JPH0336916B2 - - Google Patents

Info

Publication number
JPH0336916B2
JPH0336916B2 JP62167931A JP16793187A JPH0336916B2 JP H0336916 B2 JPH0336916 B2 JP H0336916B2 JP 62167931 A JP62167931 A JP 62167931A JP 16793187 A JP16793187 A JP 16793187A JP H0336916 B2 JPH0336916 B2 JP H0336916B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
electrode
dioxide gas
polymer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62167931A
Other languages
Japanese (ja)
Other versions
JPS6415388A (en
Inventor
Hideichiro Yamaguchi
Takeshi Shimomura
Noboru Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP62167931A priority Critical patent/JPS6415388A/en
Publication of JPS6415388A publication Critical patent/JPS6415388A/en
Publication of JPH0336916B2 publication Critical patent/JPH0336916B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二酸化炭素ガス(以下CO2)を電解
還元するための二酸化炭素ガス還元用電極に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a carbon dioxide gas reduction electrode for electrolytically reducing carbon dioxide gas (hereinafter referred to as CO 2 ).

[従来の技術] CO2の水溶液での電解還元反応は、水素イオン
還元反応より電極反応が起こりにくく、より負電
位で生起するため、一部の非水溶媒を除いては直
接電極で還元することができず、非常に困難であ
つた。
[Conventional technology] In the electrolytic reduction reaction in an aqueous solution of CO 2 , the electrode reaction is less likely to occur than in the hydrogen ion reduction reaction, and it occurs at a more negative potential. Therefore, with the exception of some non-aqueous solvents, reduction is performed directly at the electrode. It was extremely difficult.

[発明が解決しようとする問題点] 本発明の目的は、水溶液中のCO2還元用電極を
提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide an electrode for reducing CO 2 in an aqueous solution.

[問題点を解決するための手段及び作用] この問題点を解決するために、本発明の二酸化
炭素ガス還元用電極は、二酸化炭素ガスを水溶液
中で電解還元する二酸化炭素ガス還元用電極であ
つて、 導電性基体と、該導電性基体の表面を被覆する
導電性重合体層と、該導電性重合体層を被覆し、
二酸化炭素ガスの還元反応に対して触媒機能を発
現する希土類金属あるいは希土類金属錯体からな
る触媒層とを備える。
[Means and effects for solving the problem] In order to solve this problem, the electrode for reducing carbon dioxide gas of the present invention is an electrode for reducing carbon dioxide gas that electrolytically reduces carbon dioxide gas in an aqueous solution. a conductive substrate; a conductive polymer layer covering the surface of the conductive substrate;
It includes a catalyst layer made of a rare earth metal or a rare earth metal complex that exhibits a catalytic function for the reduction reaction of carbon dioxide gas.

又、二酸化炭素ガスを水溶液中で電解還元する
二酸化炭素ガス還元用電極であつて、 導電性基体と、該導電性基体の表面を被覆する
導電性重合体層と、該導電性重合体層を被覆する
銀・銅・鉛・錫から選ばれる少なくとも1つの金
属からなる補助触媒層と、該補助触媒層を被覆
し、二酸化炭素ガスの還元反応に対して触媒機能
を発現する希土類金属あるいは希土類金属錯体か
らなる触媒層とを備える。
Further, there is provided an electrode for reducing carbon dioxide gas for electrolytically reducing carbon dioxide gas in an aqueous solution, which comprises a conductive substrate, a conductive polymer layer covering the surface of the conductive substrate, and the conductive polymer layer. An auxiliary catalyst layer made of at least one metal selected from silver, copper, lead, and tin to be coated, and a rare earth metal or rare earth metal that covers the auxiliary catalyst layer and exhibits a catalytic function for the reduction reaction of carbon dioxide gas. and a catalyst layer made of a complex.

[実施例] 第1図に本実施例の二酸化炭素ガス還元用電極
の構成の概念図を示す。本実施例の二酸化炭素ガ
ス還元用電極10は、基本的に導電性基体1と導
電性重合体層2と触媒層3とから構成される。
[Example] FIG. 1 shows a conceptual diagram of the structure of the electrode for reducing carbon dioxide gas of this example. The carbon dioxide gas reduction electrode 10 of this example is basically composed of a conductive substrate 1, a conductive polymer layer 2, and a catalyst layer 3.

