JP5407059B2 - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP5407059B2
JP5407059B2 JP2010014541A JP2010014541A JP5407059B2 JP 5407059 B2 JP5407059 B2 JP 5407059B2 JP 2010014541 A JP2010014541 A JP 2010014541A JP 2010014541 A JP2010014541 A JP 2010014541A JP 5407059 B2 JP5407059 B2 JP 5407059B2
Authority
JP
Japan
Prior art keywords
resin
insulated wire
component
insulating coating
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010014541A
Other languages
Japanese (ja)
Other versions
JP2011154819A (en
Inventor
祐樹 本田
富也 阿部
英行 菊池
大輔 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010014541A priority Critical patent/JP5407059B2/en
Priority to US12/816,699 priority patent/US8679628B2/en
Publication of JP2011154819A publication Critical patent/JP2011154819A/en
Application granted granted Critical
Publication of JP5407059B2 publication Critical patent/JP5407059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導体上に絶縁被膜塗料を塗布、焼き付けして形成した絶縁電線に関し、特に、回転電機などの電気機器のコイルに好適に使用できる絶縁電線に関する。   The present invention relates to an insulated wire formed by applying and baking an insulating coating on a conductor, and more particularly to an insulated wire that can be suitably used for a coil of an electric device such as a rotating electrical machine.

一般的に、回転電機や変圧器などの電気機器のコイルに用いられている絶縁電線(エナメル被覆絶縁電線)は、コイルの用途・形状に合致した断面形状(例えば、丸型や平角)に成形された導体の外層に単層または複数層の絶縁被膜が形成された構成をしている。特に、自動車用の回転電機は、近年、高効率で小型なものが求められており、ステータコアに対して高密度に巻き付けてコイルを形成することが可能な絶縁電線が必要とされている。   In general, insulated wires (enamel-covered insulated wires) used in coils of electrical equipment such as rotating electrical machines and transformers are molded into a cross-sectional shape (for example, round or flat) that matches the coil application and shape. A single layer or a plurality of layers of insulating coatings are formed on the outer layer of the formed conductor. In particular, a rotating electrical machine for automobiles has recently been required to be highly efficient and small, and an insulated wire that can be wound around a stator core at a high density to form a coil is required.

このような絶縁電線として、例えば、特許文献1では、導体上に該導体との密着力が30 g/mm以上でガラス転移温度(Tg)が250℃以上であるポリアミドイミド等の樹脂組成物の絶縁層を形成し、その上にTgが250℃以上であるポリアミドイミド等の樹脂組成物とTgが140℃以上であるポリエーテルイミドまたはポリエーテルスルホン等の樹脂組成物の混合物で、絶縁皮膜の破断伸びが40%以上である絶縁層を形成した絶縁電線が開示されている。特許文献2に記載の絶縁電線は、絶縁皮膜の可撓性に優れ、厳しい捲線加工や圧延加工を行っても絶縁皮膜に割れが生じない優れた加工性を有し、かつポリアミドイミドと同等の耐熱性を有するとされている。   As such an insulated wire, for example, in Patent Document 1, a resin composition such as a polyamideimide having an adhesion strength with a conductor of 30 g / mm or more and a glass transition temperature (Tg) of 250 ° C. or more on a conductor. An insulating layer is formed, and a mixture of a resin composition such as polyamideimide having a Tg of 250 ° C. or higher and a resin composition such as polyetherimide or polyethersulfone having a Tg of 140 ° C. or higher is formed on the insulating film. An insulated wire having an insulating layer with an elongation at break of 40% or more is disclosed. The insulated wire described in Patent Document 2 is excellent in the flexibility of the insulating film, has excellent workability that does not cause cracking in the insulating film even when severe winding or rolling is performed, and is equivalent to polyamideimide It is said to have heat resistance.

また、コイルを形成する際に比較的短尺の絶縁電線の端末同士を溶接などによってつなぎ合わせて作製する場合には、溶接しても問題の生じない絶縁電線が必要とされている。   In addition, when forming the coil by connecting the ends of relatively short insulated wires by welding or the like, an insulated wire that does not cause a problem even if it is welded is required.

このような絶縁電線として、例えば、特許文献2では、導体上に(1)実質的にポリアミドイミドおよび/またはポリイミドからなる第1絶縁層が形成され、その上に(2)ポリアミドイミドAにガラス転移温度が140℃以上の熱可塑性樹脂B(ポリエーテルイミドやポリエーテルスルホン等)を、重量比A/Bで表してA/B=70/30〜30/70の割合で配合してなる第2絶縁層が被覆・積層され、前記第1絶縁層の膜厚T1と前記第2絶縁層の膜厚T2との比がT1/T2=5/95〜40/60の範囲内で、かつ残留溶剤量が絶縁皮膜総量の0.05重量%以下である絶縁電線が開示されている。特許文献2に記載の絶縁電線は、厳しい圧延加工や巻線加工などを行っても被膜に損傷などが生じない優れた耐加工性と、ポリアミドイミドと同等の高い耐熱性とを有し、しかも絶縁電線の端末を接合する工程において、接合部付近の絶縁被膜が接合の熱などによって発泡したり、あるいはその変色長さが長くなったりしない優れた接合性を有するとされている。   As such an insulated wire, for example, in Patent Document 2, (1) a first insulating layer substantially made of polyamideimide and / or polyimide is formed on a conductor, and (2) glass is formed on (2) polyamideimide A. A thermoplastic resin B (polyetherimide, polyethersulfone, etc.) having a transition temperature of 140 ° C. or higher is blended at a ratio of A / B = 70/30 to 30/70 in terms of weight ratio A / B. 2 insulating layers are coated and laminated, and the ratio of the thickness T1 of the first insulating layer to the thickness T2 of the second insulating layer is within the range of T1 / T2 = 5/95 to 40/60 and remains An insulated wire having a solvent amount of 0.05% by weight or less of the total amount of the insulating film is disclosed. The insulated wire described in Patent Document 2 has excellent work resistance that does not cause damage to the coating even when severe rolling and winding processes are performed, and high heat resistance equivalent to that of polyamideimide. In the process of joining the ends of the insulated wires, it is said that the insulating coating in the vicinity of the joining portion has excellent joining properties such that the insulating coating does not foam due to the heat of joining, or the discoloration length does not increase.

