JPH0636677A - Element for protection against overcurrent - Google Patents
Element for protection against overcurrentInfo
- Publication number
- JPH0636677A JPH0636677A JP4213293A JP21329392A JPH0636677A JP H0636677 A JPH0636677 A JP H0636677A JP 4213293 A JP4213293 A JP 4213293A JP 21329392 A JP21329392 A JP 21329392A JP H0636677 A JPH0636677 A JP H0636677A
- Authority
- JP
- Japan
- Prior art keywords
- dopant
- conductive polymer
- overcurrent protection
- heat capacity
- containing conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ドーパント含有導電性
高分子を利用する過電流保護素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overcurrent protection device using a conductive polymer containing a dopant.
【0002】[0002]
【従来の技術】ドーパント含有導電性高分子を利用する
過電流保護素子は、ある一定以上の過電流により前記導
電性高分子が自己発熱して温度が上昇し、その結果導電
性が失われることを利用している。然しながら、より過
大な電圧印加によるより過大な電流が流れた場合、該過
電流保護素子の特に中心部付近は、ドーパント含有導電
性高分子の熱分解温度以上の温度に達することとなり、
該導電性高分子が炭化して導通状態となり、過電流保護
素子として動作せず、更に大電流が流れたり、放電が発
生し、火災などの重大な事故を引き起こす原因となる。2. Description of the Related Art In an overcurrent protection device using a conductive polymer containing a dopant, the conductive polymer self-heats and its temperature rises due to overcurrent above a certain level, resulting in loss of conductivity. Are using. However, when a larger current flows due to the application of a larger voltage, particularly near the center of the overcurrent protection element, the temperature reaches or exceeds the thermal decomposition temperature of the dopant-containing conductive polymer,
The conductive polymer is carbonized to be in a conductive state, does not operate as an overcurrent protection element, and causes a large current to flow or discharge, which causes a serious accident such as a fire.
【0003】[0003]
【発明が解決しようとする課題】本発明の課題は、過大
な電圧印加によるより過大な電流が流れても、火災の危
険が少なく、安全性及び信頼性が高い過電流保護素子を
提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an overcurrent protection element which is less likely to cause a fire and has high safety and reliability even when an excessive current flows due to an excessive voltage application. It is in.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、ドーパント含有導電性高分子と、該導電
性高分子よりも単位体積当たりの熱容量が大きい物質と
からなる過電流保護素子を提供するものである。本発明
は、ドーパント含有導電性高分子からなる過電流保護素
子に、ドーパント含有導電性高分子よりも単位体積当た
りの熱容量が大きい物質を含有させ、過剰な熱を吸収さ
せることにより、前記導電性高分子の過剰な温度上昇を
抑制するものである。In order to solve the above problems, the present invention provides an overcurrent protection comprising a dopant-containing conductive polymer and a substance having a larger heat capacity per unit volume than the conductive polymer. It provides an element. The present invention provides an overcurrent protection device made of a dopant-containing conductive polymer, containing a substance having a larger heat capacity per unit volume than the dopant-containing conductive polymer, and absorbing excess heat to thereby improve the conductivity. It suppresses an excessive temperature rise of the polymer.