第2図に示す三電極セル15のように、この二
酸化化炭素ガス還元用電極10を、飽和カロメル
電極質の基準電極11と白金網の補助電極12と
共に、過塩素酸ナトリウムやリン酸ナトリウム等
の電解質塩を含む水溶液17に浸漬して、ポテン
ンシオスタツト装置13を用いて電位を規制しな
がら電解を行うことによつて、水溶液中のCO2
還元反応を電極表面で生起する。上記二酸化炭素
ガス還元電極10で大規模な電解を行い生成物を
集めると、CO2還元生成物はC1化学工業等の原料
として利用できる。又、吹き込み口16よりCO2
を吹き込みながら、このときの電解電流をX−Y
レコーダ14で測定すれば、CO2の濃度又は分圧
に電流値が比例することからCO2濃度又は分圧を
測定できる。
As in the three-electrode cell 15 shown in FIG. 2, this electrode 10 for reducing carbon dioxide gas is used together with a reference electrode 11 made of a saturated calomel electrode and an auxiliary electrode 12 made of a platinum mesh, such as sodium perchlorate, sodium phosphate, etc. By immersing the electrode in an aqueous solution 17 containing an electrolyte salt and performing electrolysis while regulating the potential using the potentiostat device 13, a reduction reaction of CO 2 in the aqueous solution occurs on the electrode surface. When large-scale electrolysis is performed using the carbon dioxide gas reduction electrode 10 and the products are collected, the CO 2 reduction products can be used as raw materials for C 1 chemical industry, etc. Also, CO 2 from the air inlet 16
While blowing, the electrolytic current at this time is
By measuring with the recorder 14, the CO 2 concentration or partial pressure can be measured because the current value is proportional to the CO 2 concentration or partial pressure.

導電性基体1および導電性重合体層2は電解還
元において水素過電圧が大きいものが好ましく、
さらには酸素還元の過電圧も大きいことが望まし
い。導電性基体1としては、炭素材料、白金、
金、銀、ニツケル等が利用できる。
The conductive substrate 1 and the conductive polymer layer 2 preferably have a large hydrogen overvoltage in electrolytic reduction,
Furthermore, it is desirable that the overvoltage for oxygen reduction is also large. As the conductive substrate 1, carbon material, platinum,
Gold, silver, nickel, etc. can be used.

導電性重合体層2としては、アニリン、ピロー
ル、メチルチオフエン等の電解重合層が特に好ま
しい。
As the conductive polymer layer 2, an electrolytically polymerized layer of aniline, pyrrole, methylthiophene, etc. is particularly preferable.

触媒層には、希土類金属あるいは希土類金属錯
体が望ましく、特にレニウムが望ましい。更に、
補助触媒層8があることが触媒の寿命の点から望
ましく、補助触媒には銀、銅、鉛、錫等が使用さ
れる。
A rare earth metal or a rare earth metal complex is desirable for the catalyst layer, and rhenium is particularly desirable. Furthermore,
The presence of the auxiliary catalyst layer 8 is desirable from the viewpoint of catalyst life, and silver, copper, lead, tin, etc. are used as the auxiliary catalyst.

実施例 1 (1) BPG電極の作成 ベーサル・プレーン・ピロリテイツク・グラ
フアイト(BPG、ユニオンカーバイト社製)
の板から直径1mm、長さ3mmの円柱を切り出し
て導電性基体1とし、その底面1aにリード線
4(ウレメツト線、0.1mmφ)を導電性接着剤
6(アミコン社製:C−850−6)を用いて接
着後、テフロンチユーブ5(内径1.3mm)内に
挿入し、絶縁性接着剤7(株式会社スリーボン
ド製:TB2067)で絶縁してBPG電極を作成し
た。
Example 1 (1) Creation of BPG electrode Basal plain pyrolitic graphite (BPG, manufactured by Union Carbide)
A cylinder with a diameter of 1 mm and a length of 3 mm is cut out from the plate to serve as a conductive substrate 1, and a lead wire 4 (Uremet wire, 0.1 mmφ) is attached to the bottom surface 1a with a conductive adhesive 6 (manufactured by Amicon: C-850-6). ) and then inserted into a Teflon tube 5 (inner diameter 1.3 mm) and insulated with an insulating adhesive 7 (manufactured by Three Bond Co., Ltd.: TB2067) to create a BPG electrode.