特開2000−235818号公報JP 2000-235818 A 特開2001−155551号公報JP 2001-155551 A

近年、電気機器に対する小型化・高性能化・省エネ化などの要求から、回転電機におけるインバータ制御が急速に普及してきている。そして、その要求を満たすため、インバータ制御において高電圧・大電流化(大電力化)がどんどん進展している。その場合、インバータ制御によって発生する高いインバータサージ電圧が、回転電機中のコイルの絶縁システムに悪影響を及ぼすことが懸念される。インバータサージ電圧による絶縁被膜の劣化を防ぐためには、絶縁被膜中での部分放電の発生を抑制すること、すなわち絶縁被膜における部分放電開始電圧が高くなるようにすることが必要である。   In recent years, inverter control in rotating electrical machines has been rapidly spreading due to demands for downsizing, high performance, energy saving, and the like for electrical equipment. In order to satisfy this requirement, higher voltage and higher current (higher power) are being developed in inverter control. In that case, there is a concern that a high inverter surge voltage generated by the inverter control may adversely affect the coil insulation system in the rotating electrical machine. In order to prevent deterioration of the insulating film due to the inverter surge voltage, it is necessary to suppress the occurrence of partial discharge in the insulating film, that is, to increase the partial discharge start voltage in the insulating film.

一方、電気機器の更なる高効率化に伴い、絶縁電線の占積率の向上が更に要求されており、絶縁被膜の厚さを厚くしないで(最大でも45μmの厚さで)、部分放電開始電圧の更なる向上(例えば、1000Vp以上の部分放電開始電圧)が要求されている。特許文献1、2に記載されているような従来の絶縁電線では、捲線加工や圧延加工に対する耐性(機械的特性)は有していると考えられるものの、絶縁被膜の厚さを保持しながら従来よりもさらに高い部分放電開始電圧を得るために十分であるとは言えない。   On the other hand, with the further increase in efficiency of electrical equipment, further improvement in the space factor of insulated wires is required, and partial discharge starts without increasing the thickness of the insulation coating (at a maximum thickness of 45 μm). There is a demand for further improvement in voltage (for example, partial discharge start voltage of 1000 Vp or more). The conventional insulated wires as described in Patent Documents 1 and 2 are considered to have resistance (mechanical characteristics) to the wire processing and rolling, but the conventional insulation wires maintain the thickness of the insulation coating. It is not sufficient to obtain a partial discharge starting voltage even higher than that.

従って、本発明の目的は、上記の課題を解決し、従来の絶縁被覆と同等の厚さで、高い部分放電開始電圧を有する絶縁電線を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and provide an insulated wire having a high partial discharge starting voltage with a thickness equivalent to that of a conventional insulation coating.

本発明は、上記目的を達成するために、非晶質の熱可塑性樹脂(A)と、非晶質の熱硬化性樹脂(B)とを含むポリマアロイからなる絶縁被膜が形成された絶縁電線であって、前記非晶質の熱硬化性樹脂(B)は、下記化学式1で示される繰り返し単位を有するポリアミドイミド樹脂からなり、前記絶縁被膜は海島構造を有し、前記非晶質の熱硬化性樹脂(B)が前記海島構造の海成分を成し前記非晶質の熱可塑性樹脂(A)が前記海島構造の島成分を成すことを特徴とする絶縁電線を提供することにある。

Figure 0005407059
[化学式1において、Rは3つ以上の芳香環を有する2価の芳香族基を有する芳香族ジアミン類であり、nは繰り返し数であって、正の整数である。] In order to achieve the above object, the present invention provides an insulated wire in which an insulating coating made of a polymer alloy containing an amorphous thermoplastic resin (A) and an amorphous thermosetting resin (B) is formed. The amorphous thermosetting resin (B) is composed of a polyamide-imide resin having a repeating unit represented by the following chemical formula 1, the insulating coating has a sea-island structure, and the amorphous thermosetting resin Another object of the present invention is to provide an insulated wire in which the functional resin (B) forms a sea component of the sea-island structure and the amorphous thermoplastic resin (A) forms an island component of the sea-island structure.
Figure 0005407059
[In Chemical Formula 1, R is an aromatic diamine having a divalent aromatic group having three or more aromatic rings, and n is a repeating number, which is a positive integer. ]

また、本発明は、上記目的を達成するため、上記の本発明に係る絶縁電線において、以下のような改良や変更を加えることができる。
(1)前記化学式1で示される繰り返し単位を有するポリアミドイミド樹脂は、3つ以上の芳香環を有する2価の芳香族基を有する芳香族ジアミン類からなるジアミン成分と酸成分とを共沸溶剤により合成反応させたイミド基含有ジカルボン酸と、芳香族ジイソシアネート類からなるジイソシアネート成分と、を反応させて得られるポリアミドイミド樹脂からなる。
(2)前記ポリマアロイは、前記化学式1で示される繰り返し単位を有するポリアミドイミド樹脂100重量部に対して、前記非晶質の熱可塑性樹脂(A)が10〜150重量部で配合されている。
(3)前記島成分は、その平均直径が1μm未満である。
(4)前記非晶質の熱可塑性樹脂(A)は、ポリエーテルイミド樹脂からなる。
(5)前記絶縁被膜は、その膜厚が1μm以上45μm以下である。
Moreover, in order to achieve the said objective, this invention can add the following improvements and changes in the insulated wire which concerns on said invention.
(1) The polyamide-imide resin having a repeating unit represented by the above chemical formula 1 comprises an azeotropic solvent comprising a diamine component and an acid component each consisting of an aromatic diamine having a divalent aromatic group having three or more aromatic rings. It comprises a polyamide-imide resin obtained by reacting an imide group-containing dicarboxylic acid synthesized by the reaction with a diisocyanate component comprising an aromatic diisocyanate.
(2) In the polymer alloy, 10 to 150 parts by weight of the amorphous thermoplastic resin (A) is blended with 100 parts by weight of the polyamideimide resin having the repeating unit represented by the chemical formula 1.
(3) The island component has an average diameter of less than 1 μm.
(4) The amorphous thermoplastic resin (A) is made of a polyetherimide resin.
(5) The insulating coating has a thickness of 1 μm or more and 45 μm or less.

本発明によれば、従来の絶縁被膜と同等の厚さで、高い部分放電開始電圧を有する絶縁電線を提供することができる。   According to the present invention, it is possible to provide an insulated wire having a high partial discharge starting voltage with a thickness equivalent to that of a conventional insulating coating.

