JP3721402B2 - Electrode material for electrolytic reduction of carbon dioxide - Google Patents

Electrode material for electrolytic reduction of carbon dioxide Download PDF

Info

Publication number
JP3721402B2
JP3721402B2 JP2002307717A JP2002307717A JP3721402B2 JP 3721402 B2 JP3721402 B2 JP 3721402B2 JP 2002307717 A JP2002307717 A JP 2002307717A JP 2002307717 A JP2002307717 A JP 2002307717A JP 3721402 B2 JP3721402 B2 JP 3721402B2
Authority
JP
Japan
Prior art keywords
graphite
carbon dioxide
electrode
electrolytic reduction
intercalation compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002307717A
Other languages
Japanese (ja)
Other versions
JP2004143488A (en
Inventor
哲雄 岩下
生一郎 泉
康幸 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002307717A priority Critical patent/JP3721402B2/en
Publication of JP2004143488A publication Critical patent/JP2004143488A/en
Application granted granted Critical
Publication of JP3721402B2 publication Critical patent/JP3721402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素の電解還元用電極材料及び該二酸化炭素の電解還元方法に関する。
【0002】
【従来の技術】
黒鉛は、層状構造を有する物質であり、その層間に各種の原子、分子などを取り込んで黒鉛層間化合物を形成することが知られている。
【0003】
この様な黒鉛層間化合物は、黒鉛材料と比べて電気抵抗が低くなるなど、黒鉛とは異なった物理的、化学的性質を示すものである。例えば、大気中で比較的安定性の高い金属塩化物−黒鉛層間化合物は、光に対して感応性を持ち、水−メタノール混合溶液中に金属銅の粉末を共存させたときに、水の分解反応に対して、黒鉛材料にはない光触媒作用を有することが報告されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特許第3138735号公報
【0005】
【発明が解決しようとする課題】
本発明の主な目的は、黒鉛層間化合物の特有の特性を利用した新規な用途を開発することである。
【0006】
【課題を解決するための手段】
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、金属塩化物をインターカレートした黒鉛層間化合物を電極として用い、二酸化炭素を溶解した電解質溶液中で電解還元を行うことにより、黒鉛電極などの炭素電極を用いる場合には観察されない二酸化炭素の還元反応が生じることを見出し、ここに本発明を完成するに至った。
【0007】
即ち、本発明は、下記の二酸化炭素の電解還元用電極材料及び二酸化炭素の電解還元方法を提供するものである。
1. 黒鉛に金属塩化物がインターカレートされた黒鉛層間化合物からなる二酸化炭素の電解還元用電極材料。
2. 金属塩化物が、CuCl2、FeCl3及びAlCl3からなる群から選ばれた少なくとも一種である請求項1に記載の二酸化炭素の電解還元用電極材料。
3. 黒鉛層間化合物が、金属塩化物1モルに対して黒鉛6モル以上となる割合で黒鉛に金属塩化物がインターカレートされたものである上記項1又は2に記載の二酸化炭素の電解還元用電極材料。
4. 二酸化炭素を溶解した電解質溶液中で、上記項1〜3のいずれかに記載された電極材料を陰極として電解還元を行うことを特徴とする二酸化炭素の電解還元方法。
5. 電解還元による生成物が、水素、一酸化炭素、メタン及びエチレンからなる群から選ばれた少なくとも一種である上記項4に記載の二酸化炭素の電解還元方法。
【0008】
【発明の実施の形態】
本発明の電極材料は、金属塩化物をインターカレートした黒鉛層間化合物である。
【0009】
該黒鉛層間化合物を製造するためのホストとなる黒鉛としては、天然黒鉛及び人造黒鉛のいずれを用いても良い。
【0010】
黒鉛の形状については特に限定的ではなく、シート状、粉末状などの各種の形状の黒鉛を使用できる。特に、電極として使用することを考慮すると、シート状であることが好ましい。粉末状の黒鉛を用いる場合には、例えば、導電性の接着剤と混合してシート状に成形する等の方法によって、電極として使用できる。
【0011】
金属塩化物としては、例えば、CuCl2、FeCl3、AlCl3等が好ましく、特に、CuCl2が好ましい。これらの金属塩化物は、単独で用いても良く、2種以上を混合して用いても良い。
【0012】
ホスト黒鉛への金属塩化物のインターカレートは、常法に従って行うことができる。例えば、所定量のホスト黒鉛と金属塩化物を混合し、空気を除去し、高温で金属塩化物を揮発させて反応させることによって、黒鉛の層間に金属塩化物がインターカレートされた黒鉛層間化合物を得ることができる。この際の圧力は、通常、0.05MPa〜0.15MPa程度とすることが好ましく、0.08〜0.12MPa程度とすることがより好ましい。
【0013】
反応温度は、200〜600℃程度とすることが好ましく、300〜500℃程度とすることがより好ましい。反応時間は、反応条件やインターカレートさせる金属塩化物の量等によって異なるが、通常、1〜10日程度、好ましくは3〜7日程度とすればよい。
【0014】
インターカレートされる金属塩化物の量については特に限定的ではなく、金属塩化物のインターカレート量が多くなるほど触媒活性は高くなるので、所望の活性の程度に応じてインターカレート量を適宜決めれば良く、上限量までインターカレートさせても良い。通常、生成した化合物の化学組成において金属塩化物1モルに対して黒鉛が6モル程度以上となる割合で金属塩化物を反応(インターカレート)させることが好ましく、金属塩化物1モルに対して黒鉛が6モル〜18モル程度となる割合で反応(インターカレート)させることがより好ましい。
【0015】
上記した黒鉛層間化合物を用いて二酸化炭素の電解還元を行う方法としては、二酸化炭素を溶解した電解質溶液中に該黒鉛層間化合物からなる電極を挿入し、該電極を陰極として電解すればよい。この様な方法で電解還元を行うことによって、黒鉛を電極とした場合には起こらない二酸化炭素の還元反応が生じる。これは、黒鉛層間化合物にインターカレートされた金属塩化物により、二酸化炭素の還元に効果的な触媒効果が発揮されることによるものと考えられる。
【0016】
電解質溶液としては、特に限定的ではなく、電解還元に必要な電気伝導性を付与できる程度に各種の電解質を溶解した水溶液を用いることができる。好ましくは、硫酸カリウム等を0.1〜2モル/l程度、より好ましくは0.2〜0.5モル/l程度の濃度となるように溶解した水溶液を用いることができる。また、炭酸ガスのイオン化を防ぐために、炭酸水素カリウムを0.3〜0.7モル/l程度溶解することが望ましい。
【0017】
二酸化炭素を電解質溶液に溶解させるには、通常、該溶液中に二酸化炭素を通気すればよい。二酸化炭素の溶解量については、特に限定はないが、好ましくは飽和濃度程度の二酸化炭素濃度の溶液を用いればよい。
【0018】
黒鉛層間化合物からなる電極の形状等については、特に限定はなく、シート状のホスト黒鉛から得られた黒鉛層間化合物を陰極とする場合には、必要に応じて、所望の形状に切断した後、リード線を接続してそのまま電極として使用できる。また、粉末状のホスト黒鉛から得られた黒鉛層間化合物を用いる場合には、例えば、導電性の接着剤等を混合して必要な大きさのシート状に成形し、これにリード線を接続すればよい。
【0019】
対極(陽極)については特に限定的ではないが、例えば、白金電極、金電極等を用いることができる。
【0020】
電解条件は、使用する電解質溶液の種類、二酸化炭素の溶解量、目的とする還元生成物の種類などによって異なるが、通常、銀/塩化銀電極(飽和塩化カリウム)を参照電極とした場合に、陰極電位を−0.005〜−1.5V程度とすることが好ましく、−1.0〜−1.5V程度とすることがより好ましい。
【0021】
電解質溶液の液温は、特に限定的ではないが、効率よく電解反応を進行させるためには、通常、10〜30℃程度とすることが好ましく、23〜27℃、程度とすることがより好ましい。
