JPH0636616A - Insulated wire - Google Patents

Insulated wire

Info

Publication number
JPH0636616A
JPH0636616A JP18927392A JP18927392A JPH0636616A JP H0636616 A JPH0636616 A JP H0636616A JP 18927392 A JP18927392 A JP 18927392A JP 18927392 A JP18927392 A JP 18927392A JP H0636616 A JPH0636616 A JP H0636616A
Authority
JP
Japan
Prior art keywords
polyimide
mol
coating
insulating coating
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18927392A
Other languages
Japanese (ja)
Inventor
Hironori Matsuura
裕紀 松浦
Isao Kamioka
勇夫 上岡
Koichi Iwata
幸一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18927392A priority Critical patent/JPH0636616A/en
Publication of JPH0636616A publication Critical patent/JPH0636616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE:To provide an insulated wire of high processability resistance having an insulation coat of high flexibility and damage resistance by using a specific aromatic diamine compound as the diamine component of a polyimide compound in a polyimide insulation paint. CONSTITUTION:Regarding an insulated wire having an insulation coat formed through the application and subsequent baking of polyimide paint, at least one of aromatic diamine compounds expressed by the formulae I, II and Ill is used by a ratio of 10 to 80mol% for a total raw material diamine component as a diamine component to constitute polyimide. R<1> in the formula I stands for a hydrogen atom, an alkyl group, an alkoxyl group or a halogen atom, and (n) for a numeral between 1 and 4. R<2> and R<3> in the formula II stand identically or differently for a hydrogen atom, an alkyl group, an alkoxyl group or a halogen atom, and (p) and (q) identically or differently for a numeral between 1 and 4. R<4> and R<5> in the formula II are the same as R<2> and R<3> in the formula II, and (r) and (s) stand identically or differently for a numeral between 1 and 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえばモータのコア
に捲き付けられる、耐加工性にすぐれた絶縁電線に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated wire which is wound around a core of a motor and has excellent workability.

【0002】[0002]

【従来の技術】近年、機器の小型化、軽量化の傾向に伴
い、モータについても、より小型、軽量で、しかも高性
能のものが要求されるようになってきた。この要求に答
えるには、モータのコアにより多くの絶縁電線を捲き付
ける必要があるが、コアのスロット内に絶縁電線を強引
に詰め込むことになり、捲線工程で絶縁被膜に損傷を生
じる危険性がある。そして、絶縁被膜に損傷が生じる
と、レアー不良やアース不良等が発生し、モータの電気
特性に不具合を生じるという問題がある。
2. Description of the Related Art In recent years, with the trend toward smaller size and lighter weight of equipment, there has been a demand for smaller and lighter motors with higher performance. To meet this requirement, it is necessary to wind more insulated wires around the motor core, but this will forcefully pack the insulated wires into the slots of the core, and there is a risk that the insulating coating will be damaged during the winding process. is there. When the insulating coating is damaged, there is a problem that a lare defect, a ground defect, etc. occur, causing a problem in the electric characteristics of the motor.

【0003】そこで、通常は、ポリアミドイミド系の塗
料の塗布、焼付けにより形成された、機械的強度にすぐ
れた絶縁被膜を有する絶縁電線が、上記用途に使用され
ている。なお、ポリアミドイミドとしては、下記式(IV)
で表されるジフェニルメタン−4,4′−ジイソシアネ
ートとトリメリット酸無水物との反応生成物が、一般的
に使用される(たとえば特公昭44−19274号公
報、特公昭45−27611号公報等参照)。
Therefore, an insulated wire having an insulating coating excellent in mechanical strength, which is formed by coating and baking a polyamideimide-based paint, is usually used for the above-mentioned use. As the polyamide-imide, the following formula (IV)
The reaction product of diphenylmethane-4,4'-diisocyanate represented by and trimellitic anhydride is generally used (see, for example, JP-B-44-19274 and JP-B-45-27611). ).

【0004】[0004]

【化4】 [Chemical 4]

【0005】[0005]

【発明が解決しようとする課題】しかし、最近ではさら
に小型、軽量で性能の良いモータが要求され、それに対
応すべく、絶縁電線の捲線量がさらに増大する傾向にあ
り、ポリアミドイミド系の絶縁被膜でも損傷を生じるこ
とが多くなってきた。そこで、絶縁被膜の損傷を少しで
も減少させるために、たとえば有機または無機の潤滑剤
等を塗料に配合して、絶縁被膜の表面に潤滑性を付与す
ることが検討されているが、この方法では、絶縁被膜の
損傷を根本的に解決することはできない。
However, in recent years, motors having smaller size, lighter weight and better performance have been required, and in order to meet the demand, the winding amount of the insulated wire tends to further increase. However, the damage is increasing. Therefore, in order to reduce the damage of the insulating coating as much as possible, it has been studied to add a lubricant such as an organic or inorganic lubricant to the coating to impart lubricity to the surface of the insulating coating. However, damage to the insulating coating cannot be fundamentally resolved.

【0006】絶縁被膜の機械的強度をさらに向上すれば
損傷の発生を減少できるが、単に機械的強度を向上させ
たのでは、被膜が剛直で可撓性に劣るものとなり、電線
を曲げた際に割れたり剥離したりしやすくなって、絶縁
電線の加工性が悪化するという問題がある。本発明は、
以上の事情に鑑みてなされたものであって、可撓性にす
ぐれ、しかも損傷し難い絶縁被膜を有し、耐加工性にす
ぐれた絶縁電線を提供することを目的としている。
Although the occurrence of damage can be reduced by further improving the mechanical strength of the insulating coating, if the mechanical strength is simply improved, the coating becomes rigid and inferior in flexibility, and when the electric wire is bent. There is a problem that the workability of the insulated electric wire deteriorates because it is easily cracked or peeled off. The present invention is
The present invention has been made in view of the above circumstances, and an object thereof is to provide an insulated electric wire that has an insulating coating film that is excellent in flexibility and is not easily damaged, and that is excellent in work resistance.

【0007】[0007]

【課題を解決するための手段および作用】上記課題を解
決するため、本発明者らは、従来のポリアミドイミド系
の塗料に代えて、構造中に、ベンゼン、ビフェニルまた
はベンズアニリドの構造を導入したポリイミド系の塗料
を使用すると、絶縁被膜の弾性率が向上して、可撓性に
すぐれ、しかも、損傷し難い絶縁被膜を形成できること
を見出し、本発明を完成するに至った。すなわち本発明
の絶縁電線は、少なくともテトラカルボン酸二無水物を
含む酸成分と、ジアミン成分とからなるポリイミドまた
はその前駆体としてのポリアミド酸を含むポリイミド系
塗料の塗布、焼付けにより形成された絶縁被膜を有する
絶縁電線において、原料としてのジアミン成分が、下記
一般式(I) :
In order to solve the above-mentioned problems, the present inventors have replaced the conventional polyamide-imide-based paint with a polyimide having a structure of benzene, biphenyl or benzanilide introduced into the structure. It has been found that the use of a paint of the type improves the elastic modulus of the insulating coating, and that an insulating coating having excellent flexibility and being less likely to be damaged can be formed, and has completed the present invention. That is, the insulated wire of the present invention, an acid coating containing at least a tetracarboxylic dianhydride, and a polyimide coating composition containing a polyimide composed of a polyimide or a precursor of a diamine component, or a polyamic acid as a precursor thereof, an insulating coating formed by baking. In the insulated wire having a diamine component as a raw material, the following general formula (I):

【0008】[0008]

【化5】 [Chemical 5]

【0009】[上記式中R1 は、水素原子、アルキル
基、アルコキシ基またはハロゲン原子を示す。nは1〜
4の数を示す。]、下記一般式(II):
[In the above formula, R 1 represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. n is 1
The number of 4 is shown. ], The following general formula (II):

【0010】[0010]

【化6】 [Chemical 6]

【0011】[上記式中R2 ,R3 は、同一または異な
って、水素原子、アルキル基、アルコキシ基またはハロ
ゲン原子を示す。p,qは同一または異なって1〜4の
数を示す。]、および下記一般式(III) :
[In the above formula, R 2 and R 3 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. p and q are the same or different and represent a number of 1 to 4. ] And the following general formula (III):

【0012】[0012]

【化7】 [Chemical 7]

【0013】[上記式中R4 ,R5 は、同一または異な
って、水素原子、アルキル基、アルコキシ基またはハロ
ゲン原子を示す。r,sは同一または異なって1〜4の
数を示す。]で表される芳香族ジアミン化合物のうちの
少なくとも1種を含有し、かつ原料としてのジアミン成
分における、これら芳香族ジアミン化合物の合計の含有
割合が10〜80モル%であることを特徴とする。
[In the above formula, R 4 and R 5 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. r and s are the same or different and each represents a number of 1 to 4. ] It contains at least 1 sort (s) of the aromatic diamine compound represented by these, and the total content rate of these aromatic diamine compounds in the diamine component as a raw material is 10-80 mol%, It is characterized by the above-mentioned. .