【0005】ドーパント含有導電性高分子 本発明の過電流保護素子の素材であるドーパント含有導
電性高分子は、従来公知のものを使用することができ
る。本発明の過電流保護素子に利用する導電性高分子と
しては、例えば、ポリアニリン、ポリピロール、ポリア
セチレン等が挙げられ、好ましくは、ポリアニリンであ
る。また、ドーパントとしては、例えば、プロトン酸、
ルイス酸、ハロゲン等の電子吸引性の強い物質が挙げら
れ、具体的には、塩酸、硫酸、ホウフッ化水素酸、過塩
素酸、カンファーβスルホン酸、パラトルエンスルホン
酸、メタンスルホン酸、ベンゼンスルホン酸等のスルホ
ン酸、クエン酸、マレイン酸、マロン酸、シュウ酸等の
カルボン酸等が例示される。また、ポリアニリンについ
ては、好ましくは、カンファーβスルホン酸を使用す
る。スルホン酸をドープしたポリアニリンは、抵抗値の
経時変化が小さく、更に、カンファーβスルホン酸をド
ープしたポリアニリンは、加熱による抵抗値上昇が大き
く(図1参照)、電流を確実に遮断することができる。
ドーパントのドーピング量は、通常、導電性高分子を構
成する単量体単位1モル当たり、 0.3〜0.5 モルでよ
い。ドーピングの方法は、特に制限されず、例えば、化
学ドーピング法、電気化学的方法等が挙げられる。 Dopant-Containing Conductive Polymer As the dopant-containing conductive polymer which is a material of the overcurrent protection element of the present invention, conventionally known ones can be used. Examples of the conductive polymer used in the overcurrent protection device of the present invention include polyaniline, polypyrrole, polyacetylene, and the like, and polyaniline is preferable. Further, as the dopant, for example, a protic acid,
Examples thereof include substances having a strong electron-withdrawing property such as Lewis acid and halogen, and specific examples thereof include hydrochloric acid, sulfuric acid, borofluoric acid, perchloric acid, camphor β-sulfonic acid, paratoluenesulfonic acid, methanesulfonic acid and benzenesulfone. Examples thereof include sulfonic acids such as acids, carboxylic acids such as citric acid, maleic acid, malonic acid and oxalic acid. For polyaniline, preferably camphor β-sulfonic acid is used. Sulfonic acid-doped polyaniline has a small change in resistance value over time, and camphor β-sulfonic acid-doped polyaniline has a large increase in resistance value due to heating (see FIG. 1), and can reliably cut off current. .
The doping amount of the dopant is usually 0.3 to 0.5 mol per mol of the monomer unit constituting the conductive polymer. The doping method is not particularly limited, and examples thereof include a chemical doping method and an electrochemical method.
【0006】ドーパント含有導電性高分子よりも単位体
積当たりの熱容量が大きい物質 本発明の過電流保護素子は、上記のドーパント含有導電
性高分子の単位体積当たりの熱容量よりも大きい熱容量
を有する物質(以下、大熱容量物質という)を含有する
ことにより、該導電性高分子の過剰の温度上昇を抑制す
ることができる。大熱容量物質としては、好ましくは、
ドーパント含有導電性高分子の体積当たりの熱容量の
1.5〜5倍の熱容量を有するものを使用する。上記の大
熱容量物質としては、例えば、Al2 O 3 、AlN 、 TiO
2 、TiC 、TiB2 、Si3 N 4 、BN等の絶縁物質が挙げら
る。これらの中で好ましいものは、Al2 O 3 である。上
記の絶縁物質の混合量は、目的とする過電流保護素子の
抵抗値、使用するドーパント含有導電性高分子の種類及
び混合量並びに絶縁物質の種類により異なるが、ドーパ
ント含有導電性高分子と混合後の混合物において、上記
の絶縁物質の混合量が、通常、10〜70体積%であり、好
ましくは、30〜70体積%である。 Unit body rather than dopant-containing conductive polymer
Material with Large Heat Capacity per Product The overcurrent protection device of the present invention contains a material having a larger heat capacity than the heat capacity per unit volume of the above-mentioned dopant-containing conductive polymer (hereinafter referred to as large heat capacity material). It is possible to suppress an excessive temperature rise of the conductive polymer. As the large heat capacity substance, preferably,
Of heat capacity per volume of conductive polymer containing dopant
A material having a heat capacity of 1.5 to 5 times is used. Examples of the large heat capacity substance include Al 2 O 3 , AlN, and TiO 2.
Insulating substances such as 2 , TiC, TiB 2 , Si 3 N 4 , and BN can be cited. Of these, Al 2 O 3 is preferable. The mixing amount of the above-mentioned insulating material varies depending on the resistance value of the target overcurrent protection element, the type and mixing amount of the dopant-containing conductive polymer to be used, and the type of the insulating material, but it is mixed with the dopant-containing conductive polymer. In the latter mixture, the amount of the insulating material mixed is usually 10 to 70% by volume, preferably 30 to 70% by volume.
【0007】また、上記の大熱容量物質として、カーボ
ンブラック、グラファイト、WC、ZrC 、TaC 、TaN 等の
導電性物質を使用することも可能である。これらの中で
好ましいものは、WC及びZrC である。上記の導電性物質
の混合量は、目的とする過電流保護素子の抵抗値、使用
するドーパント含有導電性高分子の種類及び含有量並び
に導電性物質の種類により異なるが、ドーパント含有導
電性高分子と混合後の混合物において、上記の絶縁物質
の混合量が、通常、10〜70体積%であり、好ましくは、
30〜70体積%である。It is also possible to use a conductive material such as carbon black, graphite, WC, ZrC, TaC or TaN as the above large heat capacity material. Preferred among these are WC and ZrC. The mixed amount of the above-mentioned conductive substance varies depending on the resistance value of the target overcurrent protection element, the type and content of the dopant-containing conductive polymer to be used, and the type of the conductive substance, but the dopant-containing conductive polymer. In the mixture after mixing with, the mixing amount of the insulating material is usually 10 to 70% by volume, preferably,
It is 30 to 70% by volume.
