reaction overvoltage becomes small. (C) Since the same performance can be obtained with a thicker membrane than the conventional membrane, it is not necessary to extremely thin the electrolyte membrane and the reliability of the membrane is improved. (2) Since the electrolyte is simply applied, impregnated, and thermocompression-bonded onto the electrode without being formed into a film, a relatively thin electrolyte layer can be formed, and electric resistance can be reduced. (3) Since the electrolyte is impregnated not only on the catalyst on the surface of the electrode but also on the catalyst existing inside the electrode near the surface, the reaction interface area is widened and the reaction resistance can be reduced.

【0017】本発明に用いるパーフルオロカーボンスル
ホン酸樹脂の溶液は、例えば、米国Aldrich Chemical C
ompanyからナフィオン溶液( Nafion Solution )として
販売されている5%のパーフルオロカーボンスルホン酸
樹脂を含む低級脂肪族アルコール(10%の水を含む)
溶液がある。また、パーフルオロカーボンスルホン酸樹
脂の有機溶媒との親和性はイオン交換容量が大きい場
合、低級脂肪族アルコールやその他の極性の高い有機溶
媒に溶解することが知られている。また、本発明に用い
る硫酸基を有する固体酸粒子は、TiO2 ,ZrO2
ような金属酸化物粒子上に硫酸基、SO4 2-を担持した
ものがその代表である。このものは、例えばTiCl4
と水を混合加熱してTiCl4 +H2 O→Ti(OH)
4 +4HClの反応によりTi(OH)4 の沈殿を得、
この乾燥粉末を1NのH2 SO4 に加えて、ろ過して余
分なH2 SO4 を除去した後、乾燥し、例えば600℃
で3時間焼成してSO4 2-基担持TiO2 粉末とするこ
とによって得られる。例えばTiO2 に硫酸基を担持し
た固体酸ではイオン交換容量が約2meq/gであり、
ナフィオンの約0.9meq/gに比べ約2倍大きい。
また、密度は該固体酸の方が約2.5倍程度大きいため
単位体積あたりのイオン交換容量は該固体酸の方が約5
倍程度大きい。
The solution of the perfluorocarbon sulfonic acid resin used in the present invention is, for example, Aldrich Chemical C
Lower aliphatic alcohol (containing 10% water) containing 5% perfluorocarbon sulfonic acid resin sold as a Nafion Solution by ompany
There is a solution. Further, it is known that the affinity of the perfluorocarbon sulfonic acid resin with an organic solvent is dissolved in a lower aliphatic alcohol or another organic solvent having a high polarity when the ion exchange capacity is large. Further, the solid acid particles having a sulfate group used in the present invention are typically those in which a sulfate group and SO 4 2− are carried on metal oxide particles such as TiO 2 and ZrO 2 . This is, for example, TiCl 4
And water mixed and heated to TiCl 4 + H 2 O → Ti (OH)
The precipitation of Ti (OH) 4 is obtained by the reaction of 4 + 4HCl,
This dry powder is added to 1N H 2 SO 4 , filtered to remove excess H 2 SO 4 , and then dried, for example at 600 ° C.
It is obtained by firing for 3 hours to obtain SO 4 2 -group-supporting TiO 2 powder. For example, in a solid acid in which TiO 2 carries a sulfate group, the ion exchange capacity is about 2 meq / g,
It is about twice as large as about 0.9 meq / g of Nafion.
Further, since the density of the solid acid is about 2.5 times larger, the ion exchange capacity per unit volume of the solid acid is about 5 times.
About twice as large.

【0018】さらに、本発明の触媒担持ガス拡散電極は
電極触媒が担持されたガス拡散電極であり、例えば、カ
ーボンブラックとポリフッ化エチレンの混合物を圧延に
よりシート上に成形された後触媒成分を含有する溶液を
塗布後、酸化、水素還元処理により触媒を担持した電極
や多孔性炭素質基材上にポリフッ化エチレンをともに電
極触媒粉末を担持した電極などがある。本発明ではこれ
らのガス拡散電極に限定するものではない。
Further, the catalyst-supporting gas diffusion electrode of the present invention is a gas diffusion electrode on which an electrode catalyst is supported. For example, a mixture of carbon black and polyfluorinated ethylene is molded on a sheet by rolling and then contains a catalyst component. There is an electrode which carries a catalyst by an oxidation or hydrogen reduction treatment after applying the solution, or an electrode which carries an electrocatalyst powder together with polyfluoroethylene on a porous carbonaceous substrate. The present invention is not limited to these gas diffusion electrodes.

