JP2002216537A - Proton conductive solid electrolyte and proton conductive solid electrolyte sheet - Google Patents

Proton conductive solid electrolyte and proton conductive solid electrolyte sheet

Info

Publication number
JP2002216537A
JP2002216537A JP2001045781A JP2001045781A JP2002216537A JP 2002216537 A JP2002216537 A JP 2002216537A JP 2001045781 A JP2001045781 A JP 2001045781A JP 2001045781 A JP2001045781 A JP 2001045781A JP 2002216537 A JP2002216537 A JP 2002216537A
Authority
JP
Japan
Prior art keywords
sulfuric acid
solid electrolyte
conductive solid
metal oxide
proton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001045781A
Other languages
Japanese (ja)
Inventor
Masanori Hori
堀  正典
Yuichi Ishikawa
雄一 石川
Atsushi Gamachi
厚志 蒲地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kansai Research Institute KRI Inc
Original Assignee
Honda Motor Co Ltd
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kansai Research Institute KRI Inc filed Critical Honda Motor Co Ltd
Priority to JP2001045781A priority Critical patent/JP2002216537A/en
Publication of JP2002216537A publication Critical patent/JP2002216537A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant solid electrolyte material having high proton conductivity of 10-3-10-1 S/cm over the wide range of temperature from room temperature to 100 deg.C or higher. SOLUTION: The proton conductive solid electrolyte contains a solid acid which carries highly proton-dissociable sulfuric acid on a metal hydroxide and/or a metal oxide. The sulfuric acid-carrying metal oxide holds heat-resistivity by heat treatment through synthesizing and a combination of sulfuric acid and a metal oxide making a superstrong acid is preferable. Preferably, the mole ratio S/M of the sulfur in the sulfuric acid and the metal element (M) is within the range of 0.01 to 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質材料に
関し、さらに詳しくは燃料電池、電気二重層キャパシタ
などのエネルギー変換素子やエレクトロクロミック素
子、センサーなどに利用可能なプロトン伝導性固体電解
質及びプロトン伝導性固体電解質シートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte material, and more particularly to a proton conductive solid electrolyte and a proton conductive material which can be used for energy conversion devices such as fuel cells and electric double layer capacitors, electrochromic devices, sensors and the like. The present invention relates to a conductive solid electrolyte sheet.

【0002】[0002]

【従来の技術】液体電解質に比べ固体電解質は、電気化
学素子を形成する上で、プロセスの容易さ、素子の小型
軽量化などにおいて重要な役割を担うものである。特に
プロトン伝導を発現する固体電解質は、低温作動で高エ
ネルギー密度を保持した高分子固体電解質型燃料電池
や、エレクトロクロミック表示素子、センサーなどの作
製においてキーマテリアルとして、開発が進められてい
る。
2. Description of the Related Art Compared with a liquid electrolyte, a solid electrolyte plays an important role in forming an electrochemical device, such as simplicity of a process and reduction in size and weight of the device. In particular, solid electrolytes that exhibit proton conduction are being developed as key materials in the production of solid polymer electrolyte fuel cells, electrochromic display elements, sensors, and the like that maintain high energy density at low temperatures.

【0003】現在、プロトン伝導性固体電解質として
は、有機高分子系イオン交換膜である、スルホン化ポリ
フルオロオレフィン(例えばデュポン社製の商品名ナフ
ィオン)やアルキルリン酸をドープしたポリベンズイミ
ダゾール(特開平9−110982号公報)、さらには
スルホン化ポリカーボネート(特許公開2000−23
5812号公報)などが知られている。
At present, as proton conductive solid electrolytes, organic polymer ion exchange membranes such as sulfonated polyfluoroolefins (for example, Nafion (trade name, manufactured by DuPont)) and polybenzimidazole doped with alkylphosphoric acid (ex. JP-A-9-110982), and further, a sulfonated polycarbonate (JP-A-2000-23).
No. 5812).

【0004】また、無機系のプロトン伝導性固体電解質
としては、過塩素酸をドープした複合シリカゲルやヘテ
ロポリ酸であるリンモリブデン酸結晶(Masahir
oTatsumisago et.al J.Am.C
eram.Soc.,Vol.72,NO.3,484
〜486(1989))、リン酸複合型のシリカガラス
(Masayuki Nogami et.al J.
Electrochem.Soc.,Vol 144,
NO.6,2175〜2178(1997))などが知
られており、これらを全固体型の調光素子や全固体型キ
ャパシタ作製へ応用する研究が進められている。
As the inorganic proton-conductive solid electrolyte, composite silica gel doped with perchloric acid and phosphomolybdic acid crystal (Masahir), which is a heteropoly acid, are used.
oTatsusumisago et. al. Am. C
eram. Soc. , Vol. 72, NO. 3,484
486 (1989)), a silica glass of a phosphoric acid composite type (Masayuki Nogami et.
Electrochem. Soc. , Vol 144,
NO. No. 6,2175-2178 (1997)), and studies are being made to apply these to the production of all-solid-state light control elements and all-solid-state capacitors.

【0005】[0005]

【発明が解決しようとする課題】現状、電気化学素子と
してはナフィオンなどの有機高分子系プロトン伝導性固
体電解質が使用されているが、100℃を超えると材料
の耐熱性が問題となり、センサーやエネルギー変換素子
に適用する場合、高温使用時での性能劣化が指摘されて
いる。例えば燃料電池への応用を考えた場合には、発電
効率の良い100〜150℃領域での使用が制限される
ことを意味する。
At present, an organic polymer proton conductive solid electrolyte such as Nafion is used as an electrochemical element. However, when the temperature exceeds 100 ° C., the heat resistance of the material becomes a problem, and the sensor and the When applied to an energy conversion element, it has been pointed out that the performance is degraded when used at a high temperature. For example, when the application to a fuel cell is considered, it means that the use in a range of 100 to 150 ° C. with high power generation efficiency is restricted.