本発明者らは、前記目的を達成するため、絶縁被膜の微構造(特にミクロ相分離構造)を鋭意検討した結果、絶縁被膜の微構造が特定の海島構造になった場合に良好な特性が得られることを見出したことに基づき、本発明を完成した。以下、本発明に係る実施形態を説明する。なお、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で組合せや改良が適宜可能である。   In order to achieve the above object, the present inventors have intensively studied the microstructure of the insulating film (particularly, the microphase separation structure), and as a result, when the microstructure of the insulating film has a specific sea-island structure, good characteristics are obtained. The present invention has been completed based on the finding that it can be obtained. Embodiments according to the present invention will be described below. It should be noted that the present invention is not limited to the embodiments taken up here, and combinations and improvements can be appropriately made without departing from the scope of the invention.

本発明に係る絶縁電線において、絶縁被膜を構成するポリマアロイの微構造(ミクロ相分離構造)は、海島構造であることが好ましい。また、該海島構造は、島成分(分散相成分)が非晶質の熱可塑性樹脂(A)で海成分(連続相成分)が非晶質の熱硬化性樹脂(B)である構成が好ましい。逆の構成の場合(海成分が非晶質の熱可塑性樹脂(A)で島成分が非晶質の熱硬化性樹脂(B)である場合)、絶縁被膜が全体として熱可塑性的挙動(ガラス転移温度Tgが低く、耐熱性に劣る)を示すことから好ましくない。また、ポリマアロイのミクロ相分離構造が共連続構造(例えば、ラメラ構造やジャイロイド構造)を形成する場合も、絶縁被膜が全体として熱可塑性的挙動を示すことから好ましくない。   In the insulated wire according to the present invention, the polymer alloy microstructure (microphase separation structure) constituting the insulating coating is preferably a sea-island structure. The sea-island structure is preferably configured such that the island component (dispersed phase component) is an amorphous thermoplastic resin (A) and the sea component (continuous phase component) is an amorphous thermosetting resin (B). . In the case of the reverse configuration (when the sea component is an amorphous thermoplastic resin (A) and the island component is an amorphous thermosetting resin (B)), the insulating coating as a whole has a thermoplastic behavior (glass This is not preferable because the transition temperature Tg is low and the heat resistance is poor. Further, when the microphase separation structure of the polymer alloy forms a co-continuous structure (for example, a lamellar structure or a gyroid structure), it is not preferable because the insulating coating exhibits a thermoplastic behavior as a whole.

本発明における非晶質の熱硬化性樹脂(B)は、下記化学式2で示される繰り返し単位を有するポリアミドイミド樹脂からなることが好ましい。

Figure 0005407059
[化学式2において、Rは3つ以上の芳香環を有する2価の芳香族基を有する芳香族ジアミン類であり、nは繰り返し数であって、正の整数である。]
非晶質の熱硬化性樹脂(B)として上記化学式2で示される繰り返し単位を有するポリアミドイミド樹脂を適用するとともに、この上記化学式2で示される繰り返し単位を有するポリアミドイミド樹脂が海島構造の海成分で非晶質の熱可塑性樹脂(A)が島成分であることにより、絶縁被膜が低い比誘電率(例えば、3.0未満の比誘電率)を有することになるため、導体の周囲に形成された絶縁被膜の厚さ(膜厚)が45μm以下である場合においても、部分放電開始電圧の高い(例えば、1000Vp以上の部分放電開始電圧を有する)絶縁電線を提供することができる。 The amorphous thermosetting resin (B) in the present invention is preferably composed of a polyamideimide resin having a repeating unit represented by the following chemical formula 2.
Figure 0005407059
[In Chemical Formula 2, R is an aromatic diamine having a divalent aromatic group having three or more aromatic rings, and n is a repeating number, which is a positive integer. ]
As the amorphous thermosetting resin (B), a polyamideimide resin having a repeating unit represented by the above chemical formula 2 is applied. Since the amorphous thermoplastic resin (A) is an island component, the insulating film has a low relative dielectric constant (for example, a relative dielectric constant of less than 3.0), so it is formed around the conductor. Even in the case where the thickness (film thickness) of the insulating coating is 45 μm or less, an insulated wire having a high partial discharge start voltage (for example, having a partial discharge start voltage of 1000 Vp or more) can be provided.

また、上記化学式2で示される繰り返し単位を有するポリアミドイミド樹脂として、3つ以上の芳香環を有する2価の芳香族基を有する芳香族ジアミン類からなるジアミン成分と酸成分とを共沸溶剤により合成反応させたイミド基含有ジカルボン酸と、芳香族ジイソシアネート類からなるジイソシアネート成分と、を反応させて得られるポリアミドイミド樹脂を用いることが好ましい。このようなポリアミドイミド樹脂とすることで、ポリアミドイミド樹脂の耐熱性を低下させることなくポリアミドイミド樹脂の分子量を増加させることができるため、耐熱性の維持と比誘電率の低減の両方を効果的に実現することができる。   Further, as a polyamide-imide resin having a repeating unit represented by the chemical formula 2, a diamine component composed of an aromatic diamine having a divalent aromatic group having three or more aromatic rings and an acid component are mixed with an azeotropic solvent. It is preferable to use a polyamide-imide resin obtained by reacting a synthetically reacted imide group-containing dicarboxylic acid with a diisocyanate component composed of an aromatic diisocyanate. By using such a polyamide-imide resin, the molecular weight of the polyamide-imide resin can be increased without reducing the heat resistance of the polyamide-imide resin, so both the maintenance of heat resistance and the reduction of the dielectric constant are effective. Can be realized.

ジアミン成分としては、3つ以上の芳香環を有する2価の芳香族基を有する芳香族ジアミン類が好ましく、例えば、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、或いはこれらの異性体等を挙げることができる。これらは、少なくとも1つから選択することができる。   As the diamine component, aromatic diamines having a divalent aromatic group having three or more aromatic rings are preferable. For example, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [ 4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, 9,9-bis (4-aminophenyl) fluorene, 4,4′-bis (4-aminophenoxy) ) Biphenyl, 1,4-bis (4-aminophenoxy) benzene, or isomers thereof. These can be selected from at least one.