(2) 導電性重合体層の形成 BPG電極を作用電極とし、飽和塩化ナトリ
ウム飽和カロメル電極(SSCE)を基準電極と
し、白金網を対電極とする三電極式セルを用
い、 10mM…3メチルチオフエン 0.1M…TBABF4(テトラブチルアンモニウムテ
トラフルオロボレート塩) を含むアセトニトリル溶液を電解液として、
1.9V vs SSCEで10分間定電位電解を行つて、
導電性重合体層2として約10μmのポリ(3−
メチルチオフエン)層(以下PMT層)を形成
した。
(2) Formation of conductive polymer layer Using a three-electrode cell with a BPG electrode as the working electrode, a saturated sodium chloride saturated calomel electrode (SSCE) as the reference electrode, and a platinum mesh as the counter electrode, 10mM...3-methylthiophene was used. An acetonitrile solution containing 0.1M...TBABF 4 (tetrabutylammonium tetrafluoroborate salt) was used as an electrolyte.
Perform constant potential electrolysis for 10 minutes at 1.9V vs SSCE,
As the conductive polymer layer 2, about 10 μm of poly(3-
methylthiophene) layer (hereinafter referred to as PMT layer) was formed.

(3) 補助触媒の形成 次に上記三電極式セルを用いて、2mMの硝
酸銀を含む水溶液を電解液として、−0.1V vs
SSCEで1分間電解して、補助触媒層8として
銀層をPMT層表面(一部はPMT層内に形成さ
れる)に形成した。
(3) Formation of auxiliary catalyst Next, using the above three-electrode cell, an aqueous solution containing 2mM silver nitrate was used as the electrolyte, and −0.1V vs.
Electrolysis was performed using SSCE for 1 minute to form a silver layer as the auxiliary catalyst layer 8 on the surface of the PMT layer (part of which was formed within the PMT layer).

尚、Agの表面濃度PAg=5×10-5mol/cm2 (4) 触媒層の形成 次に(3)と同様にして、2mMの硝酸レニウム
を含む水溶液を電解液として、−1.0V vs
SSCEで2分間定電位電解を行つて、触媒層3
としてレニウム層を形成した。
Incidentally, the surface concentration of Ag P Ag = 5 × 10 -5 mol/cm 2 (4) Formation of catalyst layer Next, in the same manner as in (3), an aqueous solution containing 2mM rhenium nitrate was used as the electrolyte, and the voltage was set at -1.0V. vs
Perform constant potential electrolysis for 2 minutes with SSCE to remove the catalyst layer 3.
A rhenium layer was formed.

尚、Reの表面濃度PRe=5×10-5mol/cm2 以上のような工程で、本実施例の二酸化炭素ガ
ス還元用電極10を作成した。
The electrode 10 for reducing carbon dioxide gas of this example was produced through a process in which the surface concentration of Re was P Re =5×10 −5 mol/cm 2 or higher.

実施例 2 実施例1と同様にして、BPG電極を作成した
のち、100mMのアニリンと0.5Mの硝酸ナトリウ
ム(PH1.0)を含む電解液中で、1.2V対SSCEで5
分間電解酸化を行い、導電性重合体層としてアニ
リン重合体層を被着した。以降は、実施例1と同
じに銀層レニウム層とを形成した。
Example 2 After creating a BPG electrode in the same manner as in Example 1, it was heated at 1.2V vs.
Electrolytic oxidation was carried out for a minute to deposit an aniline polymer layer as a conductive polymer layer. Thereafter, a silver layer and a rhenium layer were formed in the same manner as in Example 1.

実施例 3 導電性重合体層を、1mMのメソーテトラアミ
ノポリフイリンと10mMのNaCl4とを含むアセト
ニトリル電解液中で、1.8V対SSCEで60分間電解
して形成した。以降は、実施例1と同様にして銀
層とレニウム層とを形成した。
Example 3 A conductive polymer layer was formed by electrolysis at 1.8 V vs. SSCE for 60 minutes in an acetonitrile electrolyte containing 1 mM meso-tetraaminopolyphyllin and 10 mM NaCl4 . Thereafter, a silver layer and a rhenium layer were formed in the same manner as in Example 1.