【0006】現在知られているプロトン伝導性固体電解
質は、特定の温度領域で10−5〜10−2S/cm台
のプロトン伝導率を示すものが開発されているが、室温
から100℃を超える広範囲にわたる温度領域で、安定
して10−2S/cm以上の高プロトン伝導率を示す固
体電解質は開発されていない。一般的には、無機材料は
有機材料より耐熱性に優れるが、リンモリブデン酸につ
いては100℃付近でアモルファス化がおこるためか、
10−2〜10−1S/cmの高伝導率を示す温度領域
は室温付近にとどまっている。リン酸複合型のシリカガ
ラスや有機系プロトン伝導性高分子固体電解質について
は、室温〜80℃付近の温度範囲までは10−3〜10
−2S/cm台の高伝導度を示すものが開発されてい
る。
Currently known proton conductive solid electrolytes exhibiting a proton conductivity of the order of 10 −5 to 10 −2 S / cm in a specific temperature range have been developed. A solid electrolyte that stably exhibits a high proton conductivity of 10 −2 S / cm or more in a wide temperature range exceeding the above range has not been developed. In general, inorganic materials have better heat resistance than organic materials, but phosphomolybdic acid is likely to become amorphous at around 100 ° C.
The temperature region showing a high conductivity of 10 −2 to 10 −1 S / cm stays around room temperature. For the phosphoric acid composite type silica glass and the organic proton conductive polymer solid electrolyte, the temperature range from room temperature to around 80 ° C. is 10 −3 to 10.
Materials exhibiting high conductivity on the order of -2 S / cm have been developed.

【0007】また10−1S/cm台を示す固体超プロ
トン伝導体の開発に関しては研究例もほとんど見当たら
ないが、実現できれば、表示素子の応答速度の向上や、
補強材不要の燃料電池作製など電気化学素子作製に向け
たプロセスの進展が期待できる。
[0007] Also, there are few research examples on the development of a solid super-proton conductor exhibiting the order of 10 -1 S / cm, but if it can be realized, the response speed of the display element can be improved,
It is expected that the process for electrochemical device fabrication, such as fuel cell fabrication without the need for reinforcing materials, will progress.

【0008】本発明は、上記のようなプロトン伝導性固
体電解質が現状かかえる問題点を解決するためになされ
たものであり、その目的は、室温から100℃を超える
広い温度領域で10−3〜10−1S/cmの高プロト
ン伝導率を発現する耐熱性の固体電解質材料を提供する
ことにある。
[0008] The present invention has proton-conducting solid electrolyte as described above has been made to solve the problems faced situation, and its object is 10 -3 to a wide temperature range exceeding 100 ° C. from room An object of the present invention is to provide a heat-resistant solid electrolyte material exhibiting a high proton conductivity of 10 −1 S / cm.

【0009】[0009]

【課題を解決するための手段】プロトン伝導性の高い材
料を提供するためには、固体内でプロトンの移動度を大
きくし、分子状の水を共存させることが必要であるこ
と、またプロトンの移動度を上げるためには、水素結合
性の強いプロトンが多量に電解質内に存在することが必
要であり、そのためにプロトンの解離度の大きい硫酸を
金属酸化物に担持させた固体酸が、高プロトン伝導率を
発現する。このコンセプトのもと研究を行った結果、本
発明者らは硫酸担持金属酸化物(SO/MxOyと表
記する)が10−5〜10−1S/cmレベルのプロト
ン伝導率を示すことを見出し、さらに硫酸担持金属酸化
物の組成制御と合成過程で熱処理を加えることにより、
耐熱性が保持された10−3〜10−1S/cmレベ
ルの高プロトン伝導性固体電解質を製造し得ることを見
出し本発明を完成するに至った。
In order to provide a material having high proton conductivity, it is necessary to increase the mobility of protons in a solid and to allow molecular water to coexist. In order to increase the mobility, it is necessary that a large amount of protons having a strong hydrogen bond exist in the electrolyte. Therefore, a solid acid in which sulfuric acid having a high degree of proton dissociation is supported on a metal oxide is high. Develop proton conductivity. As a result of conducting research based on this concept, the present inventors have found that a sulfuric acid-supported metal oxide (expressed as SO 4 / MxOy) exhibits a proton conductivity of a level of 10 −5 to 10 −1 S / cm. By adding heat treatment in the composition control and synthesis process of the sulfuric acid-supported metal oxide,
The present inventors have found that a high proton conductive solid electrolyte having a heat resistance of 10 −3 to 10 −1 S / cm can be produced, and have completed the present invention.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】本発明により、プロトンの解離度が大き
く、室温から100℃を超える温度領域において10
−5〜10−1S/cmレベルのプロトン伝導率を保持
する耐熱性のある硫酸担持金属酸化物を提供する。
According to the present invention, the degree of proton dissociation is large, and the
Disclosed is a heat-resistant sulfuric acid-supporting metal oxide which maintains a proton conductivity at a level of -5 to 10 -1 S / cm.

【0012】本発明の硫酸担持金属酸化物において、担
体となる金属水酸化物および/または金属酸化物は、硫
酸を担持することで固体酸となるものであり、その中で
も合成された硫酸担持金属酸化物SO/MxOyの酸
強度が大きいジルコニウム、チタン、鉄、錫、シリコ
ン、アルミニウム、モリブデン、タングステンの各酸化
物を用いることが特に望ましい。
In the sulfuric acid-supporting metal oxide of the present invention, the metal hydroxide and / or metal oxide serving as a carrier becomes a solid acid by supporting sulfuric acid. It is particularly desirable to use zirconium, titanium, iron, tin, silicon, aluminum, molybdenum, and tungsten oxides each having a high acid strength of the oxide SO 4 / MxOy.

