JP3328315B2 - Overcurrent protection element - Google Patents

Overcurrent protection element

Info

Publication number
JP3328315B2
JP3328315B2 JP08325092A JP8325092A JP3328315B2 JP 3328315 B2 JP3328315 B2 JP 3328315B2 JP 08325092 A JP08325092 A JP 08325092A JP 8325092 A JP8325092 A JP 8325092A JP 3328315 B2 JP3328315 B2 JP 3328315B2
Authority
JP
Japan
Prior art keywords
dopant
overcurrent protection
polyaniline
chloride
protection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08325092A
Other languages
Japanese (ja)
Other versions
JPH05135685A (en
Inventor
信夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP08325092A priority Critical patent/JP3328315B2/en
Publication of JPH05135685A publication Critical patent/JPH05135685A/en
Application granted granted Critical
Publication of JP3328315B2 publication Critical patent/JP3328315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ドーパント含有導電性
ポリアニリンを利用する過電流保護素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an overcurrent protection device using a conductive polyaniline containing a dopant.

【0002】[0002]

【従来の技術】従来、ドーパント含有導電性ポリマーを
利用する過電流保護素子として、特開昭59−134523号公
報により、ドーパントとして過塩素酸イオンやピクリン
酸イオンを使用し、ポリエチレングリコールを「燃料」
として添加したしゃ断装置が公知である。この素子で
は、過塩素酸イオンがポリエチレングリコールの破壊的
酸化(爆発)を引き起こす酸化剤として作用し、過電流
が素子に流れたときに素子の急速な崩壊もしくは破壊が
もたらされ、その結果回路の遮断が行われる。
2. Description of the Related Art Conventionally, as an overcurrent protection element utilizing a conductive polymer containing a dopant, Japanese Patent Application Laid-Open No. 59-134523 discloses a method of using perchlorate ion or picrate ion as a dopant and using polyethylene glycol as a fuel. "
A shut-off device added as is known. In this device, the perchlorate ion acts as an oxidizing agent that causes the destructive oxidation (explosion) of the polyethylene glycol, resulting in rapid collapse or destruction of the device when an overcurrent flows through the device. Is shut off.

【0003】[0003]

【発明が解決しようとする課題】上記の過電流保護素子
は、過塩素酸やピクリン酸を易酸化性の物質(燃料)と
ともに素子に添加するものであるため、火災発生の原因
となる恐れが高いという問題がある。そこで本発明は、
かかる火災の危険がなく安全性が高く、かつ信頼性の高
い過電流保護素子を提供することを課題とする。
The above-mentioned overcurrent protection element involves adding perchloric acid or picric acid to the element together with an easily oxidizable substance (fuel), which may cause a fire. There is a problem of high. Therefore, the present invention
An object of the present invention is to provide a highly safe and reliable overcurrent protection element that is free from such fire danger.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる課題を
解決するものとして、ドーパント含有導電性ポリアニリ
ンと、該ポリアニリンと混合された塩酸アミン、塩化第
一鉄、塩化第二鉄、塩化第一銅および塩化第二銅から選
ばれる化合物とからなる過電流保護素子を提供するもの
である。
According to the present invention, there is provided a conductive polyaniline containing a dopant, an amine hydrochloride mixed with the polyaniline,
Select from ferrous, ferric, cuprous and cupric chlorides
The present invention provides an overcurrent protection device comprising:

【0005】ドーパント含有導電性ポリアニリン 本発明の過電流保護素子の素材であるドーパント含有導
電性ポリアニリンは、ポリアニリンに導電性を付与する
下記のドーパントがドープされたものである。
Dopant-Containing Conductive Polyaniline The dopant-containing conductive polyaniline, which is the material of the overcurrent protection device of the present invention, is obtained by doping the polyaniline with the following dopant that imparts conductivity.