【0019】[0019]

【実施例】本発明の固体高分子電解質型燃料電池の一実
施例をあげ、本発明の構成及び作用をより一層詳細に説
明する。 (例1) (1)ロール圧延により親水性カーボンブラックと疎水
性カーボンブラック及びポリ四フッ化エチレンからなる
親水性反応層(約40〜50μm)と、疎水性カーボン
ブラック及びポリ四フッ化エチレンからなる疎水性ガス
拡散層(約400〜500μm)を積層、圧着し、ホッ
トプレス(380℃、175kg/cm2、3秒)によ
って焼結し、撥水性を付与したガス拡散電極を得る。つ
ぎに、塩化白金酸を前記反応層の表面に吸引塗布し、酸
化、水素還元処理を行い、2mg/cm2 の白金触媒を
担持した触媒担持ガス拡散電極を得る。 (2)約70〜90℃に加熱された吸引式ホットプレー
トを用いて、上記触媒担持ガス拡散電極の反応層面に5
% Nafion 溶液(米国 Aldrich Chemical Company 製)
に酸化チタンを基材とした硫酸基を有する固体酸粒子を
分散させた溶液を塗布含浸した。 (3)(2)で得られた固体酸含有 Nafion 塗布触媒担
持ガス拡散電極の反応層面を向き合わせ、130〜14
5℃、60秒のホットプレスで接合し、電極を得た。 (4)(3)で得られた電極の断面を顕微鏡にて観察
し、電解質層の厚みは約100μmで、電解質層中に貫
通部のないこと及び固体酸粒子が電解質中にほぼ均一に
分散されていることを確認した。 (5)上記方法で得られた固体高分子電解質型燃料電池
の模式図を図1に示す。図1において、1は固体酸含有
ナフィオンよりなる約100μmの電解質層、2は親水
性カーボンブラック、Pt触媒、ポリ四フッ化エチレン
よりなる約40〜50μmの親水性反応層、3は疎水性
カーボンブラック、ポリ四フッ化エチレンよりなる約4
00〜500μmの疎水性ガス拡散層である。
EXAMPLE An example of the solid polymer electrolyte fuel cell of the present invention will be given to explain the constitution and operation of the present invention in more detail. (Example 1) (1) From a hydrophilic reaction layer (about 40 to 50 μm) made of hydrophilic carbon black, hydrophobic carbon black and polytetrafluoroethylene by roll rolling, and from hydrophobic carbon black and polytetrafluoroethylene A hydrophobic gas diffusion layer (about 400 to 500 μm) is laminated, pressure-bonded, and sintered by hot pressing (380 ° C., 175 kg / cm 2 , 3 seconds) to obtain a gas diffusion electrode having water repellency. Next, chloroplatinic acid is applied to the surface of the reaction layer by suction, and subjected to oxidation and hydrogen reduction treatment to obtain a catalyst-supporting gas diffusion electrode carrying 2 mg / cm 2 of platinum catalyst. (2) Using a suction type hot plate heated to about 70 to 90 ° C., 5 is applied to the reaction layer surface of the catalyst-supporting gas diffusion electrode.
% Nafion solution (Aldrich Chemical Company, USA)
Then, a solution in which solid acid particles having a sulfuric acid group and having titanium oxide as a base material were dispersed was applied and impregnated. (3) The solid acid-containing Nafion-coated catalyst-supporting gas diffusion electrode obtained in (2) was faced with the reaction layer surface, and 130 to 14
Bonding was performed by hot pressing at 5 ° C. for 60 seconds to obtain an electrode. (4) The cross section of the electrode obtained in (3) was observed with a microscope, the thickness of the electrolyte layer was about 100 μm, there was no penetration in the electrolyte layer, and the solid acid particles were dispersed almost uniformly in the electrolyte. It was confirmed that it was done. (5) A schematic view of the solid polymer electrolyte fuel cell obtained by the above method is shown in FIG. In FIG. 1, 1 is an electrolyte layer of solid acid-containing Nafion having a thickness of about 100 μm, 2 is a hydrophilic carbon black, Pt catalyst, and a hydrophilic reaction layer of polytetrafluoroethylene having a thickness of about 40 to 50 μm, and 3 is a hydrophobic carbon. About 4 consisting of black and polytetrafluoroethylene
It is a hydrophobic gas diffusion layer having a thickness of 00 to 500 μm.