実施例 4 導電性重合体層を、100mMの1,2−ジアミ
ノベンゼンと0.5Mの硝酸ナトリウム(PH1.0)と
を含む電解液中で、−0.8Vから1.2V対SSCEの範
囲で50mV/secの掃引速度で30分間走査して形
成した。以降は、実施例1と同様にして銀層とレ
ニウム層とを形成した。
Example 4 A conductive polymer layer was electrolyzed in an electrolyte containing 100 mM 1,2-diaminobenzene and 0.5 M sodium nitrate (PH 1.0) at 50 mV/50 mV in the range of -0.8 V to 1.2 V vs. SSCE. It was formed by scanning for 30 minutes at a sweep speed of sec. Thereafter, a silver layer and a rhenium layer were formed in the same manner as in Example 1.

比較例 1〜4 レニウム層を形成しない以外は、実施例1〜4
と同様にして、二酸化炭素ガス還元用電極を作製
した。
Comparative Examples 1 to 4 Examples 1 to 4 except that no rhenium layer was formed.
In the same manner as above, an electrode for reducing carbon dioxide gas was prepared.

比較例 5〜8 銀層を形成しない以外は、実施例1〜4と同様
にして二酸化炭素ガス還元用電極を作製した。
Comparative Examples 5 to 8 Carbon dioxide gas reduction electrodes were produced in the same manner as Examples 1 to 4, except that no silver layer was formed.

実験例 1 実施例1〜4で作製した二酸化炭素ガス還元用
電極10をPH7.4のリン酸塩緩衝溶液に浸漬し、
前述の三電極式セルを用いて、電流−電位特性を
測定した。その結果をそれぞれ第3図〜第6図に
示す。
Experimental Example 1 The carbon dioxide gas reduction electrode 10 prepared in Examples 1 to 4 was immersed in a phosphate buffer solution of PH7.4,
Current-potential characteristics were measured using the three-electrode cell described above. The results are shown in FIGS. 3 to 6, respectively.

窒素ガスで脱ガスした場合に比較して、二酸化
炭素ガスが存在する溶液では−0.7V以下の電位
で還元電流が増大することから、本実施例の電極
は二酸化炭素ガスの還元反応に対して触媒として
作用することがわかつた。
Compared to the case of degassing with nitrogen gas, in a solution containing carbon dioxide gas, the reduction current increases at a potential of -0.7V or less, so the electrode of this example is effective against the reduction reaction of carbon dioxide gas. It was found that it acts as a catalyst.

また、比較例1〜4に示すレニウム層を形成し
ない構成の電極ではCO2に対する触媒作用が極め
て弱く、(導電性基体/導電性重合体層/銀層/
レニウム層)構成の電極において、この作用が顕
著となることがわかつた。
In addition, in the electrodes having a structure in which no rhenium layer is formed as shown in Comparative Examples 1 to 4, the catalytic effect on CO 2 is extremely weak (conductive substrate/conductive polymer layer/silver layer/
It was found that this effect is remarkable in electrodes having a rhenium layer structure.

更に、比較例5〜8に示した銀層を形成しない
構成の電極では、2〜3回の電解で活性が失活す
ることがわかつた。
Furthermore, it was found that the activity of the electrodes shown in Comparative Examples 5 to 8, which did not form a silver layer, was deactivated after 2 to 3 electrolysis cycles.

以上のことから、レニウムがCO2の触媒として
作用し、銀がその補助触媒として作用しているこ
とが明らかとなつた。
From the above, it has become clear that rhenium acts as a CO 2 catalyst, and silver acts as an auxiliary catalyst.

実験例 2 実施例1〜4で作成した二酸化炭素ガス還元用
電極10のリン酸塩緩衝液(PH7.4)中における
電流−電圧特性を、実験例1と同様の三電極セル
を用いて測定した。電流−電圧特性(例、第3
図、第6図)の二酸化炭素ガスの還元電位(対飽
和塩化ナトリウムカロメル電極:SSCE)は、約
−0.9V(3メチルチオフエン/銀/レニウム)、−
0.75V(1,2アミベンゼン/銀/レニウム)に
あつた。
Experimental Example 2 The current-voltage characteristics of the carbon dioxide gas reduction electrode 10 prepared in Examples 1 to 4 in a phosphate buffer solution (PH7.4) were measured using the same three-electrode cell as in Experimental Example 1. did. Current-voltage characteristics (e.g., 3rd
The reduction potential (versus saturated sodium chloride calomel electrode: SSCE) of carbon dioxide gas (Fig. 6) is approximately -0.9V (3 methylthiophene/silver/rhenium), -
It was 0.75V (1,2-amibenzene/silver/rhenium).