【0014】ポリイミド系塗料の原料の一つであるジア
ミン成分のうち、一般式(I) で表される芳香族ジアミン
化合物としては、下記一般式(Ia):
Among the diamine components which are one of the raw materials for polyimide coatings, the aromatic diamine compound represented by the general formula (I) is represented by the following general formula (Ia):

【0015】[0015]

【化8】 [Chemical 8]

【0016】[上記式中R1 は前記と同じ基を示し、n
は1〜4である。]で表されるp−フェニレンジアミン
誘導体が好適に使用される。p−フェニレンジアミン誘
導体の具体例としては、たとえばp−フェニレンジアミ
ン、2−メチル−p−フェニレンジアミン、2−エチル
−p−フェニレンジアミン、2−メトキシ−p−フェニ
レンジアミン、2−エトキシ−p−フェニレンジアミ
ン、2−クロロ−p−フェニレンジアミン、2−ブロモ
−p−フェニレンジアミン等があげられる。これらは単
独で、あるいは2種以上混合して使用される。
[Wherein R 1 represents the same group as described above, and n
Is 1 to 4. ] The p-phenylenediamine derivative represented by the following is preferably used. Specific examples of the p-phenylenediamine derivative include, for example, p-phenylenediamine, 2-methyl-p-phenylenediamine, 2-ethyl-p-phenylenediamine, 2-methoxy-p-phenylenediamine, 2-ethoxy-p-. Examples thereof include phenylenediamine, 2-chloro-p-phenylenediamine and 2-bromo-p-phenylenediamine. These may be used alone or in combination of two or more.

【0017】また、前記一般式(I) で表される芳香族ジ
アミン化合物としては、m−フェニレンジアミンおよび
その誘導体、o−フェニレンジアミンおよびその誘導体
等を使用することもできる。上記各芳香族ジアミン化合
物の中でも、入手のしやすさやコスト等の点で、下記式
(1) で表されるp−フェニレンジアミンが、本発明に最
も好適に使用される。
As the aromatic diamine compound represented by the above general formula (I), m-phenylenediamine and its derivative, o-phenylenediamine and its derivative and the like can be used. Among the above aromatic diamine compounds, in terms of availability and cost, the following formula
The p-phenylenediamine represented by (1) is most preferably used in the present invention.

【0018】[0018]

【化9】 [Chemical 9]

【0019】前記一般式(II)で表される芳香族ジアミン
化合物の具体例としては、たとえばベンジジン、3−メ
チル−4,4′−ジアミノビフェニル、3,3′−ジメ
チル−4,4′−ジアミノビフェニル、2,3′−ジメ
チル−4,4′−ジアミノビフェニル、2,2′−ジメ
チル−4,4′−ジアミノビフェニル、3,3′−ジメ
チル−3,4′−ジアミノビフェニル、3,3′−ジメ
チル−3,3′−ジアミノビフェニル、3,3′−ジエ
チル−4,4′−ジアミノビフェニル、3,3′−ジメ
トキシ−4,4′−ジアミノビフェニル、3,3′−ジ
エトキシ−4,4′−ジアミノビフェニル、3,3′−
ジクロロ−4,4′−ジアミノビフェニル、3,3′−
ジブロモ−4,4′−ジアミノビフェニル等があげられ
る。これらは単独で、あるいは2種以上混合して使用さ
れる。
Specific examples of the aromatic diamine compound represented by the general formula (II) include, for example, benzidine, 3-methyl-4,4'-diaminobiphenyl and 3,3'-dimethyl-4,4'-. Diaminobiphenyl, 2,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-3,4'-diaminobiphenyl, 3, 3'-dimethyl-3,3'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diethoxy- 4,4'-diaminobiphenyl, 3,3'-
Dichloro-4,4'-diaminobiphenyl, 3,3'-
Examples include dibromo-4,4'-diaminobiphenyl and the like. These may be used alone or in combination of two or more.

【0020】上記各芳香族ジアミン化合物の中でも、入
手のしやすさやコスト等の点で、下記式(2) で表される
3,3′−ジメチル−4,4′−ジアミノビフェニル
が、本発明に最も好適に使用される。
Among the above aromatic diamine compounds, 3,3'-dimethyl-4,4'-diaminobiphenyl represented by the following formula (2) is the present invention in view of availability and cost. Most preferably used.

【0021】[0021]

【化10】 [Chemical 10]

【0022】前記一般式(III) で表される芳香族ジアミ
ン化合物の具体例としては、たとえば4,4′−ジアミ
ノベンズアニリド、3,4′−ジアミノベンズアニリ
ド、3,3′−ジアミノベンズアニリド、2′−メチル
−4,4′−ジアミノベンズアニリド、3′−メチル−
4,4′−ジアミノベンズアニリド、2,2′−ジメチ
ル−4,4′−ジアミノベンズアニリド、3,2′−ジ
メチル−4,4′−ジアミノベンズアニリド、3,3′
−ジメチル−4,4′−ジアミノベンズアニリド、2′
−エチル−4,4′−ジアミノベンズアニリド、3′−
エチル−4,4′−ジアミノベンズアニリド、2′−メ
トキシ−4,4′−ジアミノベンズアニリド、3′−メ
トキシ−4,4′−ジアミノベンズアニリド、2,2′
−ジメトキシ−4,4′−ジアミノベンズアニリド、
3,2′−ジメトキシ−4,4′−ジアミノベンズアニ
リド、3,3′−ジメトキシ−4,4′−ジアミノベン
ズアニリド、2′−エトキシ−4,4′−ジアミノベン
ズアニリド、3′−エトキシ−4,4′−ジアミノベン
ズアニリド、2′−クロロ−4,4′−ジアミノベンズ
アニリド、2,2′−ジクロロ−4,4′−ジアミノベ
ンズアニリド、2′−ブロモ−4,4′−ジアミノベン
ズアニリド、2,2′−ジブロモ−4,4′−ジアミノ
ベンズアニリド等があげられる。これらは単独で、ある
いは2種以上混合して使用される。
Specific examples of the aromatic diamine compound represented by the general formula (III) include, for example, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide and 3,3'-diaminobenzanilide. 2'-methyl-4,4'-diaminobenzanilide, 3'-methyl-
4,4'-diaminobenzanilide, 2,2'-dimethyl-4,4'-diaminobenzanilide, 3,2'-dimethyl-4,4'-diaminobenzanilide, 3,3 '
-Dimethyl-4,4'-diaminobenzanilide, 2 '
-Ethyl-4,4'-diaminobenzanilide, 3'-
Ethyl-4,4'-diaminobenzanilide, 2'-methoxy-4,4'-diaminobenzanilide, 3'-methoxy-4,4'-diaminobenzanilide, 2,2 '
-Dimethoxy-4,4'-diaminobenzanilide,
3,2'-dimethoxy-4,4'-diaminobenzanilide, 3,3'-dimethoxy-4,4'-diaminobenzanilide, 2'-ethoxy-4,4'-diaminobenzanilide, 3'-ethoxy -4,4'-Diaminobenzanilide, 2'-chloro-4,4'-diaminobenzanilide, 2,2'-dichloro-4,4'-diaminobenzanilide, 2'-bromo-4,4'- Examples include diaminobenzanilide and 2,2′-dibromo-4,4′-diaminobenzanilide. These may be used alone or in combination of two or more.