【0008】上記の大熱容量物質の形状及び大きさは、
ドーパント含有導電性高分子から効率よく熱を吸収する
形状及び大きさであれば特に制約はない。該物質の形状
としては、例えば、球状、繊維状等が挙げられる。ま
た、該物質の大きさは、例えば球状のものを使用する場
合、好ましくは 100μm 以下であり、更に好ましくは、
10μm 以下であり、特に好ましくは、1μm 以下であ
る。また、上記の大熱容量物質とドーパント含有導電性
高分子との混合方法としては、単純に混合する方法も可
能であるが、成形を容易にするという観点から、該大熱
容量物質上に、上記のドーパント含有導電性高分子を重
合させる方法が好ましい。The shape and size of the above large heat capacity material are
There is no particular limitation as long as it has a shape and size that efficiently absorb heat from the dopant-containing conductive polymer. Examples of the shape of the substance include a spherical shape and a fibrous shape. The size of the substance is, for example, 100 μm or less when a spherical one is used, and more preferably,
It is 10 μm or less, particularly preferably 1 μm or less. Further, as a method for mixing the above-mentioned large heat capacity substance and the dopant-containing conductive polymer, a simple mixing method is also possible, but from the viewpoint of facilitating molding, the above-mentioned large heat capacity substance is A method of polymerizing the dopant-containing conductive polymer is preferable.
【0009】過電流保護素子の製法 本願発明の過電流保護素子は、上記の大熱容量物質を混
合したドーパント含有導電性高分子を、例えば、プレス
成形、キャスティング成形等の成形法により成形し、後
述する電極を形成することにより製造される。プレス成
形時においては、バインダーを混合したり、樹脂を含浸
させたり、樹脂で被覆することにより成形体の強度を高
めることも可能である。形状としては、例えば、円筒
状、円板状、角型状、シート状等が挙げられる。 Method of Manufacturing Overcurrent Protection Element In the overcurrent protection element of the present invention, a dopant-containing conductive polymer mixed with the above-mentioned large heat capacity substance is molded by a molding method such as press molding or casting molding, which will be described later. It is manufactured by forming an electrode to be used. At the time of press molding, it is possible to increase the strength of the molded body by mixing a binder, impregnating with a resin, or coating with a resin. Examples of the shape include a cylindrical shape, a disk shape, a square shape, and a sheet shape.
【0010】過電流保護素子は、通常、使用時には、例
えば2個の電極で挟まれた状態で使用される。この電極
材料としては、例えば金、銀、銅、ニッケル、クロム、
アルミニウム、インジウム等の各種金属、カーボン等が
挙げられ、使用する導電性高分子に対してオーミック接
触が得られるようなものを用いる。電極を取り付ける方
法としては、例えば、蒸着、メッキ等の方法が挙げられ
る。The overcurrent protection element is usually used, for example, in a state of being sandwiched between two electrodes at the time of use. Examples of the electrode material include gold, silver, copper, nickel, chromium,
Examples include various metals such as aluminum and indium, carbon, and the like, and those capable of obtaining ohmic contact with the conductive polymer used are used. Examples of the method of attaching the electrodes include vapor deposition, plating and the like.
【0011】本発明の過電流保護素子は、製造及び販売
に際しては前記の電極は必ずしも設けられる必要はな
い。例えば、上記のように使用に際して器具に予め設け
られた所定の電極等で機械的に締めつけ挟持される場合
には電極を予め素子に設けておく必要がないからであ
る。In the overcurrent protection element of the present invention, the above electrodes do not necessarily have to be provided at the time of manufacture and sale. This is because, for example, in the case where the device is mechanically clamped and clamped by a predetermined electrode or the like provided in advance in use as described above, it is not necessary to previously provide the electrode on the element.