なお、上記列挙したジアミン成分の一部を、ホスゲン等を使用することでジイソシアネート成分に代えて使用することもできる。このような一部をジイソシアネート成分に代えたジアミン成分を使用する場合は、該ジアミン成分を、イミド基含有ジカルボン酸との反応で使用するジイソシアネート成分と混合し、合成することでポリアミドイミド樹脂を得ることも可能である。   A part of the diamine components listed above can be used in place of the diisocyanate component by using phosgene or the like. When using a diamine component in which such a portion is replaced with a diisocyanate component, the diamine component is mixed with a diisocyanate component used in a reaction with an imide group-containing dicarboxylic acid, and synthesized to obtain a polyamideimide resin. It is also possible.

ジイソシアネート成分としては、芳香族ジイソシアネート類が好ましく、例えば、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,2−ビス[4−(4−イソシアネートフェノキシ)フェニル]プロパン(BIPP)、トリレンジイソシアネート(TDI)、ナフタレンジイソシアネート、キシリレンジイソシアネート、ビフェニルジイソシアネート、ジフェニルスルホンジイソシアネート、ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネート及び異性体、多量体が挙げられる。これらは、少なくとも1つから選択することができる。なお、必要に応じて、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシシレンジイソシアネートなどの脂肪族ジイソシアネート類、或いは上記例示した芳香族ジイソシアネート類を水添した脂環式ジイソシアネート類及び異性体を併用しても良い。ジイソシアネート成分の配合比率については特に限定はないが、1段目の合成で得られたイミド基含有ジカルボン酸とジイソシアネート成分とが等量となるような配合比率とすることが好ましい。   As the diisocyanate component, aromatic diisocyanates are preferable. For example, 4,4′-diphenylmethane diisocyanate (MDI), 2,2-bis [4- (4-isocyanatophenoxy) phenyl] propane (BIPP), tolylene diisocyanate ( TDI), naphthalene diisocyanate, xylylene diisocyanate, biphenyl diisocyanate, diphenyl sulfone diisocyanate, diphenyl ether diisocyanate and the like aromatic diisocyanates, isomers and multimers. These can be selected from at least one. If necessary, use together with aliphatic diisocyanates such as hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, and xylylene diisocyanate, or alicyclic diisocyanates and isomers obtained by hydrogenating the aromatic diisocyanates exemplified above. You may do it. The blending ratio of the diisocyanate component is not particularly limited, but it is preferable to set the blending ratio so that the imide group-containing dicarboxylic acid obtained by the first-stage synthesis is equal to the diisocyanate component.

酸成分としては、例えば、トリメット酸無水物や、ベンゾフェノントリカルボン酸無水物等の芳香族トリカルボン酸無水物類を使用することができ、トリメット酸無水物が好適である。   As the acid component, for example, aromatic tricarboxylic acid anhydrides such as trimet acid anhydride and benzophenone tricarboxylic acid anhydride can be used, and trimet acid anhydride is preferable.

また、ポリアミドイミド樹脂の合成時において、ポリアミドイミド樹脂の安定性を阻害しない範囲でアミン類やイミダゾール類、イミダゾリン類などの反応触媒を使用しても良い。また、ポリアミドイミド樹脂の合成反応を停止させることを目的として、アルコールなどの封止剤を用いても良い。   In the synthesis of the polyamideimide resin, a reaction catalyst such as amines, imidazoles and imidazolines may be used as long as the stability of the polyamideimide resin is not impaired. Moreover, you may use sealing agents, such as alcohol, for the purpose of stopping the synthesis reaction of a polyamideimide resin.

また、ジアミン成分と酸成分とを反応させる際に用いられる共沸溶剤としては、例えば、トルエン、ベンゼン、キシレン、エチルベンゼン等の芳香族炭化水素が例示でき、キシレンが特に好適である。また、ジアミン成分と酸成分との反応における反応温度は、160℃〜200℃、好ましくは170℃〜190℃である。なお、イミド基含有ジカルボン酸とジイソシアネート成分との反応における反応温度は、110℃〜130℃である。   Moreover, as an azeotropic solvent used when making a diamine component and an acid component react, aromatic hydrocarbons, such as toluene, benzene, xylene, ethylbenzene, can be illustrated, for example, and xylene is especially suitable. Moreover, the reaction temperature in reaction of a diamine component and an acid component is 160 to 200 degreeC, Preferably it is 170 to 190 degreeC. In addition, the reaction temperature in reaction of imide group containing dicarboxylic acid and a diisocyanate component is 110 to 130 degreeC.

本発明において、海島構造の島成分である非晶質の熱可塑性樹脂(A)は、その平均直径が1μm未満であることが好ましい。島成分の平均直径が1μm未満であることによって、絶縁被膜の機械的特性と耐熱性が大幅に向上し、さらに絶縁被膜形成後の外観が良好となる。一方、島成分の平均直径が1μm以上である場合、微小クラック発生による機械的特性の低下や島成分が大きいことによる熱可塑的挙動の表面化といった現象が生じ、さらに絶縁被膜形成後に外観不良となる場合があることから好ましくない。   In the present invention, the amorphous thermoplastic resin (A) that is an island component of the sea-island structure preferably has an average diameter of less than 1 μm. When the average diameter of the island component is less than 1 μm, the mechanical properties and heat resistance of the insulating coating are greatly improved, and the appearance after the insulating coating is formed is improved. On the other hand, when the average diameter of the island component is 1 μm or more, a phenomenon such as deterioration of mechanical properties due to generation of microcracks or surfaceization of thermoplastic behavior due to large island component occurs, and the appearance is deteriorated after the insulating coating is formed. It is not preferable because there are cases.

本発明におけるポリマアロイは、上記化学式2で示される繰り返し単位を有するポリアミドイミド樹脂からなる非晶質の熱硬化性樹脂(B)100重量部に対して、非晶質の熱可塑性樹脂(A)が10重量部以上150重量部以下で配合されていることが好ましい。非晶質の熱可塑性樹脂(A)の配合量が少な過ぎると高い部分放電開始電圧を有する絶縁電線を得ることが困難となる。特に、非晶質の熱硬化性樹脂(B)100重量部に対して、非晶質の熱可塑性樹脂(A)の配合量が30重量部以上130重量部以下であることがより好ましく、非晶質の熱可塑性樹脂(A)の配合量が50重量部以上120重量部以下であることが更に好ましい。非晶質の熱可塑性樹脂(A)の配合量が50重量部以上120重量部以下である場合、絶縁被膜の誘電率と耐熱性とのバランスがもっとも良くなる。   In the polymer alloy in the present invention, the amorphous thermoplastic resin (A) is contained in 100 parts by weight of the amorphous thermosetting resin (B) made of the polyamideimide resin having the repeating unit represented by the chemical formula 2. It is preferably blended in an amount of 10 to 150 parts by weight. If the amount of the amorphous thermoplastic resin (A) is too small, it is difficult to obtain an insulated wire having a high partial discharge starting voltage. In particular, the blending amount of the amorphous thermoplastic resin (A) is more preferably 30 parts by weight or more and 130 parts by weight or less with respect to 100 parts by weight of the amorphous thermosetting resin (B). The compounding amount of the crystalline thermoplastic resin (A) is more preferably 50 parts by weight or more and 120 parts by weight or less. When the blending amount of the amorphous thermoplastic resin (A) is 50 parts by weight or more and 120 parts by weight or less, the balance between the dielectric constant and the heat resistance of the insulating coating becomes the best.