【0023】上記各芳香族ジアミン化合物の中でも、入
手のしやすさやコスト等の点で、下記式(3) で表される
4,4′−ジアミノベンズアニリドが、本発明に最も好
適に使用される。
Among the above aromatic diamine compounds, 4,4'-diaminobenzanilide represented by the following formula (3) is most preferably used in the present invention in view of availability and cost. It

【0024】[0024]

【化11】 [Chemical 11]

【0025】一般式(I)(II) または(III) で表される芳
香族ジアミン化合物とともにジアミン成分中に含まれる
他のジアミンとしては、たとえば4,4′−ジアミノジ
フェニルエーテル、3,4′−ジアミノジフェニルエー
テル、3,3′−ジアミノジフェニルエーテル、4,
4′−ジアミノジフエニルメタン、4,4′−ジアミノ
ジフェニルスルホン、4,4′−ジアミノジフェニルス
ルフィド、4,4′−ジアミノジベンゾフェノン、4,
4′−ジアミノジフェニルプロパン、4,4′−ジアミ
ノジフェニルヘキサフルオロプロパン、4,4′−〔ビ
ス(4−アミノフェノキシ)〕ビフェニル、4,4′−
〔ビス(4−アミノフェノキシ)〕ジフェニルエーテ
ル、4,4′−〔ビス(4−アミノフェノキシ)〕ジフ
ェニルスルホン、4,4′−〔ビス(4−アミノフェノ
キシ)〕ジフェニルメタン、4,4′−〔ビス(4−ア
ミノフェノキシ)〕ジフェニルプロパン、4,4′−
〔ビス(4−アミノフェノキシ)〕ジフェニルヘキサフ
ルオロプロパン等、従来公知の種々のジアミン化合物が
あげられる。これらは単独で、あるいは2種以上混合し
て使用される。
As the other diamine contained in the diamine component together with the aromatic diamine compound represented by the general formula (I), (II) or (III), for example, 4,4'-diaminodiphenyl ether, 3,4'- Diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,
4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodibenzophenone, 4,
4'-diaminodiphenylpropane, 4,4'-diaminodiphenylhexafluoropropane, 4,4 '-[bis (4-aminophenoxy)] biphenyl, 4,4'-
[Bis (4-aminophenoxy)] diphenyl ether, 4,4 '-[bis (4-aminophenoxy)] diphenyl sulfone, 4,4'-[bis (4-aminophenoxy)] diphenylmethane, 4,4 '-[ Bis (4-aminophenoxy)] diphenylpropane, 4,4'-
Examples thereof include various conventionally known diamine compounds such as [bis (4-aminophenoxy)] diphenylhexafluoropropane. These may be used alone or in combination of two or more.

【0026】上記各ジアミン化合物の中でも、絶縁被膜
の高強度化の点で、4,4′−ジアミノジフェニルエー
テルが好適に使用される。本発明においては、一般式
(I)(II) または(III) で表される芳香族ジアミン化合物
の、ジアミン成分中に占める割合が10〜80モル%に
限定される。詳細に説明すると、上記各芳香族ジアミン
化合物のうちのいずれか1種を単独でジアミン成分に含
有させる場合には、そのジアミン成分中に占める割合が
10〜80モル%に限定される。また、上記各芳香族ジ
アミン化合物の2種以上を併用する場合には、その合計
の割合が10〜80モル%に限定される。
Among the above diamine compounds, 4,4'-diaminodiphenyl ether is preferably used from the viewpoint of enhancing the strength of the insulating coating. In the present invention, the general formula
The ratio of the aromatic diamine compound represented by (I), (II) or (III) in the diamine component is limited to 10 to 80 mol%. More specifically, when any one of the above aromatic diamine compounds is contained alone in the diamine component, the proportion of the diamine component in the diamine component is limited to 10 to 80 mol%. Moreover, when using 2 or more types of said each aromatic diamine compound together, the total ratio is limited to 10-80 mol%.

【0027】芳香族ジアミン化合物の割合が10モル%
未満では、当該芳香族ジアミン化合物の添加効果が得ら
れず、絶縁被膜が損傷しやすいものとなってしまう。一
方、芳香族ジアミン化合物の割合が80モル%を超える
と、絶縁被膜が剛直で可撓性に劣り、割れたり剥離した
りしやすいものとなってしまう。なお芳香族ジアミン化
合物の、ジアミン成分中に占める割合は、上記範囲の中
でもとくに、30〜70モル%の範囲内であるのが好ま
しい。
The ratio of the aromatic diamine compound is 10 mol%
If it is less than the above range, the effect of adding the aromatic diamine compound cannot be obtained, and the insulating coating tends to be damaged. On the other hand, when the proportion of the aromatic diamine compound exceeds 80 mol%, the insulating coating is rigid and inferior in flexibility, and is likely to be cracked or peeled. The ratio of the aromatic diamine compound in the diamine component is preferably in the range of 30 to 70 mol%, especially in the above range.

【0028】上記ジアミン成分とともにポリイミド系塗
料を構成する酸成分としては、テトラカルボン酸二無水
物が主として使用される。上記テトラカルボン酸二無水
物の具体例としては、たとえばピロメリット酸二無水
物、ビフェニルテトラカルボン酸二無水物、ベンゾフェ
ノンテトラカルボン酸二無水物、ジフェニルスルホンテ
トラカルボン酸二無水物、ジフェニルメタンテトラカル
ボン酸二無水物、ジフェニルプロパンテトラカルボン酸
二無水物、ジフェニルヘキサフルオロプロパンテトラカ
ルボン酸二無水物、ベンゼンテトラカルボン酸酸二無水
物、ナフタリンテトラカルボン酸二無水物等があげられ
る。これらは単独で、あるいは2種以上混合して使用さ
れる。
Tetracarboxylic acid dianhydride is mainly used as an acid component which constitutes the polyimide coating material together with the diamine component. Specific examples of the tetracarboxylic dianhydride include, for example, pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, diphenylsulfonetetracarboxylic dianhydride, diphenylmethanetetracarboxylic acid. Examples thereof include dianhydride, diphenylpropanetetracarboxylic acid dianhydride, diphenylhexafluoropropanetetracarboxylic acid dianhydride, benzenetetracarboxylic acid dianhydride and naphthalenetetracarboxylic acid dianhydride. These may be used alone or in combination of two or more.

【0029】上記各テトラカルボン酸二無水物の中で
も、絶縁被膜の高強度化の点で、ピロメリット酸二無水
物またはビフェニルテトラカルボン酸二無水物が、好適
に使用される。また酸成分中には、絶縁被膜の特性を損
なわない範囲で、上記テトラカルボン酸二無水物の誘導
体や、トリメリット酸、トリメリット酸無水物、トリメ
リット酸クロライド、トリメリット酸の誘導体のうちの
三塩基酸、テレフタル酸、イソフタル酸、スルホテレフ
タル酸、ジクエン酸、2,5−チオフェンジカルボン
酸、4,5−フェナントレンジカルボン酸、ベンゾフェ
ノン−4,4′−ジカルボン酸、フタルジイミドジカル
ボン酸、ビフェニルジカルボン酸、2,6−ナフタレン
ジカルボン酸、ジフェニルスルホン−4,4′−ジカル
ボン酸、アジピン酸等を、一部添加することもできる。
Among the above-mentioned tetracarboxylic dianhydrides, pyromellitic dianhydride or biphenyltetracarboxylic dianhydride is preferably used from the viewpoint of enhancing the strength of the insulating coating. Further, in the acid component, among the derivatives of tetracarboxylic dianhydride, trimellitic acid, trimellitic anhydride, trimellitic acid chloride, and trimellitic acid derivatives, as long as the characteristics of the insulating coating are not impaired. Tribasic acid, terephthalic acid, isophthalic acid, sulfoterephthalic acid, dicitric acid, 2,5-thiophenedicarboxylic acid, 4,5-phenanthrenedicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, phthaldiimidedicarboxylic acid, biphenyl A part of dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, adipic acid or the like may be added.

【0030】上記ジアミン成分と酸成分とから、本発明
に使用されるポリイミド系塗料を製造するには、たとえ
ば、略化学量論量のジアミン成分と酸成分とを適当な有
機溶媒中で共重合させる、従来のポリイミド系塗料と同
様の製造方法を採用することができる。より詳細には、
一般式(I)(II) または(III) で表される芳香族ジアミン
化合物を前記の割合で配合したジアミン成分を、略等モ
ル量の酸成分とともに、適当な有機溶媒中で0〜60℃
の温度で1〜24時間反応させると、ジアミン成分と酸
成分との反応生成物である、ポリイミドの前駆体として
のポリアミド酸が、有機溶媒中に溶解または分散したポ
リイミド系塗料が得られる。
In order to produce the polyimide coating used in the present invention from the above diamine component and acid component, for example, a substantially stoichiometric amount of diamine component and acid component are copolymerized in a suitable organic solvent. The same manufacturing method as that of the conventional polyimide-based paint can be adopted. More specifically,
The diamine component prepared by blending the aromatic diamine compound represented by the general formula (I), (II) or (III) in the above-mentioned proportion, together with an approximately equimolar amount of the acid component, in a suitable organic solvent at 0 to 60 ° C.
When the reaction is performed at the temperature of 1 to 24 hours, a polyamic acid as a polyimide precursor, which is a reaction product of a diamine component and an acid component, is dissolved or dispersed in an organic solvent to obtain a polyimide-based coating material.

【0031】また、このポリアミド酸を含む塗料を0〜
200℃の温度で1〜24時間反応させると、ポリアミ
ド酸の脱水反応生成物であるポリイミドが有機溶媒中に
溶解または分散したポリイミド系塗料が得られる。本発
明の絶縁電線の絶縁被膜は、後者のポリイミド系塗料を
電線の表面に塗布し、焼き付けて形成される他、前者
の、前駆体としてのポリアミド酸を含む塗料を電線の表
面に塗布し、焼き付けても形成することができる。この
場合には、焼付け時に、ポリアミド酸の脱水閉環反応も
同時に行われる。
A paint containing this polyamic acid is used in an amount of 0 to
When the reaction is carried out at a temperature of 200 ° C. for 1 to 24 hours, a polyimide-based coating material in which polyimide, which is a dehydration reaction product of polyamic acid, is dissolved or dispersed in an organic solvent is obtained. The insulating coating of the insulated wire of the present invention, the latter polyimide-based coating applied to the surface of the wire, other than formed by baking, the former, the coating containing a polyamic acid as a precursor is applied to the surface of the wire, It can also be formed by baking. In this case, the dehydration ring closure reaction of the polyamic acid is also carried out at the time of baking.