【0012】また、本発明の過電流保護素子は、放電素
子、過電圧素子とユニット化して保安器とすることも可
能である。また、ハンダ付け温度にさらされても抵抗が
変化しない熱安定性の高いドーパント、例えば、有機ス
ルホン酸等がドープされた導電性高分子を使用する場合
には、チップ部品化し基盤に実装することも可能であ
る。Further, the overcurrent protection element of the present invention can be unitized with a discharge element and an overvoltage element to form a protector. Also, when using a conductive polymer doped with a highly thermostable dopant that does not change its resistance even when exposed to the soldering temperature, for example, organic sulfonic acid, etc., make it into a chip component and mount it on a substrate. Is also possible.
【0013】[0013]
【実施例】実施例1 300ml三角フラスコに、アニリン13.3g、塩酸(36%)1
8ml及び蒸留水 150mlを添加した後、アルミナ粉体(昭
和電工製、AL−45−A )66.5gを添加した。これをスタ
ーラーで攪拌しながら、ペルオキソ二硫酸アンモニウム
15.3gを蒸留水27mlに溶解した溶液を30分間かけて滴下
して、5時間反応を行ったところ、アルミナ粉体上を覆
うようにアニリンが重合されていた。得られたポリアニ
リン−アルミナを蒸留水で洗浄後、アンモニア水で処理
して塩酸を脱ドープした。更に水で洗浄した後、 0.5M
のカンファーβスルホン酸に浸漬して再ドープして、カ
ンファーβスルホン酸ドープポリアニリンを得た。これ
を濾別、乾燥した後、プレス成形により直径4mm、厚さ
2.5mmの成形体とし、その両面に金を真空蒸着して過電
流保護素子を作った。この過電流保護素子の抵抗値を測
定したところ、5Ωであった。図2のように、上記の過
電流保護素子1、電源2、抵抗(150Ω) 3を組み込んだ
回路を作り、過電流保護素子の性能を調べた。その結
果、過電流保護素子は、電源電圧 500Vで電流を遮断
し、過電流保護素子として動作した。 Example 1 In a 300 ml Erlenmeyer flask, 13.3 g of aniline and 1% of hydrochloric acid (36%)
After adding 8 ml and 150 ml of distilled water, 66.5 g of alumina powder (AL-45-A manufactured by Showa Denko) was added. While stirring this with a stirrer, ammonium peroxodisulfate
A solution prepared by dissolving 15.3 g in 27 ml of distilled water was added dropwise over 30 minutes and the reaction was carried out for 5 hours. As a result, aniline was polymerized so as to cover the alumina powder. The obtained polyaniline-alumina was washed with distilled water and then treated with aqueous ammonia to dedope hydrochloric acid. After further washing with water, 0.5M
The sample was immersed in camphor β-sulfonic acid and re-doped to obtain camphor β-sulfonic acid-doped polyaniline. This is separated by filtration, dried, and then press-formed to a diameter of 4 mm and a thickness.
A 2.5 mm molded body was formed, and gold was vacuum-deposited on both surfaces to form an overcurrent protection element. When the resistance value of this overcurrent protection element was measured, it was 5Ω. As shown in FIG. 2, a circuit incorporating the above-mentioned overcurrent protection device 1, power supply 2, and resistance (150Ω) 3 was prepared, and the performance of the overcurrent protection device was examined. As a result, the overcurrent protection element cut off the current at the power supply voltage of 500 V and operated as an overcurrent protection element.
【0014】比較例1 アルミナを混合しなかった以外は実施例1と同様の操作
を行うことにより得られた過電流保護素子を用いて、実
施例1と同様に過電流保護素子としての性能を調べた。
その結果、過電流保護素子は、電源電圧 300Vで発火し
た。 Comparative Example 1 Using the overcurrent protection device obtained by performing the same operation as in Example 1 except that alumina was not mixed, the performance as an overcurrent protection device was obtained in the same manner as in Example 1. Examined.
As a result, the overcurrent protection element ignited at a power supply voltage of 300V.
【0015】[0015]
【発明の効果】本発明のドーパント含有導電性高分子か
らなる過電流保護素子は、過大な電圧印加によるより過
大な電流が流れても、火災の危険が少なく、安全性及び
信頼性が高い。INDUSTRIAL APPLICABILITY The overcurrent protection device made of the conductive polymer containing a dopant of the present invention is highly safe and reliable, even if an excessively large current flows due to an excessively high voltage application.
【図1】カンファーβスルホン酸をドープしたポリアニ
リンと、ベンゼンスルホン酸をドープしたポリアニリン
の抵抗値の温度による変化を示すグラフである。FIG. 1 is a graph showing changes in resistance values of polyaniline doped with camphor β-sulfonic acid and polyaniline doped with benzenesulfonic acid with temperature.