【0022】
二酸化炭素の電解還元により生成する化合物としては、水素、一酸化炭素、メタン、エチレン等を挙げることができ、電解条件を適宜設定することによって、選択性良く所望の目的物を得ることができる。
【0023】
【発明の効果】
本発明の電極材料を陰極として電解還元を行うことにより、安価な原料である二酸化炭素を用いて、各種の還元生成物を製造することができる。
【0024】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0025】
実施例1
黒鉛層間化合物の製造
ホスト黒鉛として5×40mm2の短冊状の高品質黒鉛シートを使用し、該黒鉛シートと無水塩化銅をモル比で8:1又は3:1となるように混合し、ガラス製アンプルに入れ、150℃で2時間減圧下で乾燥させた後、アンプル中に封入した。次いで、このアンプルを500℃で10日間加熱することによって、黒鉛中に塩化銅がインターカレートされた黒鉛層間化合物を得た。その後、希塩酸で繰り返し洗浄し、未反応塩化物を除去し、乾燥した。
【0026】
得られた塩化銅−黒鉛層間化合物は、黒鉛:塩化銅(モル比)=8:1の割合で仕込んだものがステージ3構造を示し、化学組成はC15.42CuCl2であり、黒鉛:塩化銅(モル比)=3:1の割合で仕込んだ塩化銅−黒鉛層間化合物は、主にステージ1構造を示し、化学組成はC6.43CuCl2であった。
【0027】
得られた各黒鉛層間化合物シートに銀ペーストでリード線を接続し、その一部をパラフィンで包埋固定することによって電極とした。
【0028】
電気化学的特性試験
上記した方法で得られた電極について、0.5M炭酸水素カリウム水溶液中で、サイクリックボルタンメトリーを行い、電気化学的特性を調べた。使用した電解装置の模式図を図1に示す。参照電極としては、銀/塩化銀(飽和塩化カリウム)電極を使用し、対極としては白金電極を用いた。
【0029】
図2に、C15.42CuCl2で表される黒鉛層間化合物を用いた電極について、サイクリックボルタンメトリーによる電流−電位曲線を示す。
【0030】
また、図3は、黒鉛を電極として同様の条件でサイクリックボルタンメトリーを行った場合の電流−電位曲線を示すグラフであり、図4は、金属銅を電極として同様の条件でサイクリックボルタンメトリーを行った場合の電流−電位曲線を示すグラフである。
【0031】
図2〜図4から明らかなように、黒鉛層間化合物を電極とした場合には、通常の黒鉛電極では見られない酸化還元電流ピークが観察された。この挙動は金属銅電極の電流−電位特性と類似しており、設定電位次第では銅電極と同様に、炭酸ガス還元に効果的な触媒効果が期待できることが判る。
【0032】
二酸化炭素の電解還元試験
0.25M硫酸カリウム及び0.5M炭酸水素カリウムを含む水溶液からなる電解質溶液に、アルゴンと二酸化炭素をそれぞれ20分間通気後、C15.42CuCl2で表される黒鉛層間化合物を用いた電極を陰極とし、対極として白金電極を用い、参照電極として銀/塩化銀(飽和塩化カリウム)電極を用いて、図1に示す電解装置中で定電位電解を行った。電解開始後、一定時間ごとにガスを捕集し、ガスクロマトグラフを用いて、発生したガス種の定性および定量分析を行った。
【0033】
−0.005〜−1.5Vの電解電位の範囲内で定電位電解を行い、発生した気体を二種類の検出器(TCDおよびFID)を用いてガスクロマト分析したところ、TCD検出器からは水素が検出され、FID検出器からは一酸化炭素、メタン及びエチレンが検出された。
【0034】
図5〜図8は、設定電位ごとのメタン(図5)、水素(図6)、一酸化炭素(図7)およびエチレン(図8)生成量の電解時間依存性を示すグラフである。各図の縦軸は、ガスクロマトグラフィにおいて検出された生成物それぞれのピーク面積とした。
【0035】
各グラフに示したように、設定電位によっては、電極の不安定化や反応までの誘導時間が見られた。エチレンは、設定電位−1.2Vで最も短時間の電解において検出された。また、メタン、水素及び一酸化炭素は、−1.2〜−1.5V程度の電位が最適条件と考えられる。
【図面の簡単な説明】
【図1】実施例1で用いた電解装置の模式図。
【図2】塩化銅−黒鉛層間化合物を電極として用いたサイクリックボルタンメトリーによる電流−電位曲線を示すグラフ。
【図3】黒鉛を電極として用いたサイクリックボルタンメトリーによる電流−電位曲線を示すグラフ。
【図4】金属銅を電極として用いたサイクリックボルタンメトリーによる電流−電位曲線を示すグラフ。
【図5】メタン生成量の電解時間依存性を示すグラフ。
【図6】水素生成量の電解時間依存性を示すグラフ。
【図7】一酸化炭素生成量の電解時間依存性を示すグラフ。
【図8】エチレン生成量の電解時間依存性を示すグラフ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode material for electrolytic reduction of carbon dioxide and a method for electrolytic reduction of carbon dioxide.
[0002]
[Prior art]
Graphite is a substance having a layered structure, and it is known that graphite intercalation compounds are formed by incorporating various atoms and molecules between the layers.
[0003]
Such a graphite intercalation compound exhibits physical and chemical properties different from graphite, such as a lower electrical resistance than a graphite material. For example, metal chloride-graphite intercalation compounds, which are relatively stable in the atmosphere, are sensitive to light and decompose water when metal copper powder coexists in a water-methanol mixed solution. It has been reported that the reaction has a photocatalytic action not found in graphite materials (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent No. 3138735 [0005]
[Problems to be solved by the invention]
The main object of the present invention is to develop a new application utilizing the unique properties of graphite intercalation compounds.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned object, the present inventor uses a graphite intercalation compound intercalated with metal chloride as an electrode, and performs electrolytic reduction in an electrolyte solution in which carbon dioxide is dissolved. When a carbon electrode such as a graphite electrode is used, a carbon dioxide reduction reaction that is not observed occurs, and the present invention has been completed here.
[0007]
That is, the present invention provides the following electrode material for electrolytic reduction of carbon dioxide and a method for electrolytic reduction of carbon dioxide.
1. An electrode material for electrolytic reduction of carbon dioxide comprising a graphite intercalation compound in which metal chloride is intercalated into graphite.