【0032】また、本発明に使用されるポリイミド系塗
料としては、一般式(I)(II) または(III) で表される芳
香族ジアミン化合物を、上記範囲を超えて含有するジア
ミン成分と、酸成分とを原料として製造したポリイミド
系塗料(前記のように、ポリイミドを含むもの、あるい
はその前駆体としてのポリアミド酸を含むものの何れで
もよい)と、芳香族ジアミン化合物を含有しないか、ま
たは上記範囲未満のごく少量含有するジアミン成分と酸
成分とを原料として製造したポリイミド系塗料(同じ
く、ポリイミドを含むもの、あるいはその前駆体として
のポリアミド酸を含むものの何れでもよい)とを配合し
たものも使用可能である。この場合には、原料としての
全ジアミン成分中の芳香族ジアミン化合物の割合が前記
範囲内になるように、両塗料の配合割合を調整すればよ
い。
The polyimide-based paint used in the present invention includes a diamine component containing an aromatic diamine compound represented by the general formula (I) (II) or (III) in an amount exceeding the above range, A polyimide-based coating material produced using an acid component as a raw material (as described above, any of those containing polyimide, or one containing polyamic acid as a precursor thereof) and an aromatic diamine compound are not contained, or A mixture of a polyimide-based coating produced from a raw material containing a diamine component and an acid component contained in a very small amount less than the range (also, one containing a polyimide or one containing a polyamic acid as a precursor thereof) It can be used. In this case, the blending ratio of both paints may be adjusted so that the ratio of the aromatic diamine compound in the total diamine component as the raw material falls within the above range.

【0033】なお、本発明に使用されるポリイミド系塗
料には、さらに必要に応じて、顔料、染料、無機または
有機のフィラー、潤滑剤等の各種添加剤を添加してもよ
い。本発明の絶縁電線は、上記ポリイミド系塗料を電線
の表面に塗布し、焼付けて絶縁被膜を形成することで製
造される。絶縁被膜の膜厚については本発明ではとくに
限定されず、電線のサイズ等に応じて、従来と同程度の
膜厚に形成することができる。
If necessary, various additives such as pigments, dyes, inorganic or organic fillers and lubricants may be added to the polyimide coating used in the present invention. The insulated wire of the present invention is manufactured by applying the above-mentioned polyimide-based paint to the surface of the wire and baking it to form an insulating coating. The film thickness of the insulating coating is not particularly limited in the present invention, and it can be formed to the same film thickness as the conventional one, depending on the size of the electric wire and the like.

【0034】絶縁被膜の下層には、当該絶縁被膜および
電線との密着性のよい材料からなる下地層を設けること
もできる。下地層としては、ポリウレタン系、ポリエス
テル系、ポリエステルイミド系、ポリエステルアミドイ
ミド系、ポリアミドイミド系、ポリイミド系等、従来公
知の種々の絶縁塗料の塗布、焼付けにより形成される絶
縁膜があげられる。中でも、電線や絶縁被膜との密着
性、或いは、被膜の機械的強度等の観点から、ジフェニ
ルメタン−4,4′−ジイソシアネートとトリメリット
酸無水物とを含むポリアミドイミド系塗料の塗布、焼付
けにより形成される下地層が好ましい。
A base layer made of a material having good adhesion to the insulating coating and the electric wire may be provided as a lower layer of the insulating coating. Examples of the underlayer include insulating films formed by coating and baking various conventionally known insulating coating materials such as polyurethane-based, polyester-based, polyesterimide-based, polyesteramideimide-based, polyamideimide-based, and polyimide-based. Among them, from the viewpoint of adhesion to electric wires and insulating coatings, mechanical strength of coatings, etc., it is formed by coating and baking a polyamideimide-based coating material containing diphenylmethane-4,4'-diisocyanate and trimellitic anhydride. The underlying layer is preferably used.

【0035】下地層の膜厚についても本発明ではとくに
限定されないが、被膜の機械的強度等を考慮すれば、絶
縁被膜と下地層との膜厚の比が1/10〜10/1の範
囲内であることが好ましい。絶縁被膜の上層には、絶縁
被膜の表面に潤滑性を付与すべく、表面潤滑層を設けて
もよい。
The film thickness of the underlayer is not particularly limited in the present invention either, but in consideration of the mechanical strength of the film and the like, the ratio of the film thickness between the insulating film and the underlayer is in the range of 1/10 to 10/1. It is preferably within. A surface lubricating layer may be provided on the upper layer of the insulating coating in order to impart lubricity to the surface of the insulating coating.

【0036】表面潤滑層としては、流動パラフィン、固
形パラフィンといったパラフィン類の塗膜も使用できる
が、耐久性等を考慮すると、各種ワックス、ポリエチレ
ン、フッ素樹脂、シリコーン樹脂等の潤滑剤をバインダ
ー樹脂で結着した表面潤滑層がより好ましい。
As the surface lubricating layer, a coating film of paraffin such as liquid paraffin or solid paraffin can be used, but in consideration of durability etc., various waxes, lubricants such as polyethylene, fluororesin and silicone resin are used as binder resins. A bound surface lubricating layer is more preferred.

【0037】[0037]

【実施例】以下に、本発明の絶縁電線を、実施例並びに
比較例に基づいて説明する。実施例1 温度計、冷却管、塩化カルシウム充填管、攪拌器、窒素
吹き込み管を取り付けたフラスコ中に、上記窒素吹き込
み管から毎分150mlの窒素ガスを流しながら、0.5
モルのピロメリット酸二無水物(以下「PMDA」とい
う)と、0.1モルのp−フェニレンジアミン(以下
「p−PDA」という)と、0.4モルの4,4′−ジ
アミノジフェニルエーテル(以下「DDE」という)と
を投入した。p−PDAの全ジアミン中に占める割合は
20モル%であった。
EXAMPLES The insulated wire of the present invention will be described below based on Examples and Comparative Examples. Example 1 In a flask equipped with a thermometer, a cooling tube, a calcium chloride filling tube, a stirrer, and a nitrogen blowing tube, while flowing 150 ml of nitrogen gas per minute from the nitrogen blowing tube, 0.5
Mol of pyromellitic dianhydride (hereinafter referred to as "PMDA"), 0.1 mol of p-phenylenediamine (hereinafter referred to as "p-PDA"), and 0.4 mol of 4,4'-diaminodiphenyl ether ( Hereinafter referred to as "DDE"). The ratio of p-PDA in all diamines was 20 mol%.

【0038】つぎに、上記フラスコ中に、固形分濃度が
16%となるようにN−メチル−2−ピロリドンを入
れ、攪拌器で攪拌しつつ60℃で5時間加熱し、その後
放冷して、ポリイミド前駆体としてのポリアミド酸を含
むポリイミド系塗料を得た。このポリイミド系塗料を、
直径1.0mmの銅線表面に、常法によって塗布、焼付け
して、膜厚35μmの絶縁被膜を有する絶縁電線を作製
した。
Next, N-methyl-2-pyrrolidone was placed in the flask so that the solid content concentration was 16%, and the mixture was heated with stirring at 60 ° C. for 5 hours and then left to cool. A polyimide coating material containing polyamic acid as a polyimide precursor was obtained. This polyimide paint,
A copper wire having a diameter of 1.0 mm was coated and baked by a conventional method to prepare an insulated electric wire having an insulating coating having a film thickness of 35 μm.

【0039】実施例2 ポリイミド系塗料作製時のp−PDAおよびDDEの仕
込み量を、p−PDA=0.25モル、DDE=0.2
5モル、p−PDAの全ジアミン中に占める割合を50
モル%としたこと以外は、上記実施例1と同様にして絶
縁電線を作製した。
Example 2 The amounts of p-PDA and DDE charged during the preparation of the polyimide coating were p-PDA = 0.25 mol and DDE = 0.2.
5 mol, the ratio of p-PDA in all diamines is 50
An insulated wire was produced in the same manner as in Example 1 except that the content was mol%.

【0040】実施例3 ポリイミド系塗料作製時のp−PDAおよびDDEの仕
込み量を、p−PDA=0.35モル、DDE=0.1
5モル、p−PDAの全ジアミン中に占める割合を70
モル%としたこと以外は、上記実施例1と同様にして絶
縁電線を作製した。
Example 3 The amounts of p-PDA and DDE charged during the preparation of a polyimide coating were p-PDA = 0.35 mol and DDE = 0.1.
5 mol, the ratio of p-PDA in the total diamine is 70
An insulated wire was produced in the same manner as in Example 1 except that the content was mol%.