【0006】ドーパントとしては、例えば、塩酸、硫
酸、過塩素酸、ホウフッ酸 (CF3 SO3 H)、硝酸、ヨウ
素、メタンスルホン酸等の有機脂肪酸が挙げられ、好ま
しくは塩酸である。ドーパントのドーピング量は、通
常、アニリン単位の50モル%程度までドープ可能であ
り、30〜50モル%が好ましい。ドーピングの方法として
は、例えば、化学ドーピング法、電気化学ドーピング法
などがあげられる。
Examples of the dopant include organic fatty acids such as hydrochloric acid, sulfuric acid, perchloric acid, borofluoric acid (CF 3 SO 3 H), nitric acid, iodine, and methanesulfonic acid. Hydrochloric acid is preferred. The doping amount of the dopant can be usually up to about 50 mol% of the aniline unit, and is preferably 30 to 50 mol%. Examples of the doping method include a chemical doping method and an electrochemical doping method.

【0007】記のドーパント含有導電性ポリアニリン
に混合される化合物(以下、単に「塩素化合物」とい
う。)は、例えば塩酸エチルアミン、塩酸アニリン等の
塩酸アミン、塩化第一鉄、塩化第二鉄、塩化第一銅およ
塩化第二銅から選ばれる塩素化合物であり、塩酸アミ
ンが好ましい。
[0007] are mixed dopant-containing conductive polyaniline above title compound (hereinafter, simply "chlorine compounds" gutter
U. ) Is Oyo example ethylamine hydrochloride, hydrochloric amines such as aniline hydrochloride, ferrous chloride, ferric chloride, cuprous chloride
And a chloride compound selected from cupric chloride , and amine chloride is preferred.

【0008】塩素化合物の混合量は、塩素換算で、ドー
パント含有導電性ポリアニリンの3重量%以上がこのま
しく、さらに10重量%以上が好ましい。ただし、混合後
のドーパント含有導電性ポリアニリンとの混合物におい
て、該塩素化合物の量は50体積%以下が好ましい。多過
ぎると、混合物の抵抗が増大する。この塩素化合物の混
合は、ドーパント含有導電性ポリアニリンとともに、例
えば、V型混合機等を用いて混合すればよい。
The mixing amount of the chlorine compound is preferably at least 3% by weight, more preferably at least 10% by weight of the conductive polyaniline containing the dopant in terms of chlorine. However, in a mixture with the dopant-containing conductive polyaniline after mixing, the amount of the chlorine compounds is preferably 50% by volume or less. Too much increases the resistance of the mixture. This chlorine compound may be mixed with the dopant-containing conductive polyaniline using, for example, a V-type mixer.

【0009】素子の製造 本発明の素子は、上記のドーパント含有導電性高分子化
合物を適当な形状に成形して製造する。形状としては、
例えば円筒状、円板状、シート状などが挙げられる。代
表的な素子の形状は円筒状であり、上下の円状端部に後
述する電極を設けて使用される。この場合、素子の抵抗
は円筒の断面積に反比例し長さに比例するので、直径お
よび長さを調節することで所望の値とすることができ
る。また、熱容量は素子の体積に依存するのでこれを変
えることで調節することができる。
Device Production The device of the present invention is produced by molding the above-mentioned conductive polymer compound containing a dopant into an appropriate shape. As the shape,
For example, a cylindrical shape, a disk shape, a sheet shape, and the like can be given. A typical element has a cylindrical shape, and is used by providing electrodes described below at upper and lower circular ends. In this case, since the resistance of the element is inversely proportional to the cross-sectional area of the cylinder and proportional to the length, a desired value can be obtained by adjusting the diameter and the length. Further, the heat capacity depends on the volume of the element, and can be adjusted by changing the heat capacity.