【0013】プロトンの解離度は酸強度として表現で
き、固体酸の酸強度はHammettの酸度関数H
して表わされ、硫酸の場合Hは−11.93である。
本発明において固体超強酸性とはH<−11.93の
範囲内となる性質のものをいう。高プロトン伝導率を示
す硫酸担持金属酸化物としては、固体超強酸性を発現す
る金属元素と硫酸との組み合わせが好まく、ジルコニウ
ム、チタン、鉄、錫、シリコン、アルミニウムにより選
ばれた硫酸担持金属酸化物がこれに相当する(K.Ar
ata et al.J. Am.Chem.So
c.,VOL 1016439〜(1979))。
The degree of proton dissociation can be expressed as an acid strength, and the acid strength of a solid acid is expressed as Hammett's acidity function H 0. In the case of sulfuric acid, H 0 is −11.93.
In the present invention, the solid superacidity refers to a material having a property that satisfies a range of H 0 <-11.93. As a sulfuric acid-supporting metal oxide exhibiting high proton conductivity, a combination of a metal element exhibiting solid superacidity and sulfuric acid is preferred, and a sulfuric acid-supporting metal selected from zirconium, titanium, iron, tin, silicon, and aluminum is preferred. Oxides correspond to this (K. Ar
ata et al. J. Am. Chem. So
c. , VOL 1016439- (1979)).

【0014】硫酸担持金属酸化物は金属酸化物あるいは
金属水酸化物と硫酸との反応により合成できるが、合成
法はこれに限るものではない。また硫酸との反応を進行
させるために300℃以上、好ましくは500℃以上の
温度で熱処理させる。また熱処理を施すことにより、そ
の熱処理温度までは耐熱性が向上し、固体電解質の使用
温度領域が広がる。
The sulfuric acid-supporting metal oxide can be synthesized by the reaction of a metal oxide or metal hydroxide with sulfuric acid, but the synthesis method is not limited to this. Further, heat treatment is performed at a temperature of 300 ° C. or more, preferably 500 ° C. or more, in order to advance the reaction with sulfuric acid. Further, by performing the heat treatment, the heat resistance is improved up to the heat treatment temperature, and the operating temperature range of the solid electrolyte is widened.

【0015】本発明に係る硫酸担持金属酸化物におい
て、硫酸分の硫黄(S)と、担体である金属水酸化物お
よび/または金属酸化物を構成する金属元素(M)との
モル比S/Mは、0.0001〜1.5が好ましく、
0.001〜1がより好ましく、0.01〜1の範囲内
がさらに好ましい。0.01以下では担持の効果が低く
なる場合があり、また1を超えると酸性度が低下するた
めか、プロトン伝導率の向上が見られないおそれがあ
る。
[0015] In the sulfuric acid-supporting metal oxide according to the present invention, the molar ratio S / of the sulfuric acid (S) and the metal element (M) constituting the metal hydroxide and / or metal oxide serving as a carrier. M is preferably 0.0001 to 1.5,
0.001-1 is more preferable, and the range of 0.01-1 is still more preferable. If it is less than 0.01, the effect of the loading may be reduced. If it exceeds 1, the proton conductivity may not be improved, probably because the acidity is reduced.

【0016】プロトン伝導性固体電解質としては、2種
以上の元素からなる硫酸担持金属酸化物であってもかま
わない。この場合複合金属酸化物の硫酸担持物、あるい
は硫酸担持金属酸化物の混合物でもよい。
The proton conductive solid electrolyte may be a sulfuric acid-supported metal oxide composed of two or more elements. In this case, a mixed metal oxide supporting sulfuric acid or a mixture of sulfuric acid supporting metal oxide may be used.

【0017】本発明のプロトン伝導性固体電解質シート
は金属酸化物シート(セラミックスシート)に硫酸を担
持することにより製造することができる。例えば、酸化
ジルコニウムZrOにCaOやYなどを添加し
て作製したセラミックスシートを硫酸処理することによ
り、靱性に優れたプロトン伝導性固体電解質シートの製
造ができる。
The proton conductive solid electrolyte sheet of the present invention can be manufactured by supporting sulfuric acid on a metal oxide sheet (ceramic sheet). For example, by subjecting a ceramic sheet prepared by adding CaO, Y 2 O 3, or the like to zirconium oxide ZrO 2 to sulfuric acid treatment, a proton conductive solid electrolyte sheet excellent in toughness can be manufactured.

【0018】[0018]

【実施例】以下に、本発明の実施例を記載し具体的に説
明するが、本発明はこれら実施例に限定されるものでは
ない。
EXAMPLES Examples of the present invention will now be described and specifically described, but the present invention is not limited to these examples.