【0041】比較例1 ポリイミド系塗料作製時にp−PDAを仕込まず、DD
Eを0.5モル仕込んだこと以外は、上記実施例1と同
様にして絶縁電線を作製した。比較例2 ポリイミド系塗料作製時にDDEを仕込まず、p−PD
Aを0.5モル仕込んだこと以外は、上記実施例1と同
様にして絶縁電線を作製した。
Comparative Example 1 p-PDA was not charged at the time of preparing a polyimide-based paint, and DD was used.
An insulated wire was produced in the same manner as in Example 1 except that 0.5 mol of E was charged. Comparative Example 2 p-PD
An insulated wire was produced in the same manner as in Example 1 except that 0.5 mol of A was charged.

【0042】実施例4 PMDAに代えて、0.5モルのビフェニルテトラカル
ボン酸二無水物(以下「s−BPDA」という)を使用
したこと以外は、上記実施例2と同様にして絶縁電線を
作製した。実施例5 DDEに代えて、0.25モルの4,4′−ジアミノジ
フェニルメタン(以下「DDM」という)を使用したこ
と以外は、上記実施例2と同様にして絶縁電線を作製し
た。
Example 4 An insulated wire was prepared in the same manner as in Example 2 except that 0.5 mol of biphenyltetracarboxylic dianhydride (hereinafter referred to as "s-BPDA") was used instead of PMDA. It was made. Example 5 An insulated wire was produced in the same manner as in Example 2 except that 0.25 mol of 4,4′-diaminodiphenylmethane (hereinafter referred to as “DDM”) was used instead of DDE.

【0043】実施例6 直径1.0mmの銅線表面に、ジフェニルメタン−4,
4′−ジイソシアネートとTMAとを含む市販のポリア
ミドイミド系塗料(日立化成社製の品番HI−400)
を常法によって塗布、焼付けして、膜厚8μmの下地層
を形成した。つぎにこの下地層上に、実施例2で使用し
たのと同じポリイミド系塗料を常法によって塗布、焼付
けして、膜厚27μmの絶縁被膜を形成し、絶縁電線を
作製した。
Example 6 On a surface of a copper wire having a diameter of 1.0 mm, diphenylmethane-4,
Commercially available polyamide-imide-based coating containing 4'-diisocyanate and TMA (Hitachi Chemical Co., Ltd., product number HI-400)
Was applied and baked by a conventional method to form an underlayer having a film thickness of 8 μm. Next, the same polyimide-based coating material used in Example 2 was applied onto this underlayer by a conventional method and baked to form an insulating coating film having a film thickness of 27 μm, thereby producing an insulated wire.

【0044】実施例7 比較例1で作製した、ジアミン成分としてDDEのみを
含むポリイミド系塗料と、比較例2で作製した、ジアミ
ン成分としてp−PDAのみを含むポリイミド系塗料と
を、原料段階でのp−PDAとDDEとのモル比がp−
PDA/DDE=50/50となるように配合し、十分
に攪拌混合してポリイミド系塗料を作製した。そして、
このポリイミド系塗料を使用して、前記実施例2と同様
にして絶縁電線を作製した。
Example 7 The polyimide-based coating composition containing only DDE as the diamine component prepared in Comparative Example 1 and the polyimide-based coating composition containing only p-PDA as the diamine component prepared in Comparative Example 2 were prepared at the raw material stage. The molar ratio of p-PDA to DDE is p-
It was blended so that PDA / DDE = 50/50 and sufficiently stirred and mixed to prepare a polyimide-based coating material. And
An insulated electric wire was produced in the same manner as in Example 2 using this polyimide coating material.

【0045】実施例8 実施例2で作製した絶縁電線の絶縁被膜上に、焼付型水
溶性潤滑塗料(東芝ケミカル社製の品番TEC−960
1)を常法によって塗布、焼付けして表面潤滑層を形成
したこと以外は、上記実施例2と同様にして絶縁電線を
作製した。実施例9 温度計、冷却管、塩化カルシウム充填管、攪拌器、窒素
吹き込み管を取り付けたフラスコ中に、上記窒素吹き込
み管から毎分150mlの窒素ガスを流しながら、0.5
モルのs−BPDAと、0.1モルのp−PDAと、
0.4モルのDDEとを投入した。p−PDAの全ジア
ミン中に占める割合は20モル%であった。
Example 8 A baking type water-soluble lubricating coating (manufactured by Toshiba Chemical Co., product number TEC-960) was formed on the insulating coating of the insulated wire prepared in Example 2.
An insulated wire was produced in the same manner as in Example 2 except that 1) was applied and baked by a conventional method to form a surface lubricating layer. Example 9 In a flask equipped with a thermometer, a cooling tube, a calcium chloride filling tube, a stirrer, and a nitrogen blowing tube, while flowing 150 ml of nitrogen gas per minute from the nitrogen blowing tube, 0.5
Mol s-BPDA, 0.1 mol p-PDA,
0.4 mol of DDE was added. The ratio of p-PDA in all diamines was 20 mol%.

【0046】つぎに、上記フラスコ中に、固形分濃度が
16%となるように4−クロルフェノールを入れ、攪拌
器で攪拌しつつ60℃で2時間加熱し、さらに170℃
で2時間加熱した後放冷して、ポリアミド酸をイミド化
したポリイミド系塗料を得た。そして、このポリイミド
系塗料を使用して、前記実施例1と同様にして絶縁電線
を作製した。
Next, 4-chlorophenol was added to the above flask so that the solid content concentration became 16%, and the mixture was heated at 60 ° C. for 2 hours while stirring with a stirrer, and further 170 ° C.
After heating for 2 hours at room temperature, it was allowed to cool to obtain a polyimide-based coating in which polyamic acid was imidized. Then, using this polyimide-based coating material, an insulated electric wire was produced in the same manner as in Example 1.

【0047】上記各実施例、比較例の絶縁電線につい
て、以下の各試験を行った。弾性率測定 実施例、比較例の絶縁電線から銅線をエッチング除去
し、残った絶縁被膜(長さ6cm)を、引張試験機を用い
て、チャック間隔3cm、引張速度1mm/分の条件で引張
試験し、得られたS−Sカーブがら弾性率(kg/mm2
を求めた。
The following tests were carried out on the insulated wires of the above Examples and Comparative Examples. Elastic Modulus Measurement Copper wires were removed by etching from the insulated electric wires of Examples and Comparative Examples, and the remaining insulating coating (length 6 cm) was pulled using a tensile tester under the conditions of a chuck spacing of 3 cm and a pulling speed of 1 mm / min. Elastic modulus (kg / mm 2 ) from the SS curve obtained by testing
I asked.

【0048】可撓性試験 実施例、比較例の絶縁電線に、直径1mmのものから1mm
ずつ段階的に直径が大きくなる複数の丸棒を順次あてが
って、電線を丸棒の外形に対応させて曲げた際の、絶縁
被膜の割れや剥離を観察し、絶縁被膜に異状が見られな
かった最小の丸棒の直径d(mm)を記録した。
Flexibility test Insulated electric wires of Examples and Comparative Examples were manufactured with a diameter of 1 mm to 1 mm.
No damage was observed in the insulation coating when the wires were bent in accordance with the outer shape of the round rod by sequentially applying multiple round rods whose diameters gradually increased. The smallest round bar diameter d (mm) was recorded.

【0049】急伸切断試験 実施例、比較例の絶縁電線を両端から急速に引っ張り、
急伸させて切断した後、切断部分における、被膜の銅線
からの浮き量(mm)を測定した。ピアノ線損傷荷重測定 実施例、比較例の絶縁電線に直交させてピアノ線を重ね
合わせ、ピアノ線に種々の重さの荷重をかけた状態でピ
アノ線を引抜き、絶縁被膜が損傷する荷重を記録した。
Rapid extension cutting test The insulated electric wires of Examples and Comparative Examples were rapidly pulled from both ends,
After being rapidly stretched and cut, the floating amount (mm) of the coating film from the copper wire at the cut portion was measured. Piano wire damage load measurement The wires are stacked orthogonally to the insulated wires of the examples and comparative examples, the piano wires are pulled out with various weights applied to the piano wires, and the load that damages the insulation coating is recorded. did.