【図2】実施例1及び比較例1で製造した過電流保護素
子の性能を調べるために使用した回路図である。FIG. 2 is a circuit diagram used to examine the performance of the overcurrent protection devices manufactured in Example 1 and Comparative Example 1.
1 過電流保護素子 1 Overcurrent protection element
Claims (3)
性高分子よりも単位体積当たりの熱容量が大きい物質と
からなる過電流保護素子。1. An overcurrent protection device comprising a conductive polymer containing a dopant and a substance having a larger heat capacity per unit volume than the conductive polymer.
記の導電性高分子よりも単位体積当たりの熱容量が大き
い物質が絶縁物質である過電流保護素子。2. The overcurrent protection element according to claim 1, wherein the substance having a larger heat capacity per unit volume than the conductive polymer is an insulating substance.
記の導電性高分子よりも単位体積当たりの熱容量が大き
い物質が導電性物質である過電流保護素子。3. The overcurrent protection device according to claim 1, wherein the substance having a larger heat capacity per unit volume than the conductive polymer is a conductive substance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21329392A JP3321200B2 (en) | 1992-07-17 | 1992-07-17 | Overcurrent protection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21329392A JP3321200B2 (en) | 1992-07-17 | 1992-07-17 | Overcurrent protection element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0636677A true JPH0636677A (en) | 1994-02-10 |
JP3321200B2 JP3321200B2 (en) | 2002-09-03 |
Family
ID=16636726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21329392A Expired - Fee Related JP3321200B2 (en) | 1992-07-17 | 1992-07-17 | Overcurrent protection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3321200B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0782970A1 (en) * | 1995-12-26 | 1997-07-09 | Morita, Ken-ichi | Agents and method for generation of active oxygen |
US5741887A (en) * | 1995-12-26 | 1998-04-21 | Ken-ichi Morita | Agents and methods for generation of active oxygen |
-
1992
- 1992-07-17 JP JP21329392A patent/JP3321200B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0782970A1 (en) * | 1995-12-26 | 1997-07-09 | Morita, Ken-ichi | Agents and method for generation of active oxygen |
US5741887A (en) * | 1995-12-26 | 1998-04-21 | Ken-ichi Morita | Agents and methods for generation of active oxygen |
Also Published As
Publication number | Publication date |
---|---|
JP3321200B2 (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101786157B1 (en) | Layer compositions With Improved Electrical Parameters Comprising PEDOT/PSS and a Stabilizer | |
RU2417472C2 (en) | Method to produce electrolytic capacitors | |
CN102969166B (en) | Containing the solid electrolytic capacitor of poly-(3,4-ethylenedioxythiophene) quaternary salt | |
JP3070408B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
CN110720131B (en) | Solid electrolytic capacitor assembly | |
CN115579241A (en) | Solid electrolytic capacitor for use in wet atmosphere | |
WO1999061874A1 (en) | Temperature sensor and electronic apparatus containing the same | |
CN102834881A (en) | Solid electrolyte capacitor | |
CN118098827A (en) | Delamination-resistant solid electrolytic capacitor | |
EP0654804A2 (en) | Solid electrolytic capacitor | |
CN113678217B (en) | Delamination-resistant solid electrolytic capacitor | |
CN113853662B (en) | Solid electrolytic capacitor | |
JPH0636677A (en) | Element for protection against overcurrent | |
EP0863516A1 (en) | Oxidant solution for synthesizing heat-resistant electroconductive polymer and method for preparing electroconductive polymer | |
JP3201466B2 (en) | Conductive polymer terminals and solid electrolytic capacitors | |
KR20230129494A (en) | solid electrolyte capacitor | |
JP6576060B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPH05160760A (en) | Overcurrent protection circuit | |
JPH1187182A (en) | Organic solid electrolytic capacitor and its manufacture | |
JPH0636676A (en) | Element for protection against overcurrent | |
JP3036787B2 (en) | Manufacturing method of electrolytic capacitor | |
JP7571057B2 (en) | Solid Electrolytic Capacitor | |
JPH0582012A (en) | Overcurrent protection element | |
JPH01225110A (en) | Solid electrolytic capacitor | |
KR101040062B1 (en) | Membrane Switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020604 |
|
LAPS | Cancellation because of no payment of annual fees |