【0019】〔実施例1〕濃硫酸(96%)0.5gに
蒸留水を加え、総重量100gの硫酸水溶液を調整し
た。この硫酸水溶液に酸化ジルコニウムZrOを20
g添加し3時間撹拌しスラリーを作製した。このスラリ
ーを室温から5℃/分の昇温速度で100℃まで加熱
し、100℃で3時間保持することにより水を除去し
た。この後さらに、1℃/分の昇温速度で200℃まで
加熱し200℃で3時間保持することにより、白色の粉
末を得た。この段階での重量減少はほとんどが水の揮発
によるものであった。この白色の粉末をさらに1℃/分
の昇温速度で500℃まで加熱し、500℃で3時間保
持することにより、硫酸分の硫黄(S)と担体である水
酸化物および/または酸化物を構成する金属元素(M)
とのモル比S/Mが0.03である硫酸担持ジルコニア
SO/ZrOの白色粉末を得た。
Example 1 Distilled water was added to 0.5 g of concentrated sulfuric acid (96%) to prepare an aqueous sulfuric acid solution having a total weight of 100 g. Zirconium oxide ZrO 2 was added to this aqueous sulfuric acid solution for 20 minutes.
g was added and stirred for 3 hours to prepare a slurry. The slurry was heated from room temperature to 100 ° C. at a rate of 5 ° C./min and kept at 100 ° C. for 3 hours to remove water. Thereafter, the powder was further heated to 200 ° C. at a rate of 1 ° C./min and maintained at 200 ° C. for 3 hours to obtain a white powder. Most of the weight loss at this stage was due to water volatilization. The white powder is further heated to 500 ° C. at a rate of 1 ° C./min and maintained at 500 ° C. for 3 hours, so that sulfur (S) in the sulfuric acid content and the hydroxide and / or oxide Metal Elements (M) Constituting
A white powder of sulfuric acid-supported zirconia SO 4 / ZrO 2 having a molar ratio S / M of 0.03 was obtained.

【0020】〔実施例2〕濃硫酸(96%)1gを用い
る以外は実施例1と同様の操作を行い、硫酸分の硫黄
(S)と担体である水酸化物および/または酸化物を構
成する金属元素(M)とのモル比S/Mが0.06であ
る硫酸担持ジルコニアSO/ZrOの白色粉末を得
た。
Example 2 The same operation as in Example 1 was carried out except that 1 g of concentrated sulfuric acid (96%) was used to form sulfur (S) of sulfuric acid and hydroxide and / or oxide as a carrier. A white powder of sulfuric acid-supported zirconia SO 4 / ZrO 2 having a molar ratio S / M to the metallic element (M) of 0.06 was obtained.

【0021】〔実施例3〕濃硫酸(96%)4gを用い
る以外は実施例1と同様の操作を行い、硫酸分の硫黄
(S)と担体である水酸化物および/または酸化物を構
成する金属元素(M)とのモル比S/Mが0.25であ
る硫酸担持ジルコニアSO/ZrOの白色粉末を得
た。
Example 3 The same operation as in Example 1 was carried out except that 4 g of concentrated sulfuric acid (96%) was used to form sulfur (S) of sulfuric acid and a hydroxide and / or oxide as a carrier. A white powder of sulfuric acid-supported zirconia SO 4 / ZrO 2 having a molar ratio S / M to the metal element (M) to be obtained of 0.25 was obtained.

【0022】〔実施例4〕濃硫酸(96%)6gを用い
る以外は実施例1と同様の操作を行い、硫酸分の硫黄
(S)と担体である水酸化物および/または酸化物を構
成する金属元素(M)とのモル比S/Mが0.38であ
る硫酸担持ジルコニアSO/ZrOの白色粉末を得
た。
Example 4 The same operation as in Example 1 was carried out except that 6 g of concentrated sulfuric acid (96%) was used to form sulfur (S) of sulfuric acid and a hydroxide and / or oxide as a carrier. A white powder of sulfuric acid-supported zirconia SO 4 / ZrO 2 having a molar ratio S / M to the metallic element (M) to be obtained of 0.38 was obtained.

【0023】〔実施例5〕濃硫酸(96%)8gを用い
る以外は実施例1と同様の操作を行い、硫酸分の硫黄
(S)と担体である水酸化物および/または酸化物を構
成する金属元素(M)とのモル比S/Mが0.50であ
る硫酸担持ジルコニアSO/ZrOの白色粉末を得
た。
Example 5 The same operation as in Example 1 was carried out except that 8 g of concentrated sulfuric acid (96%) was used to form sulfur (S) of sulfuric acid and hydroxide and / or oxide as a carrier. A white powder of sulfuric acid-supported zirconia SO 4 / ZrO 2 having a molar ratio S / M to the metal element (M) to be produced of 0.50 was obtained.

【0024】〔実施例6〕濃硫酸(96%)16gを用
いる以外は実施例1と同様の操作を行い硫酸分の硫黄
(S)と担体である水酸化物および/または酸化物を構
成する金属元素(M)とのモル比S/Mが0.93であ
る硫酸担持ジルコニアSO/ZrOの白色粉末を得
た。
Example 6 The same operation as in Example 1 was carried out except that 16 g of concentrated sulfuric acid (96%) was used to constitute sulfuric acid (S) of sulfuric acid and a hydroxide and / or oxide as a carrier. A white powder of sulfuric acid-supported zirconia SO 4 / ZrO 2 having a molar ratio S / M to the metal element (M) of 0.93 was obtained.

【0025】〔実施例7〕濃硫酸(96%)25gを用
いる以外は実施例1と同様の操作を行い硫酸分の硫黄
(S)と担体である水酸化物および/または酸化物を構
成する金属元素(M)とのモル比S/Mが1.4である
硫酸担持ジルコニアSO/ZrOの白色粉末を得
た。
Example 7 The same operation as in Example 1 was carried out except that 25 g of concentrated sulfuric acid (96%) was used to form sulfur (S) of sulfuric acid and hydroxide and / or oxide as a carrier. A white powder of sulfuric acid-supported zirconia SO 4 / ZrO 2 having a molar ratio S / M to the metal element (M) of 1.4 was obtained.

【0026】〔比較例1〕硫酸担持ジルコニアにかえ
て、酸化ジルコニウムZrOを実施例1と同様の方法
により調整した。
Comparative Example 1 Zirconium oxide ZrO 2 was prepared in the same manner as in Example 1 in place of sulfuric acid-supported zirconia.