【0050】以上の結果を表1に示す。The above results are shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】上記表1の結果より、ジアミン成分として
p−PDAを含有しない比較例1の絶縁電線では、絶縁
被膜の弾性率が低く、また、ピアノ線損傷荷重測定の結
果より、絶縁被膜が損傷し易いことが判った。一方、ジ
アミン成分が100%p−PDAである比較例2の絶縁
電線は、焼付けの段階で被膜が電線から剥落してしま
い、絶縁被膜を形成することができなかった。
From the results in Table 1 above, in the insulated wire of Comparative Example 1 containing no p-PDA as the diamine component, the elastic modulus of the insulation coating was low, and the results of measurement of piano wire damage load revealed that the insulation coating was damaged. I found it easy to do. On the other hand, in the insulated wire of Comparative Example 2 in which the diamine component was 100% p-PDA, the coating film was peeled off from the wire during the baking step, and the insulating coating could not be formed.

【0053】これに対し実施例1〜3の絶縁電線は何れ
も、損傷し難く、しかも、可撓性にすぐれるとともに、
銅線から剥離し難い絶縁被膜を有することが判った。ま
た、上記各実施例の結果より、p−PDAの割合が高く
なる程、絶縁被膜の弾性率が向上し、かつ、絶縁被膜が
損傷し難くなるが、絶縁被膜の可撓性や密着性は、p−
PDAの割合が低い程好ましいことが判った。
On the other hand, all of the insulated wires of Examples 1 to 3 are not easily damaged and have excellent flexibility, and
It was found to have an insulating coating that was difficult to peel off from the copper wire. Further, from the results of each of the above examples, the higher the proportion of p-PDA, the higher the elastic modulus of the insulating coating and the less likely the insulating coating is damaged, but the flexibility and adhesion of the insulating coating , P-
It was found that the lower the proportion of PDA, the better.

【0054】またp−PDAの割合が同じ実施例2と実
施例4の結果を比較すると、両者はほぼ同様の特性を示
しており、このことから、酸成分としてのPMDAとs
−BPDAは、絶縁被膜にほぼ同様の特性を与えるもの
であることが判った。同様に、p−PDAの割合が同じ
実施例2と実施例5の結果を比較すると、両者はほぼ同
様の特性を示しており、このことから、p−PDAと併
用される他のジアミン成分としてのDDEとDDMは、
絶縁被膜にほぼ同様の特性を与えるものであることが判
った。
Comparing the results of Example 2 and Example 4 in which the proportion of p-PDA is the same, both show almost the same characteristics. From this, PMDA and s
It has been found that -BPDA gives the insulating coating substantially similar properties. Similarly, when the results of Example 2 and Example 5 in which the proportion of p-PDA is the same are compared, both show almost the same characteristics, and from this, as another diamine component used in combination with p-PDA. DDE and DDM of
It has been found that it gives almost the same characteristics to the insulating coating.

【0055】また、p−PDAの割合が同じ実施例2と
実施例6の結果を比較すると、実施例6は、実施例2に
比べて急伸切断試験による絶縁被膜の浮き量が小さいこ
とから、下地層を形成することで、他の特性をそのまま
維持しつつ、被膜の密着性をさらに向上できることが判
った。また、p−PDAの割合が同じ実施例2と実施例
7の結果を比較すると、両者はほぼ同じ特性を示し、こ
のことから、ポリイミド系塗料を、p−PDAを含むも
のと含まないものの混合により製造しても、共重合によ
り製造された塗料とほぼ同じ結果が得られることが判っ
た。
Further, comparing the results of Example 2 and Example 6 in which the proportion of p-PDA is the same, since Example 6 has a smaller floating amount of the insulating coating by the rapid elongation cutting test than Example 2, It was found that by forming the underlayer, the adhesiveness of the coating can be further improved while maintaining other properties as they are. In addition, when the results of Example 2 and Example 7 in which the proportion of p-PDA is the same are compared, both exhibit almost the same characteristics, and from this, it is clear that the polyimide-based coating is a mixture of those containing p-PDA and those not containing p-PDA. It was found that the same result as that of the coating material produced by the copolymerization can be obtained even when it is produced by.

【0056】また、p−PDAの割合が同じ実施例2と
実施例8の結果を比較すると、絶縁被膜上に表面潤滑層
を形成することにより、他の特性はそのまま維持しつ
つ、絶縁被膜をさらに損傷し難くできることが判った。
さらに実施例9の結果より、ポリイミド前駆体としての
ポリアミド酸を、さらにイミド化した塗料を使用して
も、損傷し難く、しかも、可撓性にすぐれるとともに、
銅線から剥離し難い絶縁被膜を形成できることが判っ
た。
Comparing the results of Example 2 and Example 8 in which the proportion of p-PDA is the same, the formation of the surface lubrication layer on the insulating coating allows the insulating coating to be formed while maintaining other characteristics. It turns out that it can be made more difficult to damage.
Furthermore, from the results of Example 9, even when using a polyamic acid as a polyimide precursor, further using an imidized coating, it is less likely to be damaged, and is excellent in flexibility,
It has been found that it is possible to form an insulating coating that is difficult to peel from the copper wire.

【0057】実施例10 p−PDAに代えて、0.1モルの3,3′−ジメチル
−4,4′−ジアミノビフェニル(以下「DBRB」と
いう)を使用したこと以外は、前記実施例1と同様にし
て絶縁電線を作製した。実施例11 ポリイミド系塗料作製時のDBRBおよびDDEの仕込
み量を、DBRB=0.25モル、DDE=0.25モ
ル、DBRBの全ジアミン中に占める割合を50モル%
としたこと以外は、上記実施例10と同様にして絶縁電
線を作製した。
Example 10 Example 1 was repeated except that 0.1 mol of 3,3'-dimethyl-4,4'-diaminobiphenyl (hereinafter referred to as "DBRB") was used instead of p-PDA. An insulated electric wire was produced in the same manner as. Example 11 Charge amounts of DBRB and DDE at the time of preparing a polyimide-based coating material were DBRB = 0.25 mol, DDE = 0.25 mol, and the ratio of DBRB in all diamines was 50 mol%.
An insulated wire was produced in the same manner as in Example 10 except that the above was adopted.

【0058】実施例12 ポリイミド系塗料作製時のDBRBおよびDDEの仕込
み量を、DBRB=0.35モル、DDE=0.15モ
ル、DBRBの全ジアミン中に占める割合を70モル%
としたこと以外は、上記実施例10と同様にして絶縁電
線を作製した。比較例3 ポリイミド系塗料作製時にDDEを仕込まず、DBRB
を0.5モル仕込んだこと以外は、上記実施例10と同
様にして絶縁電線を作製した。
Example 12 The amounts of DBRB and DDE charged during the preparation of a polyimide coating were DBRB = 0.35 mol, DDE = 0.15 mol, and the ratio of DBRB to all diamines was 70 mol%.
An insulated wire was produced in the same manner as in Example 10 except that the above was adopted. Comparative Example 3 Do not charge DDE when preparing a polyimide-based coating, and use DBRB
An insulated wire was produced in the same manner as in Example 10 except that 0.5 mol of was added.

【0059】実施例13 PMDAに代えて、0.5モルのビフェニルテトラカル
ボン酸二無水物(以下「s−BPDA」という)を使用
したこと以外は、上記実施例11と同様にして絶縁電線
を作製した。実施例14 DDEに代えて、0.25モルの4,4′−ジアミノジ
フェニルメタン(以下「DDM」という)を使用したこ
と以外は、上記実施例11と同様にして絶縁電線を作製
した。
Example 13 An insulated wire was prepared in the same manner as in Example 11 except that 0.5 mol of biphenyltetracarboxylic dianhydride (hereinafter referred to as "s-BPDA") was used instead of PMDA. It was made. Example 14 An insulated wire was produced in the same manner as in Example 11 except that 0.25 mol of 4,4′-diaminodiphenylmethane (hereinafter referred to as “DDM”) was used instead of DDE.

【0060】実施例15 直径1.0mmの銅線表面に、前記実施例6で使用したの
と同じポリアミドイミド系塗料を常法によって塗布、焼
付けして、膜厚8μmの下地層を形成した。つぎにこの
下地層上に、実施例11で使用したのと同じポリイミド
系塗料を常法によって塗布、焼付けして、膜厚27μm
の絶縁被膜を形成し、絶縁電線を作製した。
Example 15 On the surface of a copper wire having a diameter of 1.0 mm, the same polyamideimide coating as used in Example 6 was applied by a conventional method and baked to form an underlayer having a thickness of 8 μm. Next, the same polyimide-based coating material used in Example 11 was applied onto this underlayer by a conventional method and baked to give a film thickness of 27 μm.
The insulating coating of was formed to produce an insulated wire.

【0061】上記各実施例、比較例の絶縁電線につい
て、前記弾性率測定、可撓性試験、急伸切断試験および
ピアノ線損傷荷重測定の各試験を行った。以上の結果
を、ジアミン成分としてDBRBを配合しなかったもの
に相当する前記比較例1の結果と併せて表2に示す。
With respect to the insulated wires of the above Examples and Comparative Examples, the elastic modulus measurement, the flexibility test, the rapid extension cutting test and the piano wire damage load measurement were conducted. The above results are shown in Table 2 together with the result of Comparative Example 1 corresponding to the case where DBRB was not mixed as the diamine component.