【0020】(例2)例1の(1)項で得られた本発明
に係る電極と従来例で得た従来型電極を反応面積180
cm2 の単セルでの発電試験を行い、電流−電圧特性曲
線を求めた。発電試験条件は表1に示したものに同じで
ある。図2に電流密度−電圧曲線を示す。図2に示すよ
うに電極の性能が向上していることが明らかになった。
Example 2 The reaction area of the electrode according to the present invention obtained in the item (1) of Example 1 and the conventional electrode obtained in the conventional example is 180
A power generation test was performed in a single cell of cm 2 to obtain a current-voltage characteristic curve. The power generation test conditions are the same as those shown in Table 1. FIG. 2 shows a current density-voltage curve. It was revealed that the performance of the electrode was improved as shown in FIG.

【0021】(例3)さらに例2での発電性能結果を発
電特性式E=E0 −b log(i)−iRによって解析し
た結果を表2に示す。なお、試式中、E0 :触媒活性を
考慮した平衡電位、b:ターフェルb係数、R:微分電
気抵抗である。
(Example 3) Further, Table 2 shows the result of analysis of the power generation performance result in Example 2 by the power generation characteristic equation E = E 0 -b log (i) -iR. In the trial formula, E 0 is an equilibrium potential considering the catalytic activity, b is a Tafel b coefficient, and R is a differential electric resistance.

【0022】[0022]

【表2】 表2の結果から本発明に係る電極は反応抵抗が減少して
いるため、E0 が増大していることが分かる。また、電
気抵抗Rの減少が大きいが、これは電解質層の電気抵抗
の減少に起因するものと考えられ、本発明の効果が明ら
かである。
[Table 2] It can be seen from the results in Table 2 that the electrode according to the present invention has a decreased reaction resistance and thus an increased E 0 . Further, the decrease in the electric resistance R is large, which is considered to be due to the decrease in the electric resistance of the electrolyte layer, and the effect of the present invention is clear.

【0023】[0023]

【発明の効果】本発明では、従来の高分子電解質膜を用
いずに無機材料の絶縁体上に硫酸基を担持した固体酸粒
子を分散混合した電解質液を電極表面に塗布含浸させる
ため、電池形成後の電解質層が薄肉となる。また、該電
解質層が高分子電解質より大きいイオン交換容量を有す
るため、電解質層の電気抵抗が小さくなるとともに反応
速度が増加し反応抵抗が減少する。以上の効果によって
優れた性能を示す固体高分子電解質型燃料電池が提供で
きる。
According to the present invention, the electrode surface is coated and impregnated with an electrolyte solution prepared by dispersing and mixing solid acid particles carrying a sulfuric acid group on an insulator of an inorganic material without using a conventional polymer electrolyte membrane. The formed electrolyte layer becomes thin. Further, since the electrolyte layer has an ion exchange capacity larger than that of the polymer electrolyte, the electric resistance of the electrolyte layer becomes small, and the reaction rate increases and the reaction resistance decreases. With the above effects, it is possible to provide a solid polymer electrolyte fuel cell having excellent performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の固体高分子電解質型燃料電
池の要部の模式図。
FIG. 1 is a schematic view of a main part of a solid polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】本発明の固体高分子電解質型燃料電池と従来の
ものとの性能比較を示す図表。
FIG. 2 is a chart showing a performance comparison between the solid polymer electrolyte fuel cell of the present invention and a conventional one.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平田 勇夫 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 森賀 卓也 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuuo Hirata 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Laboratory (72) Inventor Takuya Moriga 4 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture 6-22 No. 6 Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 触媒担持ガス拡散電極の触媒が担持され
た反応層面に、パーフルオロカーボンスルホン酸樹脂の
有機溶媒溶液中または該有機溶媒と水との混合溶液中に
無機材料からなる絶縁体上に硫酸基を担持した固体酸粒
子を混合分散させた混合分散溶液を塗布、含浸させた
後、二枚の電極についてこの塗布面を向かい合わせ加熱
圧着してなることを特徴とする固体高分子電解質型燃料
電池。
1. A catalyst-supported gas diffusion electrode having a catalyst-supported reaction layer surface on an insulator made of an inorganic material in an organic solvent solution of a perfluorocarbon sulfonic acid resin or a mixed solution of the organic solvent and water. A solid polymer electrolyte type characterized by coating and impregnating a mixed dispersion solution in which solid acid particles carrying a sulfate group are mixed and dispersed, and then heating and press-bonding the coated surfaces of two electrodes facing each other. Fuel cell.
JP4187701A 1992-07-15 1992-07-15 Solid polymer electrolyte fuel cell Expired - Lifetime JP3035079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4187701A JP3035079B2 (en) 1992-07-15 1992-07-15 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4187701A JP3035079B2 (en) 1992-07-15 1992-07-15 Solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0636776A true JPH0636776A (en) 1994-02-10
JP3035079B2 JP3035079B2 (en) 2000-04-17