一方、非晶質の熱硬化性樹脂(B)100重量部に対して、非晶質の熱可塑性樹脂(A)が151重量部以上300重量部程度で配合されているポリマアロイの場合、熱硬化性樹脂(B)と熱可塑性樹脂(A)とが共連続相分離構造を形成することから、全体として熱可塑性的挙動を示す(例えば、ガラス転移温度Tgが低くなり、耐熱性に劣る)ようになる。さらに、非晶質の熱硬化性樹脂(B)100重量部に対して、非晶質の熱可塑性樹脂(A)が300重量部以上で配合されているポリマアロイの場合、熱硬化性樹脂(B)が島成分となり熱可塑性樹脂(A)が海成分となる海島構造が形成される。この場合も、全体として熱可塑性的挙動を示すため好ましくない。   On the other hand, in the case of a polymer alloy in which the amorphous thermoplastic resin (A) is blended in an amount of about 151 to 300 parts by weight with respect to 100 parts by weight of the amorphous thermosetting resin (B), thermosetting Since the thermoplastic resin (B) and the thermoplastic resin (A) form a co-continuous phase separation structure, it exhibits thermoplastic behavior as a whole (for example, the glass transition temperature Tg is low and the heat resistance is poor). become. Further, in the case of a polymer alloy in which the amorphous thermoplastic resin (A) is blended at 300 parts by weight or more with respect to 100 parts by weight of the amorphous thermosetting resin (B), the thermosetting resin (B ) Becomes an island component, and a sea-island structure in which the thermoplastic resin (A) becomes a sea component is formed. This case is also not preferable because it exhibits a thermoplastic behavior as a whole.

ポリマアロイの製造方法は、本発明で規定した要件を満たす絶縁被膜が結果として得られれば、特段の制限はなく通常の方法を利用できる。例えば、それぞれの樹脂を溶剤に溶解した別個の溶液を混合する方法や、それぞれの樹脂を同じ溶剤に同時に溶解して混合する方法や、一方の樹脂を溶剤に溶解した後に他方の樹脂を添加して溶解・混合する方法や、一方の樹脂を溶剤に溶解した後にその溶液中で他方の樹脂を合成・混合する方法などが挙げられる。なお、本発明では、絶縁被膜が海島構造を形成し易くするために、ポリマアロイの製造段階で樹脂と溶剤との相溶性を向上させるべく非晶質の熱硬化性樹脂(B)と非晶質の熱可塑性樹脂(A)を用い、溶剤として極性溶剤を用いることが特に好ましい。   The production method of the polymer alloy is not particularly limited as long as an insulating coating satisfying the requirements defined in the present invention is obtained, and a normal method can be used. For example, a method of mixing separate solutions in which each resin is dissolved in a solvent, a method in which each resin is simultaneously dissolved in the same solvent, or a method in which one resin is dissolved in a solvent and then the other resin is added. And a method in which one resin is dissolved in a solvent and then the other resin is synthesized and mixed in the solution. In the present invention, in order to facilitate the formation of a sea-island structure in the insulating coating, the amorphous thermosetting resin (B) and the amorphous are improved in order to improve the compatibility between the resin and the solvent in the polymer alloy production stage. It is particularly preferable to use a thermoplastic resin (A) and a polar solvent as the solvent.

絶縁電線の製造方法も、本発明で規定した要件を満たす絶縁電線が結果として得られれば、特段の制限はなくエナメル線を製造する通常の方法を利用できる。例えば、上記のように製造したポリマアロイの溶液(絶縁被膜塗料)を導体上に塗布し焼き付けて絶縁被膜を形成することによって製造できる。なお、本発明に係る絶縁電線は、必要に応じて該絶縁被膜の最外層に自己潤滑性被膜を更に設けてもよいし、導体と該絶縁被膜との間に密着性を向上させるための被膜を更に設けてもよい。自己潤滑性被膜や密着性向上被膜は、例えば、ベース樹脂としてポリイミド、ポリアミドイミド、ポリエステルイミド、H種ポリエステル等の樹脂から1種または複数種を選択して形成することができる。   The insulated wire manufacturing method is not particularly limited as long as an insulated wire satisfying the requirements defined in the present invention is obtained, and a normal method for manufacturing enameled wire can be used. For example, the polymer alloy solution (insulating coating material) manufactured as described above can be applied to a conductor and baked to form an insulating film. The insulated wire according to the present invention may be further provided with a self-lubricating film on the outermost layer of the insulating film as necessary, or a film for improving adhesion between the conductor and the insulating film. May be further provided. The self-lubricating film and the adhesion improving film can be formed by selecting one or more kinds of resins such as polyimide, polyamideimide, polyesterimide, and H-type polyester as the base resin.

ポリマアロイの海成分である非晶質の熱硬化性樹脂の分子量は、10,000〜200,000であることが好ましく、15,000〜100,000であることがより好ましい。熱硬化性樹脂の分子量が10,000より小さいと、絶縁被膜の機械的強度が低下するとともに、分子の末端が多い樹脂となることから誘電率が高くなる問題がある。一方、熱硬化性樹脂の分子量が200,000より大きいと、溶剤への溶解性の低下や、熱可塑性樹脂との相溶性の低下や、海島構造の海部分となりにくいといった問題を引き起こす。   The molecular weight of the amorphous thermosetting resin that is the sea component of the polymer alloy is preferably 10,000 to 200,000, and more preferably 15,000 to 100,000. If the molecular weight of the thermosetting resin is less than 10,000, there are problems that the mechanical strength of the insulating coating is lowered and the dielectric constant is increased because the resin has many molecular ends. On the other hand, if the molecular weight of the thermosetting resin is larger than 200,000, problems such as a decrease in solubility in a solvent, a decrease in compatibility with a thermoplastic resin, and difficulty in becoming a sea part of a sea-island structure are caused.