【0027】実施例1〜7の硫酸担持ジルコニアを粉砕
した後、直径13mm、厚さ0.5mmの円盤状ペレッ
トに5トンの圧力で成型した。その両面に厚み0.1m
mの白金電極を圧接し電気伝導度測定用の電気化学セル
を作製した。このセルを100%相対湿度下に12時間
放置させた後、ZAHNER社製のインピーダンスアナ
ライザーIM6を用い、交流インピーダンス法により2
3℃、及び90℃におけるプロトン伝導率を求めた。こ
の結果を表1に示した。比較例1において得られた酸化
ジルコニウムZrOについて、上記と同様にペレット
を作製して、プロトン伝導率を測定した。23℃で5.
2×10−6S/cm、90℃で9.2×10−6S/
cmであった。S/Zrのモル比、すなわちS/Mが
0.25〜0.5の範囲で23℃で1×10−3S/c
m以上の高プロトン伝導率が得られ、比較例1に示した
原料の酸化ジルコニアZrOに比べ伝導率が2〜3桁
も向上した。また酸度指示薬であるp−ニトロフルオロ
ベンゼン(新実験化学講座16 丸善)により酸度関数
を調べたところS/Mのモル比が0.06、0.25、
0.38のものはHO<−12.44の超強酸であっ
た。なお硫酸の担持比は200℃3時間の粉末からの重
量減少分から求めたが、硫酸仕込み量が0.5g〜8g
のものはほとんど重量減少が見られなかったが、硫酸仕
込み量16g、25gものは10%以上の重量減があっ
た。
After pulverizing the sulfuric acid-carrying zirconia of Examples 1 to 7, it was molded into a disc-shaped pellet having a diameter of 13 mm and a thickness of 0.5 mm at a pressure of 5 tons. 0.1m thickness on both sides
m of platinum electrodes was pressed against each other to prepare an electrochemical cell for measuring electric conductivity. The cell was allowed to stand at 100% relative humidity for 12 hours, and then subjected to AC impedance method using an impedance analyzer IM6 manufactured by ZAHNER.
The proton conductivity at 3 ° C. and 90 ° C. was determined. The results are shown in Table 1. For zirconium oxide ZrO 2 obtained in Comparative Example 1, pellets were prepared in the same manner as described above, and the proton conductivity was measured. 4. At 23 ° C.
2 × 10 −6 S / cm, 9.2 × 10 −6 S / cm at 90 ° C.
cm. 1 × 10 −3 S / c at 23 ° C. in a molar ratio of S / Zr, that is, S / M in the range of 0.25 to 0.5.
m and higher proton conductivity was obtained, and the conductivity was improved by two to three orders of magnitude compared to the raw material zirconia ZrO 2 shown in Comparative Example 1. When the acidity function was examined using p-nitrofluorobenzene (New Experimental Chemistry Course 16 Maruzen) as an acidity indicator, the S / M molar ratio was 0.06, 0.25,
The one with 0.38 was a super strong acid with HO <-12.44. The supporting ratio of sulfuric acid was determined from the weight loss from the powder at 200 ° C. for 3 hours, and the amount of sulfuric acid charged was 0.5 g to 8 g.
No significant weight loss was observed, but the sulfuric acid charge amount of 16 g and 25 g had a weight loss of 10% or more.

【0028】[0028]

【表1】 [Table 1]

【0029】〔実施例8〕それぞれ、実施例3、4、5
と同様な方法で作製したS/Mモル比が0.25、0.
38、0.50の硫酸担持ジルコニアのプロトン伝導率
の温度依存を測定した。電気化学セルおよび測定法は実
施例1と同一で行った。 測定環境は100℃以下では
相対湿度100%であるが、100℃を超えた温度領域
においては相対湿度を規定できないが加湿しながら測定
を行った。またインピーダンス測定は各温度で15分保
持した後に行った。図1は実施例3、4、5で合成した
硫酸担持ジルコニアのプロトン伝導率と温度との関係を
示すグラフである。その結果、各試料とも0.1S/c
mを超える超プロトン伝導率を示す領域が100℃前後
の温度域で確認できた。S/Mのモル比0.38では1
15℃で0.19S/cmの伝導率が得られた。これは
現在知られているナフィオンなどの有機高分子型プロト
ン伝導性固体電解質の約10倍ものプロトン伝導率であ
る。これらの結果は図1にまとめて示した。
[Embodiment 8] Embodiments 3, 4, and 5, respectively,
The S / M molar ratio prepared in the same manner as in Example 1 was 0.25, and the S / M molar ratio was 0.2.
Temperature dependence of the proton conductivity of sulfuric acid-supported zirconia of 38, 0.50 was measured. The electrochemical cell and the measuring method were the same as in Example 1. The relative humidity is 100% when the measurement environment is 100 ° C. or lower, but the relative humidity cannot be specified in a temperature range exceeding 100 ° C., but the measurement was performed while humidifying. The impedance was measured after each temperature was held for 15 minutes. FIG. 1 is a graph showing the relationship between proton conductivity and temperature of sulfuric acid-supported zirconia synthesized in Examples 3, 4, and 5. As a result, each sample was 0.1 S / c.
A region having a superproton conductivity exceeding m was confirmed in a temperature region around 100 ° C. At a S / M molar ratio of 0.38, 1
A conductivity of 0.19 S / cm at 15 ° C. was obtained. This has a proton conductivity about 10 times that of the currently known organic polymer type proton conductive solid electrolyte such as Nafion. These results are summarized in FIG.