Family

ID=16210649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4187701A Expired - Lifetime JP3035079B2 (en) 1992-07-15 1992-07-15 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3035079B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134995A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
JP2002216537A (en) * 2001-01-16 2002-08-02 Kansai Research Institute Proton conductive solid electrolyte and proton conductive solid electrolyte sheet
KR20030051048A (en) * 2001-12-20 2003-06-25 현대자동차주식회사 A polymer electrolyte membrane for maintaining water balance at fuel cell stack
KR100442819B1 (en) * 2000-10-25 2004-08-02 삼성전자주식회사 Membrane electrode assembly for fuel cell operable in non-humidified fuel condition
JP2006512746A (en) * 2002-12-23 2006-04-13 マイクロセル コーポレーション Manufacturing method supported on substrate of microfibrous fuel cell
JP2009004183A (en) * 2007-06-20 2009-01-08 Gunze Ltd Solid polymer electrolyte membrane of multilayer structure, manufacturing method thereof, as well as membrane-electrode assembly and manufacturing method thereof
US8048584B2 (en) 2003-03-07 2011-11-01 Microcell Corporation Fuel cell structures and assemblies
US8137866B2 (en) 2005-07-28 2012-03-20 Kobe Steel, Ltd. Titanium material for fuel cell separator having low contact resistance
CN112786937A (en) * 2021-01-27 2021-05-11 浙江高成绿能科技有限公司 Fuel cell membrane electrode and preparation method thereof
JP2023023219A (en) * 2021-08-04 2023-02-16 日本碍子株式会社 Electrolyte membrane and fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134995A (en) * 1993-11-09 1995-05-23 Toyota Central Res & Dev Lab Inc Fuel cell
KR100442819B1 (en) * 2000-10-25 2004-08-02 삼성전자주식회사 Membrane electrode assembly for fuel cell operable in non-humidified fuel condition
JP2002216537A (en) * 2001-01-16 2002-08-02 Kansai Research Institute Proton conductive solid electrolyte and proton conductive solid electrolyte sheet
KR20030051048A (en) * 2001-12-20 2003-06-25 현대자동차주식회사 A polymer electrolyte membrane for maintaining water balance at fuel cell stack
JP2006512746A (en) * 2002-12-23 2006-04-13 マイクロセル コーポレーション Manufacturing method supported on substrate of microfibrous fuel cell
US8048584B2 (en) 2003-03-07 2011-11-01 Microcell Corporation Fuel cell structures and assemblies
US8137866B2 (en) 2005-07-28 2012-03-20 Kobe Steel, Ltd. Titanium material for fuel cell separator having low contact resistance
JP2009004183A (en) * 2007-06-20 2009-01-08 Gunze Ltd Solid polymer electrolyte membrane of multilayer structure, manufacturing method thereof, as well as membrane-electrode assembly and manufacturing method thereof
CN112786937A (en) * 2021-01-27 2021-05-11 浙江高成绿能科技有限公司 Fuel cell membrane electrode and preparation method thereof
JP2023023219A (en) * 2021-08-04 2023-02-16 日本碍子株式会社 Electrolyte membrane and fuel cell

Also Published As

Publication number Publication date
JP3035079B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US6686308B2 (en) Supported nanoparticle catalyst
CA2098800C (en) Electrode assemblies
JP3271801B2 (en) Polymer solid electrolyte fuel cell, humidifying method of the fuel cell, and manufacturing method
US6576363B1 (en) Solid polymer electrolyte-catalyst composite electrode, electrode for fuel cell, and process for producing these electrodes
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
US8470495B2 (en) Electrode catalyst with improved longevity properties and fuel cell using the same
US10505197B2 (en) Unitized electrode assembly with high equivalent weight ionomer
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2002539596A (en) Gas diffusion substrate
JPH09265992A (en) Electrode structure for fuel cell
JP4207120B2 (en) Catalytic electrode and electrochemical device
JPH0888007A (en) Solid polymer fuel cell and its electrode
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP3035079B2 (en) Solid polymer electrolyte fuel cell
US20060287194A1 (en) Electrode for solid polymer type fuel cell and manufacturing method therefor
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
JP2005228755A (en) Polymer electrolyte fuel cell
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JP3326254B2 (en) Fuel cell
JP2002015745A (en) Solid polymer fuel cell
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JP2009037902A (en) Catalyst carrying carrier for forming electrode for fuel cell, method for manufacturing the same, and solid polymer fuel cell
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JPH09265996A (en) Electrode structure for fuel cell and its manufacture
JPH06275282A (en) Fuel cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 13