ポリマアロイの島成分である非晶質の熱可塑性樹脂(A)は、誘電率が低い熱可塑性樹脂であることが好ましく、具体的には、誘電率3.3未満の熱可塑性樹脂が好ましい。誘電率が3.3以上の熱可塑性樹脂を島成分として用いると、絶縁被膜全体の低誘電率化を図ることが困難になる。該非晶質の熱可塑性樹脂の分子量は、15,000〜200,000であることが好ましく、20,000〜100,000であることがより好ましい。熱可塑性樹脂の分子量が15,000より小さいと、被膜の機械的強度が低下するとともに、海島構造の島部分となりにくいといった問題を引き起こす。一方、熱可塑性樹脂の分子量が200,000より大きいと、溶剤への溶解性の低下や、熱硬化性樹脂との相溶性の低下を引き起こす。   The amorphous thermoplastic resin (A) which is an island component of the polymer alloy is preferably a thermoplastic resin having a low dielectric constant, and specifically, a thermoplastic resin having a dielectric constant of less than 3.3 is preferable. When a thermoplastic resin having a dielectric constant of 3.3 or more is used as an island component, it is difficult to reduce the dielectric constant of the entire insulating coating. The molecular weight of the amorphous thermoplastic resin is preferably 15,000 to 200,000, and more preferably 20,000 to 100,000. If the molecular weight of the thermoplastic resin is less than 15,000, the mechanical strength of the coating is lowered and the island part of the sea-island structure is hardly formed. On the other hand, when the molecular weight of the thermoplastic resin is larger than 200,000, the solubility in a solvent and the compatibility with a thermosetting resin are reduced.

本発明における非晶質の熱可塑性樹脂(A)としては、溶剤への溶解性・耐熱性・誘電率の観点からポリエーテルイミド樹脂が好ましく用いられる。使用されるポリエーテルイミド樹脂は、イミド基を2個以上有するポリエーテルであれば特に制限されない。ポリエーテルイミド樹脂の製造方法に特段の制限はなく、既知の方法を利用できる。具体的な1例としては、4.4’[イソプロピリデンビス(P-フェニレンオキシ)]ジフタル酸二水和物とメタフェニレンジアミンとの縮合によって得られるポリエーテルイミド樹脂を好適に用いることができる。本発明における非晶質の熱可塑性樹脂(A)として、例えば、市販のポリエーテルイミド樹脂(例えば、SABICイノベーティブプラスチックス社製、ウルテム(登録商標))を使用することができる。また、ポリエーテルイミド樹脂は、単独の組成物であっても2種以上を混合した組成物であってもよい。   As the amorphous thermoplastic resin (A) in the present invention, a polyetherimide resin is preferably used from the viewpoints of solubility in a solvent, heat resistance, and dielectric constant. The polyetherimide resin used is not particularly limited as long as it is a polyether having two or more imide groups. There is no special restriction | limiting in the manufacturing method of polyetherimide resin, A known method can be utilized. As a specific example, a polyetherimide resin obtained by condensation of 4.4 '[isopropylidenebis (P-phenyleneoxy)] diphthalic acid dihydrate and metaphenylenediamine can be preferably used. As the amorphous thermoplastic resin (A) in the present invention, for example, a commercially available polyetherimide resin (for example, Ultem (registered trademark) manufactured by SABIC Innovative Plastics) can be used. Further, the polyetherimide resin may be a single composition or a composition in which two or more kinds are mixed.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.

[本発明に係るポリアミドイミド樹脂aの合成方法]
撹拌機、還流冷却管、窒素流入管、温度計を備えた反応装置に、ジアミン成分である2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン451.1gと、酸成分であるトリメリット酸無水物453.9gとを配合した後、溶媒であるN−メチル−2−ピロリドン2542.1gと、共沸溶剤であるキシレン254.2gとを添加して、攪拌回転数180rpm、窒素流量1L/min、系内温度180℃で4時間反応させた(1段階目の合成反応工程)。なお、該工程における脱水閉環反応中に生成された水およびキシレンは一旦、受け器に溜まり、適宜系外へ留去した。
1段階目の合成反応工程で得られたイミド基含有ジカルボン酸を90℃まで冷却させた後、このイミド基含有ジカルボン酸と、ジイソシアネート成分である4,4’−ジフェニルメタンジイソシアネート319.7gとを配合し、攪拌回転数150rpm、窒素流量0.1L/min、系内温度120℃で、1時間反応させた。その後、封止剤であるベンジルアルコール89.3g、N,N−ジメチルホルムアミド635.4gを配合し反応を停止させた(2段階目の合成反応工程)。このような合成反応によって、E型粘度計で測定した粘度が2000mPa・sのポリアミドイミド樹脂a(非晶質の熱硬化性樹脂(B))が得られた。
[Synthesis Method of Polyamideimide Resin a According to the Present Invention]
In a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet pipe, and a thermometer, 451.1 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane as a diamine component and trimethyl as an acid component are added. After blending 453.9 g of merit acid anhydride, 2542.1 g of N-methyl-2-pyrrolidone as a solvent and 254.2 g of xylene as an azeotropic solvent were added, stirring rotation speed 180 rpm, nitrogen flow rate 1 L / min The reaction was carried out at a system temperature of 180 ° C. for 4 hours (the first-stage synthesis reaction step). In addition, water and xylene generated during the dehydration ring-closing reaction in this step once accumulated in a receiver and appropriately distilled out of the system.
After the imide group-containing dicarboxylic acid obtained in the first-stage synthesis reaction step is cooled to 90 ° C., this imide group-containing dicarboxylic acid is mixed with 319.7 g of 4,4′-diphenylmethane diisocyanate, which is a diisocyanate component. The reaction was carried out for 1 hour at a stirring speed of 150 rpm, a nitrogen flow rate of 0.1 L / min, and a system temperature of 120 ° C. Thereafter, 89.3 g of benzyl alcohol as a sealant and 635.4 g of N, N-dimethylformamide were added to stop the reaction (the second-stage synthesis reaction step). By such a synthesis reaction, a polyamideimide resin a (amorphous thermosetting resin (B)) having a viscosity of 2000 mPa · s measured with an E-type viscometer was obtained.