2. The electrode material for electrolytic reduction of carbon dioxide according to claim 1, wherein the metal chloride is at least one selected from the group consisting of CuCl 2 , FeCl 3 and AlCl 3 .
3. Item 3. The electrode for electrolytic reduction of carbon dioxide according to Item 1 or 2, wherein the graphite intercalation compound is obtained by intercalating graphite with metal chloride at a ratio of 6 moles or more of graphite per mole of metal chloride. material.
4). A method for electrolytic reduction of carbon dioxide, comprising performing electrolytic reduction using an electrode material according to any one of items 1 to 3 as a cathode in an electrolyte solution in which carbon dioxide is dissolved.
5. Item 5. The method for electrolytic reduction of carbon dioxide according to Item 4, wherein the product obtained by electrolytic reduction is at least one selected from the group consisting of hydrogen, carbon monoxide, methane, and ethylene.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The electrode material of the present invention is a graphite intercalation compound intercalated with a metal chloride.
[0009]
As the graphite serving as a host for producing the graphite intercalation compound, either natural graphite or artificial graphite may be used.
[0010]
The shape of the graphite is not particularly limited, and various shapes of graphite such as a sheet and a powder can be used. In particular, considering the use as an electrode, a sheet shape is preferable. When powdered graphite is used, it can be used as an electrode by a method such as mixing with a conductive adhesive and forming into a sheet.
[0011]
As the metal chloride, for example, CuCl 2 , FeCl 3 , AlCl 3 and the like are preferable, and CuCl 2 is particularly preferable. These metal chlorides may be used alone or in combination of two or more.
[0012]
Intercalation of the metal chloride into the host graphite can be performed according to a conventional method. For example, a graphite intercalation compound in which a metal chloride is intercalated between graphite layers by mixing a predetermined amount of host graphite and metal chloride, removing air, and volatilizing the metal chloride at a high temperature to react. Can be obtained. The pressure at this time is usually preferably about 0.05 MPa to 0.15 MPa, more preferably about 0.08 to 0.12 MPa.
[0013]
The reaction temperature is preferably about 200 to 600 ° C, more preferably about 300 to 500 ° C. The reaction time varies depending on the reaction conditions and the amount of metal chloride to be intercalated, but is usually about 1 to 10 days, preferably about 3 to 7 days.
[0014]
The amount of the metal chloride to be intercalated is not particularly limited, and the catalytic activity increases as the amount of intercalation of the metal chloride increases. Therefore, the amount of intercalation is appropriately determined according to the desired degree of activity. What is necessary is just to decide and you may make it intercalate to the upper limit. Usually, it is preferable to react (intercalate) the metal chloride at a ratio of about 6 moles or more of graphite with respect to 1 mole of metal chloride in the chemical composition of the resulting compound. More preferably, the graphite is reacted (intercalated) at a ratio of about 6 mol to 18 mol.
[0015]
As a method of performing electrolytic reduction of carbon dioxide using the above-mentioned graphite intercalation compound, an electrode made of the graphite intercalation compound may be inserted into an electrolyte solution in which carbon dioxide is dissolved, and electrolysis may be performed using the electrode as a cathode. By performing electrolytic reduction by such a method, a reduction reaction of carbon dioxide that does not occur when graphite is used as an electrode occurs. This is presumably because the metal chloride intercalated in the graphite intercalation compound exerts an effective catalytic effect for the reduction of carbon dioxide.