【0030】〔実施例9〜15〕それぞれ、酸化チタン
(TiO)、酸化第2鉄(Fe)、酸化錫(S
nO)、シリカ(SiO)、酸化アルミニウム(A
)、酸化モリブデン(MoO)、酸化タング
ステン(WO)の硫酸担持金属酸化物を、各金属酸化
物を原料として実施例1と同様な方法で合成した。S/
Mのモル比はいづれの試料も0.38とした。またこれ
らのプロトン伝導率は23℃、相対湿度100%環境
下、実施例1と同様な電気化学セルを作製し交流インピ
ーダンス法により求めた。その結果、プロトン伝導率は
10−4〜10−2S/cmの値を示し、原料の酸化物
に比べ、プロトン伝導率は2〜3桁向上し、硫酸担持に
よる効果が明確に確認できた。この結果を表2に示し
た。
Examples 9 to 15 Titanium oxide (TiO 2 ), ferric oxide (Fe 2 O 3 ), and tin oxide (S
nO 2 ), silica (SiO 2 ), aluminum oxide (A
1 2 O 3 ), molybdenum oxide (MoO 3 ), and sulfuric acid-supporting metal oxides of tungsten oxide (WO 3 ) were synthesized in the same manner as in Example 1 using each metal oxide as a raw material. S /
The molar ratio of M was 0.38 for all samples. The proton conductivity was determined by an AC impedance method under the environment of 23 ° C. and 100% relative humidity by preparing an electrochemical cell similar to that in Example 1. As a result, the proton conductivity showed a value of 10 −4 to 10 −2 S / cm, the proton conductivity was improved by two to three orders as compared with the oxide of the raw material, and the effect of supporting sulfuric acid was clearly confirmed. . The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】〔実施例16〕3cm角の厚み200μm
の部分安定化ジルコニアシートを96%濃硫酸中に完全
に浸せきさせ、60℃下、ロータリポンプにて12時間
真空吸引を行い、硫酸をシート内に浸み込ませた。もと
のシートは白色不透明であったが、硫酸処理したものは
やや透明性を呈していた。この硫酸処理シートを5℃/
分の昇温速度で100℃まで加熱し、100℃で3時間
保持した後、1℃/分の昇温速度で200℃まで加熱し
200℃で3時間保持した。さらに1℃/分の昇温速度
で500℃まで加熱し、500℃で3時間保持すること
により硫酸を担持させたジルコニアシートを作製した。
S/Zrモル比は蛍光X線分析より0.12であった。
Example 16 A 3 cm square thickness of 200 μm
The partially stabilized zirconia sheet was completely immersed in 96% concentrated sulfuric acid, and vacuum suction was performed with a rotary pump at 60 ° C. for 12 hours to allow sulfuric acid to soak into the sheet. The original sheet was white and opaque, but the one treated with sulfuric acid exhibited some transparency. 5 ° C /
After heating to 100 ° C. at a heating rate of 1 minute and holding at 100 ° C. for 3 hours, heating to 200 ° C. at a heating rate of 1 ° C./minute and holding at 200 ° C. for 3 hours. Further, the sample was heated to 500 ° C. at a rate of 1 ° C./min and maintained at 500 ° C. for 3 hours to produce a zirconia sheet carrying sulfuric acid.
The S / Zr molar ratio was 0.12 by fluorescent X-ray analysis.

【0033】上記の硫酸担持ジルコニアシートの両面に
厚み0.1mmの白金電極を圧接し電気伝導度測定用の
電気化学セルを作製した。このセルを用い、実施例2と
同様な方法でプロトン伝導率の温度依存を測定した。そ
の結果プロトン伝導率は23℃〜140℃の広範囲な温
度領域で10−3S/cm台を示した。図2硫酸担持ジ
ルコニアシートのプロトン伝導率と温度との関係を示す
グラフである。同様に測定した硫酸担持前のジルコニア
シートは絶縁体を示し伝導率が10−9S/cm以下で
あったことより、硫酸担持により大幅なプロトン伝導率
の向上が確認された。
A platinum electrode having a thickness of 0.1 mm was pressed against both sides of the above-mentioned zirconia sheet carrying sulfuric acid to prepare an electrochemical cell for measuring electric conductivity. Using this cell, the temperature dependence of the proton conductivity was measured in the same manner as in Example 2. As a result, the proton conductivity showed a level of 10 −3 S / cm in a wide temperature range of 23 ° C. to 140 ° C. FIG. 2 is a graph showing the relationship between the proton conductivity and the temperature of the zirconia sheet carrying sulfuric acid. The zirconia sheet before carrying sulfuric acid, which was measured in the same manner, showed an insulator and had a conductivity of 10 −9 S / cm or less. Therefore, a significant improvement in proton conductivity was confirmed by carrying sulfuric acid.

【0034】[0034]

【発明の効果】本発明を用いれば、室温から100℃を
超える広い温度領域で高伝導率を示すプロトン伝導性固
体電解質が提供できる。またセラミックスシートに硫酸
を担持することによりプロトン伝導性を付与した固体電
解質シートを作製することができる。
According to the present invention, it is possible to provide a proton conductive solid electrolyte having high conductivity in a wide temperature range from room temperature to over 100 ° C. In addition, a solid electrolyte sheet provided with proton conductivity by supporting sulfuric acid on a ceramic sheet can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 硫酸担持ジルコニアのプロトン伝導率と温度
との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the proton conductivity and temperature of sulfuric acid-supported zirconia.