(実施例1)
上記の合成で得られたポリアミドイミド樹脂aと、ポリエーテルイミド(SABICイノベーティブプラスチックス社製、ウルテム1040A)をN-メチル-2-ピロリドンによって溶解した25質量%ポリエーテルイミド溶液とをそれぞれの樹脂分の質量比率が100/100となるように配合し、フラスコ内で混合・攪拌した。次に、この混合溶液にN-メチル-2-ピロリドンを加え、不揮発分の質量濃度が略一定(27±2%)で均一な褐色透明の溶液になるまで更に希釈して絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は860 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.043 mmの絶縁被膜を有する絶縁電線(実施例1)を製造した。
Example 1
Polyamideimide resin a obtained by the above synthesis and 25% by mass polyetherimide solution in which polyetherimide (SABIC Innovative Plastics, Ultem 1040A) is dissolved in N-methyl-2-pyrrolidone are used as the respective resins. The mass ratio was 100/100, and the mixture was stirred and stirred in the flask. Next, add N-methyl-2-pyrrolidone to this mixed solution, and further dilute until the mass concentration of non-volatiles is almost constant (27 ± 2%) until it becomes a uniform brown transparent solution to produce an insulation coating. did. The viscosity of the insulating coating was 860 mPa · s. After that, the insulation coating paint is applied and baked on the outer periphery of a copper wire with a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire (Example 1) having an insulation coating with a thickness of 0.043 mm. did.

なお、絶縁被膜塗料の性状について、絶縁被膜塗料の外観は目視により観察し、絶縁被膜塗料の粘度は円錐平板型回転粘度計(東機産業株式会社製、TV-20)を用いて室温で測定した。また、絶縁被膜の厚さは走査型電子顕微鏡(株式会社日立製作所製、S-3500N)を用いて製造した絶縁電線の断面観察から計測した。   Regarding the properties of the insulating coating, the appearance of the insulating coating is visually observed, and the viscosity of the insulating coating is measured at room temperature using a cone-plate rotary viscometer (TV-20, manufactured by Toki Sangyo Co., Ltd.). did. Moreover, the thickness of the insulating coating was measured from cross-sectional observation of an insulated wire manufactured using a scanning electron microscope (manufactured by Hitachi, Ltd., S-3500N).

(実施例2)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/10となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は2520 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.043 mmの絶縁被膜を有する絶縁電線(実施例2)を製造した。
(Example 2)
An insulating coating material was prepared by the same method as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/10. The viscosity of the insulating coating was 2520 mPa · s. After that, the insulation coating paint is applied and baked on the outer periphery of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire (Example 2) having a thickness of 0.043 mm. did.

(実施例3)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/150となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は720 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.042 mmの絶縁被膜を有する絶縁電線(実施例3)を製造した。
(Example 3)
An insulating coating was prepared in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/150. The viscosity of the insulating coating was 720 mPa · s. Thereafter, the insulation coating is applied and baked on the outer periphery of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.042 mm (Example 3). did.

(実施例4)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/5となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は2550 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.044 mmの絶縁被膜を有する絶縁電線(実施例4)を製造した。
Example 4
An insulating coating material was prepared by the same method as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/5. The viscosity of the insulating coating was 2550 mPa · s. Thereafter, the insulation coating is applied and baked on the outer periphery of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.044 mm (Example 4). did.

(比較例1)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/160となるように配合した以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は700 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.044 mmの絶縁被膜を有する絶縁電線(比較例1)を製造した。
(Comparative Example 1)
An insulating coating was prepared in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/160. The viscosity of the insulating coating was 700 mPa · s. Thereafter, the insulation coating is applied and baked on the outer circumference of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.044 mm (Comparative Example 1). did.

(比較例2)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が100/0となるように配合した(すなわち、ポリアミドイミド樹脂分のみを用いた)以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は2740 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.045 mmの絶縁被膜を有する絶縁電線(比較例2)を製造した。
(Comparative Example 2)
Insulating film was produced in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin and the polyetherimide resin was 100/0 (that is, only the polyamideimide resin was used). A paint was made. The viscosity of the insulating coating was 2740 mPa · s. After that, the insulation coating paint is applied and baked on the outer circumference of a copper wire with a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.045 mm (Comparative Example 2). did.

(比較例3)
ポリアミドイミド樹脂分とポリエーテルイミド樹脂分との質量比率が0/100となるように配合した(すなわち、ポリエーテルイミド樹脂分のみを用いた)以外は上記実施例1と同様の方法によって、絶縁被膜塗料を作製した。該絶縁被膜塗料の粘度は600 mPa・sであった。その後、導体外径0.8 mmの銅線の外周にエナメル被覆の一般的な方法で該絶縁被膜塗料を塗布・焼き付けして、厚さ0.045 mmの絶縁被膜を有する絶縁電線(比較例3)を製造した。
(Comparative Example 3)
Insulation was conducted in the same manner as in Example 1 except that the mass ratio of the polyamideimide resin component and the polyetherimide resin component was 0/100 (that is, only the polyetherimide resin component was used). A coating was prepared. The viscosity of the insulating coating was 600 mPa · s. Thereafter, the insulation coating is applied and baked on the outer periphery of a copper wire having a conductor outer diameter of 0.8 mm by a general method of enamel coating to produce an insulated wire having a thickness of 0.045 mm (Comparative Example 3). did.

上記のように作製した絶縁電線(実施例1〜4および比較例1〜3)に対して、次のような試験を行った。走査型電子顕微鏡(株式会社日立製作所製、S-3500N)を用いて各絶縁被膜の表面を観察し、絶縁被膜のミクロ相分離構造を判定した。また、海島構造における島成分の平均直径は、撮影した画像から島成分を任意に50点抽出し、それらの直径を計測して平均値を算出した。   The following test was done with respect to the insulated wires (Examples 1 to 4 and Comparative Examples 1 to 3) produced as described above. The surface of each insulating coating was observed using a scanning electron microscope (manufactured by Hitachi, Ltd., S-3500N), and the microphase separation structure of the insulating coating was determined. In addition, the average diameter of the island component in the sea-island structure was calculated by arbitrarily extracting 50 island components from the photographed images and measuring their diameters.