[0016]
The electrolyte solution is not particularly limited, and an aqueous solution in which various electrolytes are dissolved to such an extent that electrical conductivity necessary for electrolytic reduction can be imparted can be used. Preferably, an aqueous solution in which potassium sulfate or the like is dissolved so as to have a concentration of about 0.1 to 2 mol / l, more preferably about 0.2 to 0.5 mol / l can be used. In order to prevent ionization of carbon dioxide gas, it is desirable to dissolve about 0.3 to 0.7 mol / l of potassium hydrogen carbonate.
[0017]
In order to dissolve carbon dioxide in the electrolyte solution, it is usually sufficient to pass carbon dioxide through the solution. The amount of carbon dioxide dissolved is not particularly limited, but a solution having a carbon dioxide concentration of about a saturated concentration is preferably used.
[0018]
The shape of the electrode composed of the graphite intercalation compound is not particularly limited. When the graphite intercalation compound obtained from the sheet-like host graphite is used as the cathode, if necessary, after cutting into a desired shape, It can be used as an electrode as it is by connecting a lead wire. When using a graphite intercalation compound obtained from powdered host graphite, for example, a conductive adhesive or the like is mixed and formed into a sheet of the required size, and a lead wire is connected thereto. That's fine.
[0019]
Although it does not specifically limit about a counter electrode (anode), For example, a platinum electrode, a gold electrode, etc. can be used.
[0020]
Electrolysis conditions vary depending on the type of electrolyte solution used, the amount of carbon dioxide dissolved, the type of target reduction product, etc., but usually when a silver / silver chloride electrode (saturated potassium chloride) is used as a reference electrode, The cathode potential is preferably about -0.005 to -1.5V, more preferably about -1.0 to -1.5V.
[0021]
The liquid temperature of the electrolyte solution is not particularly limited, but is usually preferably about 10 to 30 ° C and more preferably about 23 to 27 ° C in order to allow the electrolytic reaction to proceed efficiently. .
[0022]
Examples of the compound generated by electrolytic reduction of carbon dioxide include hydrogen, carbon monoxide, methane, ethylene, and the like, and a desired target product can be obtained with high selectivity by appropriately setting electrolysis conditions.
[0023]
【The invention's effect】
By performing electrolytic reduction using the electrode material of the present invention as a cathode, various reduction products can be produced using carbon dioxide, which is an inexpensive raw material.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0025]
Example 1
Manufacturing <br/> using high quality graphite sheets 5 × 40 mm 2 strip as the host graphite graphite intercalation compound, the graphite sheet and anhydrous copper chloride at a molar ratio of 8: 1 or 3: such that 1 They were mixed, put into a glass ampule, dried at 150 ° C. under reduced pressure for 2 hours, and then sealed in an ampule. Next, this ampoule was heated at 500 ° C. for 10 days to obtain a graphite intercalation compound in which copper chloride was intercalated in graphite. Then, it was repeatedly washed with dilute hydrochloric acid to remove unreacted chloride and dried.
[0026]
The obtained copper chloride-graphite intercalation compound has a stage 3 structure prepared at a ratio of graphite: copper chloride (molar ratio) = 8: 1 and has a chemical composition of C 15.42 CuCl 2. (Molar ratio) = Copper chloride-graphite intercalation compound charged at a ratio of 3: 1 mainly showed a stage 1 structure, and its chemical composition was C 6.43 CuCl 2 .
[0027]
A lead wire was connected to each obtained graphite intercalation compound sheet with a silver paste, and a part thereof was embedded and fixed with paraffin to obtain an electrode.