以上のことから、本実施例の二酸化炭素ガス還
元用電極10は、二酸化炭素を還元する触媒とし
て作用する。
From the above, the carbon dioxide gas reducing electrode 10 of this embodiment acts as a catalyst for reducing carbon dioxide.

したがつて、C1化学分野での触媒として、こ
の二酸化炭素ガス還元用電極10が適用できるこ
とがわかつた。
Therefore, it has been found that this carbon dioxide gas reduction electrode 10 can be applied as a catalyst in the field of C1 chemistry.

以上述べてきたように、本実施例の二酸化炭素
ガス還元用電極は、 (a) 水溶液中で、O2やH2の影響を受けることな
く、CO2を電解還元することができる。
As described above, the carbon dioxide gas reduction electrode of the present example is capable of (a) electrolytically reducing CO 2 in an aqueous solution without being affected by O 2 or H 2 ;

(b) 電極の構成が簡単であるため、大量生産が可
能である。
(b) Since the electrode structure is simple, mass production is possible.

(c) CO2(ガス)の電解還元の電流効果が高いた
め(95%以上)、電極反応生成物(COと考えら
れる)をC1化学工業のピユアな原料として利
用できる。
(c) Due to the high current efficiency of electrolytic reduction of CO 2 (gas) (over 95%), the electrode reaction product (considered to be CO) can be used as a pure raw material in the C 1 chemical industry.

尚、本実施例では、補助触媒層として銀層を、
触媒層としてレニウム層を代表させて説明した
が、前述した如く、触媒層は他の希土類金属ある
いはその錯体でもよく、補助触媒層には銅、鉛、
錫等が使用されてもよい。
In this example, a silver layer was used as an auxiliary catalyst layer.
Although the rhenium layer has been described as a representative catalyst layer, as mentioned above, the catalyst layer may be other rare earth metals or their complexes, and the auxiliary catalyst layer may include copper, lead, etc.
Tin or the like may also be used.

[発明の効果] 本発明により、水溶液中のCO2還元用の二酸化
炭素ガス還元用電極を提供できる。
[Effects of the Invention] According to the present invention, an electrode for reducing carbon dioxide gas for reducing CO 2 in an aqueous solution can be provided.

詳細には、 (1) 電極の構成が簡単であるため、大量生産が可
能である。
In detail, (1) The structure of the electrode is simple, so mass production is possible.

(2) CO2(ガス)の電解還元の電流効果が高いた
め(95%以上)、電極反応生成物をC1化学工業
のピユアな原料として利用できる。
(2) Because the current effect of electrolytic reduction of CO 2 (gas) is high (more than 95%), the electrode reaction product can be used as a pure raw material in the C 1 chemical industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の二酸化炭素ガス還元用電極
の構造を示す概念図、第2図は三電極式セルおよ
び電解装置(ポテンシオスタツト)を示す図、第
3図〜第6図は実施例1〜4の二酸化炭素ガス還
元用電極の実験結果を示す図である。 図中、1……導電性基体、1a……底面、2…
…導電性重合体層、3……触媒層、4……リード
線、5……テフロンチユーブ、6……導電性接着
剤、7……絶縁性接着剤、8……補助触媒層であ
る。
Figure 1 is a conceptual diagram showing the structure of the electrode for reducing carbon dioxide gas in this example, Figure 2 is a diagram showing the three-electrode cell and electrolyzer (potentiostat), and Figures 3 to 6 are the actual results. It is a figure which shows the experimental result of the electrode for carbon dioxide gas reduction of Examples 1-4. In the figure, 1... conductive substrate, 1a... bottom surface, 2...
... conductive polymer layer, 3 ... catalyst layer, 4 ... lead wire, 5 ... Teflon tube, 6 ... conductive adhesive, 7 ... insulating adhesive, 8 ... auxiliary catalyst layer.