【0062】[0062]

【表2】 [Table 2]

【0063】上記表2の結果より、ジアミン成分が10
0%DBRBである比較例3の絶縁電線は、可撓性試験
の結果より、絶縁被膜の可撓性が悪く、また、急伸切断
試験の結果より、絶縁被膜が銅線から剥離し易いことが
判った。これに対し実施例10〜12の絶縁電線は何れ
も、損傷し難く、しかも、可撓性にすぐれるとともに、
銅線から剥離し難い絶縁被膜を有することが判った。ま
た、上記各実施例の結果より、DBRBの割合が高くな
る程、絶縁被膜の弾性率が向上し、かつ、絶縁被膜が損
傷し難くなるが、絶縁被膜の可撓性や密着性は、DBR
Bの割合が低い程好ましいことが判った。
From the results shown in Table 2 above, the diamine component was 10
In the insulated wire of Comparative Example 3 having 0% DBRB, the flexibility of the insulation coating was poor according to the results of the flexibility test, and the insulation coating was likely to be easily peeled off from the copper wire according to the results of the rapid elongation cutting test. understood. On the other hand, all of the insulated wires of Examples 10 to 12 are hard to be damaged and have excellent flexibility, and
It was found to have an insulating coating that was difficult to peel off from the copper wire. Further, from the results of each of the above examples, the higher the ratio of DBRB, the higher the elastic modulus of the insulating coating and the more difficult the insulating coating is to be damaged.
It was found that the lower the ratio of B, the more preferable.

【0064】またDBRBの割合が同じ実施例11と実
施例13の結果を比較すると、両者はほぼ同様の特性を
示しており、このことから、酸成分としてのPMDAと
s−BPDAは、絶縁被膜にほぼ同様の特性を与えるも
のであることが判った。同様に、DBRBの割合が同じ
実施例11と実施例14の結果を比較すると、両者はほ
ぼ同様の特性を示しており、このことから、DBRBと
併用される他のジアミン成分としてのDDEとDDM
は、絶縁被膜にほぼ同様の特性を与えるものであること
が判った。
Comparing the results of Example 11 and Example 13 in which the proportion of DBRB is the same, the two show almost the same characteristics. From this, PMDA and s-BPDA as acid components are It has been found that they give almost the same characteristics to. Similarly, when the results of Example 11 and Example 14 in which the proportion of DBRB is the same are compared, both show almost the same characteristics, which indicates that DDE and DDM as other diamine components used in combination with DBRB are obtained.
Has been found to give the insulating coating almost the same characteristics.

【0065】さらに、DBRBの割合が同じ実施例11
と実施例15の結果を比較すると、実施例15は、実施
例11に比べて急伸切断試験による絶縁被膜の浮き量が
小さいことから、下地層を形成することで、他の特性を
そのまま維持しつつ、被膜の密着性をさらに向上できる
ことが判った。実施例16 p−PDAに代えて、0.1モルの4,4′−ジアミノ
ベンズアニリド(以下「DABAN」という)を使用し
たこと以外は、前記実施例1と同様にして絶縁電線を作
製した。
Furthermore, Example 11 in which the ratio of DBRB is the same.
Comparing the results of Example 15 with Example 15, since Example 15 has a smaller floating amount of the insulating coating in the rapid elongation cutting test than Example 11, by forming the underlayer, other characteristics are maintained as they are. However, it was found that the adhesion of the coating can be further improved. Example 16 An insulated wire was produced in the same manner as in Example 1 except that 0.1 mol of 4,4′-diaminobenzanilide (hereinafter referred to as “DABAN”) was used instead of p-PDA. .

【0066】実施例17 ポリイミド系塗料作製時のDABANおよびDDEの仕
込み量を、DABAN=0.25モル、DDE=0.2
5モル、DABANの全ジアミン中に占める割合を50
モル%としたこと以外は、上記実施例16と同様にして
絶縁電線を作製した。
Example 17 DABAN = 0.25 mol and DDE = 0.2 were set as the charging amounts of DABAN and DDE at the time of preparation of the polyimide coating material.
5 mol, the ratio of DABAN in the total diamine is 50
An insulated wire was produced in the same manner as in Example 16 except that the mol% was set.

【0067】実施例18 ポリイミド系塗料作製時のDABANおよびDDEの仕
込み量を、DABAN=0.35モル、DDE=0.1
5モル、DABANの全ジアミン中に占める割合を70
モル%としたこと以外は、上記実施例16と同様にして
絶縁電線を作製した。
Example 18 DABAN and DDE were charged at the time of preparing a polyimide-based coating material so that DABAN = 0.35 mol and DDE = 0.1.
5 mol, the ratio of DABAN in the total diamine is 70
An insulated wire was produced in the same manner as in Example 16 except that the mol% was set.

【0068】比較例4 ポリイミド系塗料作製時にDDEを仕込まず、DABA
Nを0.5モル仕込んだこと以外は、上記実施例16と
同様にして絶縁電線を作製した。実施例19 PMDAに代えて、0.5モルのビフェニルテトラカル
ボン酸二無水物(以下「s−BPDA」という)を使用
したこと以外は、上記実施例17と同様にして絶縁電線
を作製した。
Comparative Example 4 DABA was not charged at the time of preparing a polyimide-based coating, and DABA was used.
An insulated wire was produced in the same manner as in Example 16 except that 0.5 mol of N was charged. Example 19 An insulated wire was produced in the same manner as in Example 17 except that 0.5 mol of biphenyltetracarboxylic dianhydride (hereinafter referred to as “s-BPDA”) was used instead of PMDA.

【0069】実施例20 DDEに代えて、0.25モルの4,4′−ジアミノジ
フェニルメタン(以下「DDM」という)を使用したこ
と以外は、上記実施例17と同様にして絶縁電線を作製
した。実施例21 直径1.0mmの銅線表面に、前記実施例6で使用したの
と同じポリアミドイミド系塗料を常法によって塗布、焼
付けして、膜厚8μmの下地層を形成した。
Example 20 An insulated wire was prepared in the same manner as in Example 17 except that 0.25 mol of 4,4'-diaminodiphenylmethane (hereinafter referred to as "DDM") was used instead of DDE. . Example 21 A copper wire having a diameter of 1.0 mm was coated with the same polyamideimide-based coating material as used in Example 6 by a conventional method and baked to form an underlayer having a thickness of 8 μm.

【0070】つぎにこの下地層上に、実施例17で使用
したのと同じポリイミド系塗料を常法によって塗布、焼
付けして、膜厚27μmの絶縁被膜を形成し、絶縁電線
を作製した。上記各実施例、比較例の絶縁電線につい
て、前記弾性率測定、可撓性試験、急伸切断試験および
ピアノ線損傷荷重測定の各試験を行った。以上の結果
を、ジアミン成分としてDABANを配合しなかったも
のに相当する前記比較例1の結果と併せて表3に示す。
Next, the same polyimide-based coating material used in Example 17 was applied onto this underlayer by a conventional method and baked to form an insulating coating film having a thickness of 27 μm, to produce an insulated wire. With respect to the insulated wires of the above Examples and Comparative Examples, the elastic modulus measurement, the flexibility test, the rapid extension cutting test and the piano wire damage load measurement were performed. The above results are shown in Table 3 together with the results of Comparative Example 1 corresponding to the case where DABAN was not blended as the diamine component.

【0071】[0071]

【表3】 [Table 3]

【0072】上記表3の結果より、ジアミン成分が10
0%DABANである比較例4の絶縁電線は、可撓性試
験の結果より、絶縁被膜の可撓性が悪く、また、急伸切
断試験の結果より、絶縁被膜が銅線から剥離し易いこと
が判った。これに対し実施例16〜18の絶縁電線は何
れも、損傷し難く、しかも、可撓性にすぐれるととも
に、銅線から剥離し難い絶縁被膜を有することが判っ
た。また、上記各実施例の結果より、DABANの割合
が高くなる程、絶縁被膜の弾性率が向上し、かつ、絶縁
被膜が損傷し難くなるが、絶縁被膜の可撓性や密着性
は、DABANの割合が低い程好ましいことが判った。
From the results shown in Table 3 above, the diamine component was 10
The insulated wire of Comparative Example 4 containing 0% DABAN had poor flexibility of the insulating coating according to the result of the flexibility test, and the insulating coating was likely to be easily separated from the copper wire according to the result of the rapid elongation cutting test. understood. On the other hand, it was found that the insulated wires of Examples 16 to 18 each had an insulating coating that was not easily damaged, was excellent in flexibility, and was not easily peeled off from the copper wire. Further, from the results of the above-mentioned respective examples, the higher the proportion of DABAN, the higher the elastic modulus of the insulating coating and the less likely it is to damage the insulating coating. It was found that the lower the ratio, the better.