[0028]
Electrochemical property test The electrode obtained by the above-described method was subjected to cyclic voltammetry in a 0.5 M aqueous potassium hydrogen carbonate solution to examine the electrochemical property. A schematic diagram of the electrolyzer used is shown in FIG. A silver / silver chloride (saturated potassium chloride) electrode was used as the reference electrode, and a platinum electrode was used as the counter electrode.
[0029]
FIG. 2 shows a current-potential curve by cyclic voltammetry for an electrode using a graphite intercalation compound represented by C 15.42 CuCl 2 .
[0030]
FIG. 3 is a graph showing a current-potential curve when cyclic voltammetry is performed under the same conditions using graphite as an electrode. FIG. 4 is a graph showing cyclic voltammetry under the same conditions using metal copper as an electrode. It is a graph which shows the electric current-potential curve in the case of.
[0031]
As apparent from FIGS. 2 to 4, when the graphite intercalation compound was used as an electrode, an oxidation-reduction current peak not observed with a normal graphite electrode was observed. This behavior is similar to the current-potential characteristic of the metal copper electrode, and it can be seen that an effective catalytic effect for carbon dioxide gas reduction can be expected depending on the set potential, similar to the copper electrode.
[0032]
Carbon dioxide electrolytic reduction test After passing argon and carbon dioxide for 20 minutes each in an electrolyte solution composed of an aqueous solution containing 0.25 M potassium sulfate and 0.5 M potassium hydrogen carbonate, a graphite intercalation compound represented by C 15.42 CuCl 2 was added. Constant potential electrolysis was performed in the electrolytic apparatus shown in FIG. 1 using the electrode used as a cathode, a platinum electrode as a counter electrode, and a silver / silver chloride (saturated potassium chloride) electrode as a reference electrode. After electrolysis was started, gas was collected at regular intervals, and the generated gas species were qualitatively and quantitatively analyzed using a gas chromatograph.
[0033]
When constant potential electrolysis was performed within the range of -0.005 to -1.5 V electrolysis potential, the generated gas was analyzed by gas chromatography using two types of detectors (TCD and FID). Hydrogen was detected, and carbon monoxide, methane and ethylene were detected from the FID detector.
[0034]
5 to 8 are graphs showing the electrolysis time dependence of the amounts of methane (FIG. 5), hydrogen (FIG. 6), carbon monoxide (FIG. 7), and ethylene (FIG. 8) produced for each set potential. The vertical axis of each figure is the peak area of each product detected in gas chromatography.
[0035]
As shown in each graph, electrode instability and induction time until reaction were observed depending on the set potential. Ethylene was detected in the shortest electrolysis at a set potential of -1.2V. For methane, hydrogen, and carbon monoxide, a potential of about -1.2 to -1.5 V is considered to be the optimum condition.
[Brief description of the drawings]
1 is a schematic diagram of an electrolysis apparatus used in Example 1. FIG.
FIG. 2 is a graph showing a current-potential curve by cyclic voltammetry using a copper chloride-graphite intercalation compound as an electrode.
FIG. 3 is a graph showing a current-potential curve by cyclic voltammetry using graphite as an electrode.
FIG. 4 is a graph showing a current-potential curve by cyclic voltammetry using metallic copper as an electrode.
FIG. 5 is a graph showing the electrolysis time dependence of the amount of methane produced.
FIG. 6 is a graph showing the electrolysis time dependence of the amount of hydrogen produced.
FIG. 7 is a graph showing the electrolysis time dependence of the amount of carbon monoxide produced.
FIG. 8 is a graph showing the electrolysis time dependence of the amount of ethylene produced.