Claims (1)

【特許請求の範囲】 1 二酸化炭素ガスを水溶液中で電解還元する二
酸化炭素ガス還元用電極であつて、 導電性基体と、 該導電性基体の表面を被覆する導電性重合体層
と、 該導電性重合体層を被覆し、二酸化炭素ガスの
還元反応に対して触媒機能を発現する希土類金属
あるいは希土類金属錯体からなる触媒層とを備え
ることを特徴とする二酸化炭素ガス還元用電極。 2 前記導電性重合体層は、アニリン重合体、
1,2−ジアミノベンゼン重合体、メチルチオフ
エン重合体、ピロール重合体、ポリフイリン類重
合体、アミノピレン重合体から選ばれる層である
ことを特徴とする特許請求の範囲第1項記載の二
酸化炭素ガス還元用電極。 3 前記希土類金属はレニウムであることを特徴
とする特許請求の範囲第1項記載の二酸化炭素ガ
ス還元用電極。 4 二酸化炭素ガスを水溶液中で電解還元する二
酸化炭素ガス還元用電極であつて、 導電性基体と、 該導電性基体の表面を被覆する導電性重合体層
と、 該導電性重合体層を被覆する銀、銅、鉛、錫か
ら選ばれる少なくとも1つの金属からなる補助触
媒層と、 該補助触媒層を被覆し、二酸化炭素ガスの還元
反応に対して触媒機能を発現する希土類金属ある
いは希土類金属錯体からなる触媒層とを備えるこ
とを特徴とする二酸化炭素ガス還元用電極。 5 前記導電性重合体層は、アニリン重合体、
1,2−ジアミノベンゼン重合体、メチルチオフ
エン重合体、ピロール重合体、ポリフイリン類重
合体、アミノピレン重合体から選ばれる層である
ことを特徴とする特許請求の範囲第4項記載の二
酸化炭素ガス還元用電極。 6 前記希土類金属はレニウムであることを特徴
とする特許請求の範囲第4項記載の二酸化炭素ガ
ス還元用電極。
[Scope of Claims] 1. An electrode for reducing carbon dioxide gas by electrolytically reducing carbon dioxide gas in an aqueous solution, comprising: a conductive substrate; a conductive polymer layer covering the surface of the conductive substrate; and the conductive substrate. 1. An electrode for reducing carbon dioxide gas, comprising: a catalyst layer comprising a rare earth metal or a rare earth metal complex that exhibits a catalytic function for a reduction reaction of carbon dioxide gas; 2 The conductive polymer layer includes an aniline polymer,
The carbon dioxide gas reduction according to claim 1, characterized in that the layer is selected from a 1,2-diaminobenzene polymer, a methylthiophene polymer, a pyrrole polymer, a polyphyllin polymer, and an aminopyrene polymer. electrode. 3. The electrode for reducing carbon dioxide gas according to claim 1, wherein the rare earth metal is rhenium. 4. An electrode for reducing carbon dioxide gas that electrolytically reduces carbon dioxide gas in an aqueous solution, comprising: a conductive substrate; a conductive polymer layer covering the surface of the conductive substrate; and a conductive polymer layer covering the surface of the conductive substrate. an auxiliary catalyst layer made of at least one metal selected from silver, copper, lead, and tin; and a rare earth metal or rare earth metal complex that coats the auxiliary catalyst layer and exhibits a catalytic function for the reduction reaction of carbon dioxide gas. An electrode for reducing carbon dioxide gas, comprising a catalyst layer consisting of: 5 The conductive polymer layer includes an aniline polymer,
The carbon dioxide gas reduction according to claim 4, characterized in that the layer is selected from a 1,2-diaminobenzene polymer, a methylthiophene polymer, a pyrrole polymer, a polyphylline polymer, and an aminopyrene polymer. electrode. 6. The electrode for reducing carbon dioxide gas according to claim 4, wherein the rare earth metal is rhenium.
JP62167931A 1987-07-07 1987-07-07 Electrode for reducing gaseous carbon dioxide Granted JPS6415388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62167931A JPS6415388A (en) 1987-07-07 1987-07-07 Electrode for reducing gaseous carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62167931A JPS6415388A (en) 1987-07-07 1987-07-07 Electrode for reducing gaseous carbon dioxide

Publications (2)

Publication Number Publication Date
JPS6415388A JPS6415388A (en) 1989-01-19
JPH0336916B2 true JPH0336916B2 (en) 1991-06-03

Family

ID=15858712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62167931A Granted JPS6415388A (en) 1987-07-07 1987-07-07 Electrode for reducing gaseous carbon dioxide

Country Status (1)