【0010】本発明の過電流保護素子は、通常、使用時
には、例えば2個の電極で挟まれた状態で使用される。
この電極の材料としては、例えば金、銀、銅、ニッケ
ル、クロム、アルミニウム、インジウムなどの各種金
属、及びカーボンなどがある。これらの電極材料の選択
においては、使用する導電性高分子に対してオーミック
接触が得られるようなものを用いる。また、このような
電極を取り付ける方法としては、例えば、焼付、蒸着、
無電解メッキ、導電性ペースト塗布などの物理的又は化
学的方法、二個の金属製電極で機械的に締めつけて挟持
する方法などが挙げられる。
[0010] The overcurrent protection element of the present invention is usually used in a state of being used, for example, sandwiched between two electrodes.
Examples of the material of the electrode include various metals such as gold, silver, copper, nickel, chromium, aluminum, and indium, and carbon. In selection of these electrode materials, materials that can obtain ohmic contact with the conductive polymer to be used are used. As a method of attaching such an electrode, for example, baking, vapor deposition,
Examples include a physical or chemical method such as electroless plating and application of a conductive paste, and a method of mechanically clamping and sandwiching between two metal electrodes.

【0011】本発明の素子は、製造および販売に際して
は前記の電極は必ずしも設けられる必要はない。例えば
上記のように使用に際して器具に予め設けられた所定の
電極などで機械的に締めつけ挟持される場合に電極を予
め素子に設けて置く必要がないからである。
In the device of the present invention, the above-mentioned electrodes need not always be provided at the time of manufacture and sale. This is because, for example, when the device is mechanically tightened and pinched by a predetermined electrode or the like provided in advance in use as described above, it is not necessary to provide an electrode on the element in advance.

【0012】[0012]

【作用】本発明の素子において用いられるドーパント含
有導電性ポリアニリンは、約 150℃以上の温度において
ドーパントの消失と酸化に伴って抵抗値が上昇し、電流
の遮断に至る。塩素化合物の添加により、この抵抗値の
上昇がより急激になり、過電流に対する素子の動作が一
層俊敏になる。このとき、塩素化合物は勿論酸化剤とし
て作用するものではなく、また燃料として作用するもの
でもない点で、本発明の素子は特開昭59−134523号公報
に記載のしゃ断装置と異なる。塩素化合物はポリアニリ
ンと反応して抵抗値の上昇に寄与するものと推定され
る。
The dopant-containing conductive polyaniline used in the device of the present invention has a resistance value which rises with the disappearance and oxidation of the dopant at a temperature of about 150.degree. With the addition of the chlorine compound, the resistance value increases more rapidly, and the operation of the element with respect to overcurrent becomes more agile. At this time, the element of the present invention differs from the shut-off device described in JP-A-59-134523 in that, of course, the chlorine compound does not act as an oxidizing agent nor does it act as a fuel. It is presumed that the chlorine compound reacts with polyaniline and contributes to an increase in the resistance value.

【0013】ドーパント含有導電性ポリアニリンの抵抗
の上昇が不均一であると抵抗の相対的に低い部分に電流
が集中するので高電圧が印加された場合熱暴走起こ
す恐れがあり、信頼性が問題になる。しかし、本発明の
素子では塩素化合物の混合により抵抗の温度係数が高め
られているので抵抗の上昇が狭い温度範囲で急激に起こ
るため、抵抗が低いままで残る部分が極めて少なく局部
的な電流の集中は避けられ、高い耐電圧が得られ信頼性
も高い。
[0013] Since the increase in the dopant-containing conductive polyaniline resistance current is concentrated on a relatively low portion of the resistance is not uniform when a high voltage is applied, it may be <br/> Oko thermal runaway Yes, reliability matters. However, in the device of the present invention, since the temperature coefficient of resistance is increased by mixing the chlorine compound, the resistance rises rapidly in a narrow temperature range. Concentration is avoided, high withstand voltage is obtained, and reliability is high.