Claims (4)

黒鉛にCuCl 2 がインターカレートされた黒鉛層間化合物からなる二酸化炭素の電解還元用電極材料。An electrode material for electrolytic reduction of carbon dioxide comprising a graphite intercalation compound in which CuCl 2 is intercalated into graphite. 黒鉛層間化合物が、CuCl 2 1モルに対して黒鉛6モル以上となる割合で黒鉛にCuCl 2 がインターカレートされたものである請求項1に記載の二酸化炭素の電解還元用電極材料。Graphite intercalation compound, CuCl 2 1 mole electrolytic reduction electrode material of carbon dioxide according to claim 1 CuCl 2 graphite so that the ratio of graphite 6 mol or more is one that was intercalated respect. 二酸化炭素を溶解した電解質溶液中で、請求項1又は2に記載された電極材料を陰極として電解還元を行うことを特徴とする二酸化炭素の電解還元方法。A method for electrolytic reduction of carbon dioxide, comprising performing electrolytic reduction in an electrolyte solution in which carbon dioxide is dissolved, using the electrode material according to claim 1 or 2 as a cathode. 電解還元による生成物が、水素、一酸化炭素、メタン及びエチレンからなる群から選ばれた少なくとも一種である請求項に記載の二酸化炭素の電解還元方法。The method for electrolytic reduction of carbon dioxide according to claim 3 , wherein the product obtained by electrolytic reduction is at least one selected from the group consisting of hydrogen, carbon monoxide, methane and ethylene.
JP2002307717A 2002-10-23 2002-10-23 Electrode material for electrolytic reduction of carbon dioxide Expired - Lifetime JP3721402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307717A JP3721402B2 (en) 2002-10-23 2002-10-23 Electrode material for electrolytic reduction of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307717A JP3721402B2 (en) 2002-10-23 2002-10-23 Electrode material for electrolytic reduction of carbon dioxide