【図2】 硫酸担持ジルコニアシートのプロトン伝導率
と温度との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the proton conductivity of a sulfuric acid-supported zirconia sheet and temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/08 H01M 8/02 K H01G 9/025 G01N 27/58 Z H01M 8/02 H01G 9/00 301G (72)発明者 石川 雄一 京都府京都市下京区中堂寺南町17番地 株 式会社関西新技術研究所内 (72)発明者 蒲地 厚志 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 2G004 ZA01 2G060 AA08 AF03 AF08 AG05 AG11 GA01 HA02 4G048 AA02 AB02 AC06 AD03 AD06 5G301 CA02 CA12 CA23 CA25 CA28 CD01 CD10 5H026 AA06 EE11 HH05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/08 H01M 8/02 K H01G 9/025 G01N 27/58 Z H01M 8/02 H01G 9/00 301G (72) Inventor Yuichi Ishikawa 17 Kandoji Minamicho, Shimogyo-ku, Kyoto, Kyoto Prefecture Inside the Kansai New Technology Research Institute (72) Inventor Atsushi Kamachi 1-4-1, Chuo, Wako-shi, Saitama Japan Honda R & D Co., Ltd. In-house F term (reference) 2G004 ZA01 2G060 AA08 AF03 AF08 AG05 AG11 GA01 HA02 4G048 AA02 AB02 AC06 AD03 AD06 5G301 CA02 CA12 CA23 CA25 CA28 CD01 CD10 5H026 AA06 EE11 HH05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体酸である硫酸担持金属酸化物を有す
るプロトン伝導性固体電解質。
1. A proton-conductive solid electrolyte having a sulfuric acid-supported metal oxide as a solid acid.
【請求項2】 前記硫酸担持金属酸化物において硫酸分
の硫黄(S)と、担体である金属水酸化物および/また
は金属酸化物を構成する金属元素(M)とのモル比S/
Mが0.0001〜1.5の範囲内であることを特徴と
する請求項1記載のプロトン伝導性固体電解質。
2. A molar ratio S / of the sulfuric acid (S) in the sulfuric acid-supporting metal oxide and the metal element (M) constituting the metal hydroxide and / or metal oxide as a carrier.
2. The proton conductive solid electrolyte according to claim 1, wherein M is in the range of 0.0001 to 1.5.
【請求項3】 硫酸担持金属酸化物が、ジルコニウム、
チタン、鉄、錫、シリコン、アルミニウム、モリブデ
ン、タングステンから選ばれる元素を1種類以上含むこ
とを特徴とする請求項2記載のプロトン伝導性固体電解
質。
3. The sulfuric acid-supporting metal oxide is zirconium,
The proton conductive solid electrolyte according to claim 2, wherein the solid electrolyte contains one or more elements selected from titanium, iron, tin, silicon, aluminum, molybdenum, and tungsten.
【請求項4】 硫酸担持金属酸化物が、固体超強酸性を
示すことを特徴とする請求項2記載のプロトン伝導性固
体電解質。
4. The proton conductive solid electrolyte according to claim 2, wherein the sulfuric acid-supporting metal oxide exhibits a solid superacidity.
【請求項5】 ジルコニウム、チタン、鉄、錫、シリコ
ン、アルミニウム、モリブデン、タングステンの各酸化
物を、少なくとも1種含むセラミックスシートに、硫酸
を担持させることによりなることを特徴とするプロトン
伝導性固体電解質シート。
5. A proton conductive solid, characterized by supporting sulfuric acid on a ceramic sheet containing at least one oxide of zirconium, titanium, iron, tin, silicon, aluminum, molybdenum and tungsten. Electrolyte sheet.
JP2001045781A 2001-01-16 2001-01-16 Proton conductive solid electrolyte and proton conductive solid electrolyte sheet Pending JP2002216537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001045781A JP2002216537A (en) 2001-01-16 2001-01-16 Proton conductive solid electrolyte and proton conductive solid electrolyte sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001045781A JP2002216537A (en) 2001-01-16 2001-01-16 Proton conductive solid electrolyte and proton conductive solid electrolyte sheet

Publications (1)

Publication Number Publication Date
JP2002216537A true JP2002216537A (en) 2002-08-02

Family

ID=18907510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001045781A Pending JP2002216537A (en) 2001-01-16 2001-01-16 Proton conductive solid electrolyte and proton conductive solid electrolyte sheet

Country Status (1)