Country Link
JP (1) JPS6415388A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009703B2 (en) * 1990-05-02 2000-02-14 正道 藤平 Electrode catalyst for carbon dioxide gas reduction
US8313634B2 (en) * 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
JP5707773B2 (en) * 2009-09-14 2015-04-30 株式会社豊田中央研究所 Composite photoelectrode and photoelectrochemical reaction system
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
WO2012137344A1 (en) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 Device for generating mixed gas
WO2013031065A1 (en) 2011-08-29 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide
ES2555473T3 (en) * 2012-05-02 2016-01-04 Haldor Topsøe A/S Procedure for the production of chemical compounds from carbon dioxide
US8845876B2 (en) 2012-07-26 2014-09-30 Liquid Light, Inc. Electrochemical co-production of products with carbon-based reactant feed to anode
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US9175407B2 (en) 2012-07-26 2015-11-03 Liquid Light, Inc. Integrated process for producing carboxylic acids from carbon dioxide
US8858777B2 (en) 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US9873951B2 (en) 2012-09-14 2018-01-23 Avantium Knowledge Centre B.V. High pressure electrochemical cell and process for the electrochemical reduction of carbon dioxide
JP6202886B2 (en) * 2013-05-31 2017-09-27 株式会社東芝 Photochemical reactor and thin film
JP6497276B2 (en) * 2015-08-28 2019-04-10 株式会社豊田中央研究所 Coating agent and method for producing catalyst-carrying electrode
US20230083041A1 (en) * 2019-04-01 2023-03-16 The Regents Of The University Of California Electrochemical conversion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782485A (en) * 1980-11-12 1982-05-22 Matsushita Electric Ind Co Ltd Formation of electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5782485A (en) * 1980-11-12 1982-05-22 Matsushita Electric Ind Co Ltd Formation of electrode

Also Published As

Publication number Publication date
JPS6415388A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
JPH0336916B2 (en)
Wang et al. Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes
Ju et al. Effect of electrolytes on the electrochemical behaviour of 11-(ferrocenylcarbonyloxy) undecanethiol SAMs on gold disk electrodes
Dayton et al. Faradaic electrochemistry at microvoltammetric electrodes
Willsau et al. The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes—A dems study
Marrese Preparation of strongly adherent platinum black coatings
Aizawa et al. Electrochemical regeneration of nicotinamide adenine dinucleotide
Compton et al. Electrode processes at the surfaces of sonotrodes
Watanabe et al. Electrocatalysis by ad-atoms: Part XXIII. Design of platinum ad-electrodes for formic acid fuel cells with ad-atoms of the IVth and the Vth groups
Kamyabi et al. Low potential and non-enzymatic hydrogen peroxide sensor based on copper oxide nanoparticle on activated pencil graphite electrode
Goto et al. Electrochemical reduction of nitrogen gas in a molten chloride system
Navratil et al. Analytical application of silver composite electrode
Çakır et al. A newly developed electrocatalytic oxidation and voltammetric determination of curcumin at the surface of PdNp-graphite electrode by an aqueous solution process with Al 3+
Nunes et al. The influence of the electrodeposition conditions on the electroanalytical performance of the bismuth film electrode for lead determination
Liu et al. Electrochemical study of the properties of indium in room temperature chloroaluminate molten salts
Pakuła et al. Electrochemical behaviour of modified activated carbons in aqueous and nonaqueous solutions
Gross et al. Voltammetry at glassy carbon electrodes
US4470894A (en) Nickel electrodes for water electrolyzers
Carlos Use of ruthenium–(ethylenedinitrito)-tetraacetic acid monohydrate ion immobilized on zirconium (IV) oxide coated silica gel surface as an amperometric sensor for oxygen in water
US3720590A (en) Method of coating an electrode
Qu et al. Application of Multi‐walled Carbon Nanotube Modified Carbon Ionic Liquid Electrode for the Voltammetric Detection of Dopamine
Pekmez et al. Electropreparation of polyaniline in the presence of anhydrous cuprous ions in acetonitrile
Giordano et al. The electrolysis of dimethylsulphoxide solutions of sodium chloride and sodium iodide
JP2017171963A (en) Electrode for carbon dioxide reduction and carbon dioxide reduction device
Li et al. Electrochemical quartz crystal microbalance studies of potentiodynamic electrolysis of aqueous chloride solution: surface processes and evolution of H2 and Cl2 gas bubbles