【0014】[0014]

【実施例】【Example】

実施例 ガラス製容器中に、アニリンの濃度が1モル、塩酸の濃
度が2モルになるような電解液を調製した。この電解液
を、白金電極からなる陽極と陰極を設置し、電流密度が
5mA/cm2 の条件で直流電流を20時間通電し定電流電解
した。この定電流電解により、陽極の表面上に、塩酸が
ドープされたポリアニリンが析出した。この塩酸ドープ
ポリアニリンを電解液から取り出し、 100℃で24時間乾
燥させた後、10gを塩酸エチルアミン3gと乳鉢で混合
した。得られた混合物を直径5mm、厚さ1mmの円板にプ
レス成形した。この円板を試料として大気中での電気抵
抗の温度係数を測定したところ、図1に示す結果が得ら
れた。
Example An electrolytic solution was prepared in a glass container such that the concentration of aniline was 1 mol and the concentration of hydrochloric acid was 2 mol. This electrolyte was subjected to constant current electrolysis by placing a platinum electrode on the anode and the cathode and applying a DC current for 20 hours at a current density of 5 mA / cm 2 . By this constant current electrolysis, polyaniline doped with hydrochloric acid was deposited on the surface of the anode. The hydrochloric acid-doped polyaniline was taken out of the electrolytic solution, dried at 100 ° C. for 24 hours, and then 10 g was mixed with 3 g of ethylamine hydrochloride in a mortar. The obtained mixture was pressed into a disk having a diameter of 5 mm and a thickness of 1 mm. When this disk was used as a sample, the temperature coefficient of electric resistance in the atmosphere was measured, and the results shown in FIG. 1 were obtained.

【0015】また、上記と同様にして製作した円板の両
面に金ペーストで電極を形成し、本発明の素子を得た。
同様の過電流保護素子を4個製作し、それらの耐電圧を
次のようにして測定した。最初に2A通電し素子を動作
させ、つづけて 100Vの電圧印加し、1分間異常が無け
れば20Vずつ印加電圧を増加し、破壊あるいは異常が生
じる直前の印加電圧を耐電圧と評価した。結果を表1に
示す。
Further, electrodes were formed with gold paste on both surfaces of the disk manufactured in the same manner as described above to obtain an element of the present invention.
Four similar overcurrent protection elements were manufactured, and their withstand voltage was measured as follows. First, a current of 2 A was applied to operate the device, and subsequently a voltage of 100 V was applied. If there was no abnormality for one minute, the applied voltage was increased by 20 V, and the applied voltage immediately before breakdown or abnormality occurred was evaluated as withstand voltage. Table 1 shows the results.

【0016】比較例 実施例と同様に製造した塩酸ドープポリアニリンを、塩
酸エチルアミンを混合せずにそのまま円板を製作した。
この円板を試料として大気中での電気抵抗の温度係数を
測定したところ、表1に示す結果を得た。また、同様に
製作した塩酸ドープポリアニリン円板を使用した以外
は、実施例と同様にして過電流保護素子を4個製作し
た。実施例と同様にしてそれらの耐電圧を測定した。結
果を表1に示す。
Comparative Example A disk was prepared from polyaniline hydrochloride prepared in the same manner as in the example without mixing ethylamine hydrochloride.
When this disk was used as a sample, the temperature coefficient of electric resistance in the atmosphere was measured, and the results shown in Table 1 were obtained. In addition, four overcurrent protection elements were manufactured in the same manner as in Example except that a hydrochloric acid-doped polyaniline disk manufactured similarly was used. The withstand voltage was measured in the same manner as in the examples. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明の過電流保護素子は、従来の導電
性ポリマーを利用する過電流保護素子に比し抵抗値の温
度係数が大きいため過電流に対しより俊敏に動作し、ま
た耐電圧が高く、熱暴走を起こしたりする恐れがなく信
頼性が高い。また、爆発性ドーパントと燃料とを併用す
る公知の過電流保護素子のように火災の危険もなく、安
全性が高い。
The overcurrent protection device of the present invention has a larger temperature coefficient of resistance than a conventional overcurrent protection device using a conductive polymer, so that it operates more aggressively against overcurrent and has a withstand voltage. High reliability, with no risk of thermal runaway. In addition, there is no danger of fire as in a known overcurrent protection element using a combination of an explosive dopant and a fuel, and the safety is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例及び比較例で使用した、塩酸エ
チルアミンを混合した塩酸ドープポリアニリンと混合し
ない塩酸ドープポリアニリンの抵抗の温度特性を表す。
FIG. 1 shows the temperature characteristics of resistance of hydrochloric acid-doped polyaniline mixed with ethylamine hydrochloride and not mixed with hydrochloric acid-doped polyaniline used in Examples and Comparative Examples.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ドーパント含有導電性ポリアニリンと、該
ポリアニリンと混合された塩酸アミン、塩化第一鉄、塩
化第二鉄、塩化第一銅および塩化第二銅から選ばれる化
合物とからなる過電流保護素子。
A conductive polyaniline containing a dopant, an amine hydrochloride, ferrous chloride, and a salt mixed with the polyaniline.
Selected from ferric chloride, cuprous chloride and cupric chloride
Overcurrent protection element consisting of compound .
JP08325092A 1991-09-20 1992-03-05 Overcurrent protection element Expired - Fee Related JP3328315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08325092A JP3328315B2 (en) 1991-09-20 1992-03-05 Overcurrent protection element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26911291 1991-09-20
JP3-269112 1991-09-20
JP08325092A JP3328315B2 (en) 1991-09-20 1992-03-05 Overcurrent protection element