Country Link
JP (1) JP2002216537A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102971A1 (en) * 2002-05-30 2003-12-11 National Institute Of Advanced Industrial Science And Technology Surface-modified inorganic porous material and fuel cell comprising the same as electrolyte
JP2006032287A (en) * 2004-07-21 2006-02-02 Toshiba Corp Proton conductive solid electrolyte, electrode for fuel cell, membrane electrode complex, and fuel cell
JP2006059672A (en) * 2004-08-20 2006-03-02 Teijin Ltd Proton conductive solid electrolyte membrane
JP2007194133A (en) * 2006-01-20 2007-08-02 Toshiba Corp Electrolyte membrane, membrane electrode assembly, and fuel cell
US7887940B2 (en) * 2005-12-13 2011-02-15 Kabushiki Kaisha Toshiba Electrolyte membrane, electrode, and fuel cell
US8349521B2 (en) 2004-07-21 2013-01-08 Kabushiki Kaisha Toshiba Membrane electrode assembly
JP2014167876A (en) * 2013-02-28 2014-09-11 Saitama Prefecture Catalyst for fuel cell and cathode
WO2017130354A1 (en) * 2016-01-28 2017-08-03 富士通株式会社 Solid electrolyte, and all-solid battery
JP7121175B1 (en) 2021-08-04 2022-08-17 日本碍子株式会社 Electrolyte membrane and fuel cell
JP7236519B1 (en) 2021-10-28 2023-03-09 日本碍子株式会社 proton conducting material
JP2023065976A (en) * 2021-10-28 2023-05-15 日本碍子株式会社 Proton conductive material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636776A (en) * 1992-07-15 1994-02-10 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte type fuel cell
JPH09120827A (en) * 1995-10-24 1997-05-06 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte fuel cell
JPH1069817A (en) * 1996-08-29 1998-03-10 Matsushita Electric Ind Co Ltd Proton conductor and electrochemical element using proton conductor
JPH11268913A (en) * 1998-01-19 1999-10-05 Ube Ind Ltd Production of zirconium oxide and thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0636776A (en) * 1992-07-15 1994-02-10 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte type fuel cell
JPH09120827A (en) * 1995-10-24 1997-05-06 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte fuel cell
JPH1069817A (en) * 1996-08-29 1998-03-10 Matsushita Electric Ind Co Ltd Proton conductor and electrochemical element using proton conductor
JPH11268913A (en) * 1998-01-19 1999-10-05 Ube Ind Ltd Production of zirconium oxide and thin film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102971A1 (en) * 2002-05-30 2003-12-11 National Institute Of Advanced Industrial Science And Technology Surface-modified inorganic porous material and fuel cell comprising the same as electrolyte
JP2006032287A (en) * 2004-07-21 2006-02-02 Toshiba Corp Proton conductive solid electrolyte, electrode for fuel cell, membrane electrode complex, and fuel cell
US8349521B2 (en) 2004-07-21 2013-01-08 Kabushiki Kaisha Toshiba Membrane electrode assembly
CN100405644C (en) * 2004-07-21 2008-07-23 株式会社东芝 Proton conductive solid electrolyte, and fuel cell using the same electrolyte
JP4625658B2 (en) * 2004-07-21 2011-02-02 株式会社東芝 Fuel cell electrode, membrane electrode composite, and fuel cell
JP2006059672A (en) * 2004-08-20 2006-03-02 Teijin Ltd Proton conductive solid electrolyte membrane
JP4713861B2 (en) * 2004-08-20 2011-06-29 帝人株式会社 Proton conducting solid electrolyte membrane
US7887940B2 (en) * 2005-12-13 2011-02-15 Kabushiki Kaisha Toshiba Electrolyte membrane, electrode, and fuel cell
JP4719015B2 (en) * 2006-01-20 2011-07-06 株式会社東芝 Electrolyte membrane, membrane electrode assembly and fuel cell
JP2007194133A (en) * 2006-01-20 2007-08-02 Toshiba Corp Electrolyte membrane, membrane electrode assembly, and fuel cell
JP2014167876A (en) * 2013-02-28 2014-09-11 Saitama Prefecture Catalyst for fuel cell and cathode
WO2017130354A1 (en) * 2016-01-28 2017-08-03 富士通株式会社 Solid electrolyte, and all-solid battery
JPWO2017130354A1 (en) * 2016-01-28 2018-11-29 富士通株式会社 Solid electrolyte and all-solid battery
US10854913B2 (en) 2016-01-28 2020-12-01 Fujitsu Limited Solid electrolyte and all-solid battery
JP7121175B1 (en) 2021-08-04 2022-08-17 日本碍子株式会社 Electrolyte membrane and fuel cell
JP2023023219A (en) * 2021-08-04 2023-02-16 日本碍子株式会社 Electrolyte membrane and fuel cell
JP7236519B1 (en) 2021-10-28 2023-03-09 日本碍子株式会社 proton conducting material
JP2023065976A (en) * 2021-10-28 2023-05-15 日本碍子株式会社 Proton conductive material
JP2023065978A (en) * 2021-10-28 2023-05-15 日本碍子株式会社 Proton conductive material

Similar Documents

Publication Publication Date Title
Xia et al. Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles
Primdahl et al. Sr-doped LaCrO3 anode for solid oxide fuel cells
Tan et al. Magnetron sputtering preparation of nitrogen-incorporated lithium–aluminum–titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries
Mohammad et al. Synthesis of Fast Fluoride-Ion-Conductive Fluorite-Type Ba1–x Sb x F2+ x (0.1≤ x≤ 0.4): A Potential Solid Electrolyte for Fluoride-Ion Batteries
Truong et al. First total H+/Li+ ion exchange in garnet-type Li5La3Nb2O12 using organic acids and studies on the effect of Li stuffing
JP2002216537A (en) Proton conductive solid electrolyte and proton conductive solid electrolyte sheet
CN106505248A (en) A kind of glass ceramics type method for preparing solid electrolyte
Sugumar et al. Room temperature synthesis of anti-perovskite structured Li2OHBr
JP7196371B1 (en) Ion-conducting solid-state and all-solid-state batteries
CA2460891C (en) Proton conducting material, proton conducting membrane, and fuel cell
Luo et al. Crystal structure refinement, microstructure and ionic conductivity of ATi2 (PO4) 3 (A= Li, Na, K) solid electrolytes
Park et al. Proton-conducting properties of inorganic-organic nanocomposites proton-exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate
Aparicio et al. Synthesis and Characterization of Nafion/60SiO2 30 P 2 O 5 10ZrO2 Sol-Gel Composite Membranes for PEMFCs
Sakai et al. Proton conduction properties of hydrous sulfated nano-titania synthesized by hydrolysis of titanyl sulfate
WO2006054672A1 (en) Conductive thin film forming proton conductive composition, and proton conductive composite film
CN109610001B (en) Inorganic material with high proton conductivity and preparation method thereof
JP4726036B2 (en) Proton conducting solid electrolyte membrane and fuel cell using the same
US8685592B2 (en) Inorganic proton conductor for an electrochemical device and method of preparing the inorganic proton conductor
Chen et al. Preparation of V doped lanthanum silicate electrolyte ceramics by combustion method and study on conductance mechanism
JP6041826B2 (en) Proton conductive material, solid electrolyte membrane, and method for producing proton conductive material
JP2001143723A (en) Electrolyte for fuel cell and fuel cell
CN101786793A (en) Proton conducting glass material and hydro-thermal treatment preparation method thereof
Sumi et al. Proton conductivities and structures of BaO–ZnO–P2O5 glasses in the ultraphosphate region for intermediate temperature fuel cells
Nomura et al. Ionic conductivity of protonated layered titanate nano‐powder compact in water
Guo et al. Formation Process of Na3SbS4 Solid Electrolyte via a Liquid‐Phase Reaction Using Acetonitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803