【0073】またDABANの割合が同じ実施例17と
実施例19の結果を比較すると、両者はほぼ同様の特性
を示しており、このことから、酸成分としてのPMDA
とs−BPDAは、絶縁被膜にほぼ同様の特性を与える
ものであることが判った。同様に、DABANの割合が
同じ実施例17と実施例20の結果を比較すると、両者
はほぼ同様の特性を示しており、このことから、DAB
ANと併用される他のジアミン成分としてのDDEとD
DMは、絶縁被膜にほぼ同様の特性を与えるものである
ことが判った。
Comparing the results of Example 17 and Example 19 in which the ratio of DABAN is the same, both show almost the same characteristics, which indicates that PMDA as an acid component is obtained.
It was found that and s-BPDA give almost the same characteristics to the insulating coating. Similarly, when the results of Example 17 and Example 20 in which the proportion of DABAN is the same are compared, both show almost the same characteristics, which indicates that DAB
DDE and D as other diamine components used in combination with AN
It has been found that DM imparts almost the same characteristics to the insulating coating.

【0074】さらに、DABANの割合が同じ実施例1
7と実施例21の結果を比較すると、実施例21は、実
施例17に比べて急伸切断試験による絶縁被膜の浮き量
が小さいことから、下地層を形成することで、他の特性
をそのまま維持しつつ、被膜の密着性をさらに向上でき
ることが判った。実施例22 ポリイミド系塗料作製時のジアミン成分の仕込み量を、
DBRB=0.1モル、DABAN=0.2モル、DD
E=0.2モル、全ジアミン中に占める、DBRBとD
ABANの合計の割合を50モル%としたこと以外は、
前記実施例2と同様にして絶縁電線を作製した。
Furthermore, Example 1 in which the ratio of DABAN is the same
Comparing the results of Example 7 and Example 21, since Example 21 has a smaller floating amount of the insulating film in the rapid elongation cutting test than Example 17, other characteristics are maintained as they are by forming the underlayer. However, it was found that the adhesion of the coating can be further improved. Example 22 The amount of the diamine component charged during the preparation of the polyimide-based coating material was
DBRB = 0.1 mol, DABAN = 0.2 mol, DD
E = 0.2 mol, DBRB and D in all diamines
Except that the total proportion of ABAN was 50 mol%,
An insulated wire was produced in the same manner as in Example 2.

【0075】上記実施例の絶縁電線について、前記弾性
率測定、可撓性試験、急伸切断試験およびピアノ線損傷
荷重測定の各試験を行った。以上の結果を、ジアミン成
分中に占める芳香族ジアミン化合物の割合が同じである
実施例2,11,17の結果と併せて表4に示す。
With respect to the insulated wire of the above example, the elastic modulus measurement, the flexibility test, the rapid cutting test and the piano wire damage load measurement were carried out. The above results are shown in Table 4 together with the results of Examples 2, 11, and 17 in which the proportion of the aromatic diamine compound in the diamine component is the same.

【0076】[0076]

【表4】 [Table 4]

【0077】上記表4の結果より、芳香族ジアミン化合
物を2種併用した場合には、その合計の割合を、芳香族
ジアミン化合物を単独で使用した場合と同じにすると、
ほぼ同様の特性を示す絶縁被膜を形成できることが判っ
た。
From the results in Table 4 above, when two kinds of aromatic diamine compounds are used in combination, the total ratio is the same as when the aromatic diamine compounds are used alone,
It has been found that it is possible to form an insulating film having almost the same characteristics.

【0078】[0078]

【発明の効果】本発明の絶縁電線によれば、ポリイミド
の構造中にベンゼン、ビフェニルまたはベンズアニリド
の構造を導入して、絶縁被膜の弾性率を向上させること
で、可撓性にすぐれ、しかも、損傷し難い絶縁被膜を形
成することができる。したがって、本発明の絶縁電線は
耐加工性にすぐれており、たとえばモータの捲線に使用
する場合には、コアへの捲線量を従来より増大させて
も、捲線工程で絶縁被膜に損傷を生じるおそれがなく、
より小型、軽量で性能の良いモータの要求に対応するこ
とができる。
According to the insulated wire of the present invention, by introducing the structure of benzene, biphenyl or benzanilide into the structure of polyimide to improve the elastic modulus of the insulating coating, it is excellent in flexibility and moreover, An insulating coating that is not easily damaged can be formed. Therefore, the insulated wire of the present invention has excellent workability, and when it is used for winding a motor, for example, the insulating coating may be damaged in the winding process even if the winding amount to the core is increased more than ever before. Without
It is possible to meet the demand for smaller and lighter motors with better performance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくともテトラカルボン酸二無水物を含
む酸成分と、ジアミン成分とからなるポリイミドまたは
その前駆体としてのポリアミド酸を含むポリイミド系塗
料の塗布、焼付けにより形成された絶縁被膜を有する絶
縁電線において、原料としてのジアミン成分が、下記一
般式(I) : 【化1】 [上記式中R1 は、水素原子、アルキル基、アルコキシ
基またはハロゲン原子を示す。nは1〜4の数を示
す。]、下記一般式(II): 【化2】 [上記式中R2 ,R3 は、同一または異なって、水素原
子、アルキル基、アルコキシ基またはハロゲン原子を示
す。p,qは同一または異なって1〜4の数を示
す。]、および下記一般式(III) : 【化3】 [上記式中R4 ,R5 は、同一または異なって、水素原
子、アルキル基、アルコキシ基またはハロゲン原子を示
す。r,sは同一または異なって1〜4の数を示す。]
で表される芳香族ジアミン化合物のうちの少なくとも1
種を含有し、かつ原料としてのジアミン成分における、
これら芳香族ジアミン化合物の合計の含有割合が10〜
80モル%であることを特徴とする絶縁電線。
1. An insulation having an insulating coating formed by applying and baking a polyimide coating composition containing a polyimide composed of an acid component containing at least tetracarboxylic dianhydride and a diamine component or polyamic acid as a precursor thereof. In the electric wire, the diamine component as a raw material has the following general formula (I): [In the above formula, R 1 represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. n shows the number of 1-4. ], The following general formula (II): [In the above formula, R 2 and R 3 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. p and q are the same or different and represent a number of 1 to 4. ] And the following general formula (III): [In the above formula, R 4 and R 5 are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. r and s are the same or different and each represents a number of 1 to 4. ]
At least one of the aromatic diamine compounds represented by
In the diamine component as a raw material containing a seed,
The total content ratio of these aromatic diamine compounds is 10 to
An insulated wire characterized by being 80 mol%.
JP18927392A 1992-07-16 1992-07-16 Insulated wire Pending JPH0636616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18927392A JPH0636616A (en) 1992-07-16 1992-07-16 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18927392A JPH0636616A (en) 1992-07-16 1992-07-16 Insulated wire

Publications (1)

Publication Number Publication Date
JPH0636616A true JPH0636616A (en) 1994-02-10

Family

ID=16238561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18927392A Pending JPH0636616A (en) 1992-07-16 1992-07-16 Insulated wire

Country Status (1)

Country Link
JP (1) JPH0636616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172419B2 (en) 2005-03-08 2007-02-06 Minako Hasegawa Suction tip for dental treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7172419B2 (en) 2005-03-08 2007-02-06 Minako Hasegawa Suction tip for dental treatment

Similar Documents

Publication Publication Date Title
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
JPH06196025A (en) Insulated wire
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
US5356708A (en) Insulated wire
JP2007270074A (en) Processing resistant polyamide-imide resin vanish and electrical insulating wire
JP4190589B2 (en) Insulated wire
JP3287025B2 (en) Insulated wire
JP5407059B2 (en) Insulated wire
JP2936895B2 (en) Insulated wire
JPH0636616A (en) Insulated wire
JPH065123A (en) Insulated electric wire
JP4934624B2 (en) Insulated wire
JPH0636617A (en) Insulated wire
JP2012164424A (en) Polyester imide resin based varnish for low dielectric constant coating film
JPH06103823A (en) Insulated electric cable
KR100879002B1 (en) Insulating varnish composition containing polyamideimide and Insulated wire containing insulated layer coated thereof
US4461786A (en) Blended polyesterimide-polyesteramide-imide electrical coating compositions
JPH0773743A (en) Insulated electric wire
JP3424273B2 (en) Insulated wire
JPH0745130A (en) Insulated wire
US4513113A (en) Aqueous coating composition of polyesterimide
JP4482857B2 (en) Resin composition for electrical insulation and enameled wire
JPH0620526A (en) Insulated electric wire
JP3497525B2 (en) Insulated wire