Publications (2)

Publication Number Publication Date
JP2004143488A JP2004143488A (en) 2004-05-20
JP3721402B2 true JP3721402B2 (en) 2005-11-30

Family

ID=32454053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307717A Expired - Lifetime JP3721402B2 (en) 2002-10-23 2002-10-23 Electrode material for electrolytic reduction of carbon dioxide

Country Status (1)

Country Link
JP (1) JP3721402B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321218B2 (en) * 2009-04-21 2013-10-23 株式会社豊田中央研究所 CO2 electrolysis apparatus and method for producing CO2 electrolysis product
GB201104096D0 (en) 2011-03-10 2011-04-27 Univ Manchester Production of graphene
GB201204279D0 (en) 2012-03-09 2012-04-25 Univ Manchester Production of graphene
GB2516919B (en) 2013-08-06 2019-06-26 Univ Manchester Production of graphene and graphane
DE102013224202A1 (en) * 2013-11-27 2015-05-28 Siemens Aktiengesellschaft Electrolytic cell and process for the production of chemical products by means of an electrolytic cell
CN109920977A (en) * 2019-03-11 2019-06-21 杭州怡莱珂科技有限公司 Alchlor-compound between graphite layers and preparation method thereof and electrode and battery

Also Published As

Publication number Publication date
JP2004143488A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
Amadelli et al. Oxygen and ozone evolution at fluoride modified lead dioxide electrodes
Kim et al. Solvent-assisted morphology confinement of a nickel sulfide nanostructure and its application for non-enzymatic glucose sensor
Ngai et al. Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide
Isse et al. Dissociative electron transfer to organic chlorides: electrocatalysis at metal cathodes
Long et al. Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation
Alexeyeva et al. Electrochemical reduction of oxygen on multiwalled carbon nanotube modified glassy carbon electrodes in acid media
Li et al. Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing
Qian et al. Highly efficient electroreduction of CO2 to formate by nanorod@ 2D nanosheets SnO
Zidan et al. Electrocatalytic oxidation of ascorbic acid mediated by lithium doped microparticles Bi2O3/MWCNT modified glassy carbon electrode
Huang et al. Making Ag present Pt-like activity for hydrogen evolution reaction
CA2372349A1 (en) Rhodium electrocatalyst and method of preparation
US20170107634A1 (en) Electrochemical process for the reduction of molecular oxygen
Joice et al. Poly (aniline) decorated with nanocactus platinum on carbon fiber paper and its electrocatalytic behavior toward toluene oxidation
JP2021038465A (en) Oxygen-consuming electrode and production method thereof
JP3721402B2 (en) Electrode material for electrolytic reduction of carbon dioxide
Shivakumar et al. Electrocatalytic detection of nitrite at NiCo2O4 nanotapes synthesized via microwave-hydrothermal method
JPH0336916B2 (en)
Hasnat et al. Dissimilar catalytic trails of nitrate reduction on Cu-modified Pt surface immobilized on H+ conducting solid polymer
Ojani et al. An efficient sensor for determination of concentrated hydrogen peroxide based on nickel oxide modified carbon paste electrode
González et al. Influence of the synthesis parameters in carbon nanotubes doped with nitrogen for oxygen electroreduction
Gusmão et al. Electrochemical fluorographane: hybrid electrocatalysis of biomarkers, hydrogen evolution, and oxygen reduction
Etesami et al. Electrooxidation of nitrite ions on gold/polyaniline/carbon paste electrode
Borhani et al. Electrochemical studies of weak carbon and nitrogen acids: Fluorene and p-cyanoaniline in dimethylformamide
JP6589925B2 (en) Metallic lithium production apparatus, lithium carbonate decomposition apparatus, metal lithium production method, and lithium carbonate decomposition method
KOÇAK et al. Highly improved electrocatalytic oxidation of dimethylamine borane on silvernanoparticles modified polymer composite electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050415

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

R150 Certificate of patent or registration of utility model

Ref document number: 3721402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term