Publications (2)

Publication Number Publication Date
JPH05135685A JPH05135685A (en) 1993-06-01
JP3328315B2 true JP3328315B2 (en) 2002-09-24

Family

ID=26424304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08325092A Expired - Fee Related JP3328315B2 (en) 1991-09-20 1992-03-05 Overcurrent protection element

Country Status (1)

Country Link
JP (1) JP3328315B2 (en)

Also Published As

Publication number Publication date
JPH05135685A (en) 1993-06-01

Similar Documents

Publication Publication Date Title
US4912286A (en) Electrical conductors formed of sub-oxides of titanium
JP3453055B2 (en) Electrical device containing conductive polymer
CA1164526A (en) Electrochemical cell
CA1181197A (en) Electrically conductive polypyrrole derivatives
Owens A New Class of High‐Conductivity Solid Electrolytes: Tetraalkylammonium lodide‐Silver lodide Double Salts
US3443997A (en) Solid state electrochemical devices
Hu et al. Electrically conducting polyaniline–poly (acrylic acid) blends
Schoonman A solid‐state galvanic cell with fluoride‐conducting electrolytes
EP0145275A2 (en) Novel composites
GB1577364A (en) Method for producing high strength polycrystalline titanium dioxide ceramic member
DE1671455B2 (en) Electrochemical electrode
JP3328315B2 (en) Overcurrent protection element
Wang et al. All Solid-State Li/Li x MnO2 Polymer Battery Using Ceramic Modified Polymer Electrolytes
US4678601A (en) Electroconductive polymer-latex composites
US4603165A (en) Material suitable for thermal protection of electrochemical cells and other articles
TWI282567B (en) Solid electrolytic capacitor and manufacturing method thereof
DE2947236A1 (en) AN IMPROVED DEPOLARIZER BATTERY WITH DELAYED EFFECT
EP1281190A1 (en) Fusible element, method for production thereof, safety circuit and fuse
DE3111261C2 (en) Positive charge transfer complex electrode for galvanic solid electrolyte cells
US3235408A (en) Ammonia electric current-producing cell
Yang et al. In situ electron spin resonance and cyclic voltammetric studies of polyaniline
JP3721402B2 (en) Electrode material for electrolytic reduction of carbon dioxide
EP0115191A1 (en) Electrical circuit interruption device
JPH0582012A (en) Overcurrent protection element
US3709820A (en) Solid electrolyte

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

LAPS Cancellation because of no payment of annual fees