絶縁電線の可撓性試験は自己径巻き付け法によって評価した。なお、自己径巻き付け法とは、導体径と同じ径を有する丸棒(巻き付け棒)に絶縁電線を巻き付け、光学顕微鏡を用いて絶縁被膜での亀裂の有無を調査する方法である。本明細書では、絶縁電線を5巻き/コイルとして5コイル分巻き付け、50倍の光学顕微鏡を用いて観察した。亀裂が観察されない場合を「合格」とした。   The flexibility test of the insulated wire was evaluated by a self-diameter winding method. The self-diameter winding method is a method in which an insulated wire is wound around a round bar (winding bar) having the same diameter as the conductor diameter, and the presence or absence of cracks in the insulating coating is investigated using an optical microscope. In this specification, the insulated wire was wound as 5 coils / coil for 5 coils and observed using a 50 × optical microscope. The case where no crack was observed was defined as “pass”.

絶縁被膜の耐摩耗性試験は、一方向摩耗試験として次のような手順で行った。絶縁電線を120 mmの長さで切り出し、片側末端の絶縁被覆をアビソフィックス装置で剥離して評価試料とした。耐摩耗性評価には、テーバー型の摩耗試験機(東洋精機株式会社製)を用いた。評価試料の剥離した末端部に電極を取り付け、絶縁被膜の表面に垂直方向から荷重を掛けながら斜面を滑らせた際に、電気が導通したときの荷重を測定し評価した。   The wear resistance test of the insulating coating was performed as a unidirectional wear test according to the following procedure. The insulated wire was cut out with a length of 120 mm, and the insulation coating on one end was peeled off with an abisofix device to obtain an evaluation sample. A Taber type wear tester (manufactured by Toyo Seiki Co., Ltd.) was used for the wear resistance evaluation. An electrode was attached to the peeled end portion of the evaluation sample, and when a slope was slid while applying a load from the vertical direction to the surface of the insulating coating, the load when electricity was conducted was measured and evaluated.

また、絶縁被膜の比誘電率測定は次のように行った。上述と同様に、25μm(厚さ)×2 mm×100 mmの短冊状の評価用フィルムを作製した。空洞共振器摂動法(空洞共振器摂動法誘電率測定装置:株式会社関東電子応用開発製、Sパラメータ・ベクトル・ネットワーク・アナライザ: アジレント・テクノロジー株式会社製8720ES)により評価用フィルムの比誘電率(周波数:10GHz)を測定した。   The relative dielectric constant of the insulating coating was measured as follows. In the same manner as described above, a strip-shaped evaluation film of 25 μm (thickness) × 2 mm × 100 mm was produced. Relative permittivity of film for evaluation by cavity resonator perturbation method (cavity resonator perturbation method dielectric constant measuring device: Kanto Electronics Application Development, S-parameter vector network analyzer: Agilent Technologies 8720ES) Frequency: 10 GHz).

部分放電開始電圧の測定は次のような手順で行った。絶縁電線を500 mmの長さで2本切り出し、14.7 N(1.5 kgf)の張力を掛けながら撚り合わせて中央部の120 mmの範囲に9回の撚り部を有するツイストペアの試料を作製した。試料端部10 mmの絶縁被覆を剥離した後、部分放電自動試験システムを用いて部分放電開始電圧を測定した。測定条件は、25℃で相対湿度50%の雰囲気とし、50 Hzの電圧を10〜30 V/sで昇圧しながらツイストペア試料に荷電した。ツイストペア試料に50 pCの放電が50回発生した電圧を部分放電開始電圧とした。   The partial discharge start voltage was measured according to the following procedure. Two insulated wires having a length of 500 mm were cut out and twisted while applying a tension of 14.7 N (1.5 kgf) to prepare a twisted pair sample having nine twisted portions in the range of 120 mm in the central portion. After peeling off the insulating coating at the sample edge 10 mm, the partial discharge starting voltage was measured using a partial discharge automatic test system. The measurement conditions were an atmosphere with a relative humidity of 50% at 25 ° C., and the twisted pair sample was charged while increasing the voltage of 50 Hz at 10 to 30 V / s. The voltage at which 50 pC discharge occurred 50 times in the twisted pair sample was defined as the partial discharge start voltage.

絶縁被膜のTg(ガラス転移温度)の評価方法は次のように行った。各絶縁被膜塗料を用いて25μm(厚さ)×5 mm×200 mmの短冊状の評価用フィルムを作製した。動的粘弾性測定装置(アイティー計測制御株式会社製、DVA-200)を用いて室温から400℃までを10℃/minで昇温しながら評価用フィルムの100Hz振動時の貯蔵弾性率を測定し、この100Hz振動時の貯蔵弾性率が低下する変曲点の温度をTgとした。   The evaluation method of Tg (glass transition temperature) of the insulating coating was performed as follows. A strip-shaped evaluation film of 25 μm (thickness) × 5 mm × 200 mm was prepared using each insulating coating. Using a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.), the storage elastic modulus at 100Hz vibration of the evaluation film is measured while increasing the temperature from room temperature to 400 ° C at 10 ° C / min. The temperature at the inflection point at which the storage elastic modulus at the time of 100 Hz vibration decreases is defined as Tg.

各種測定評価結果を表1に示す。   Various measurement evaluation results are shown in Table 1.

Figure 0005407059
Figure 0005407059

表1に示したように、本発明に係る絶縁電線(実施例1〜4)は、導体上に形成された絶縁被膜の厚さを厚くせずとも(最大でも45μmの厚さで)、1000Vp以上の部分放電開始電圧を有することが判る。つまり、本発明によれば、従来の絶縁被覆と同等の厚さで、高い部分放電開始電圧を有する絶縁電線を提供することができる。また、本発明に係る絶縁電線(実施例1〜4)は、部分放電開始電圧の他、機械的特性(可とう性試験結果、及び耐摩耗性試験結果)が高いレベルでバランスしていることが判る。このことから、本発明に係る絶縁電線は、捲線加工や圧延加工に対する十分な耐性(機械的特性)も有していると考えられる。これに対し、本発明の規定から外れる絶縁電線(比較例1〜3)は、いずれも絶縁被膜の厚さが45μm程度で、1000Vp以上の部分放電開始電圧を得られないことが判る。つまり、本発明の規定から外れる絶縁電線(比較例1〜3)は、従来の絶縁被覆と同等の厚さで、高い部分放電開始電圧を得られなかった。   As shown in Table 1, the insulated wires (Examples 1 to 4) according to the present invention had 1000 Vp without increasing the thickness of the insulating coating formed on the conductor (at a maximum thickness of 45 μm). It turns out that it has the above partial discharge start voltage. That is, according to the present invention, it is possible to provide an insulated wire having a high partial discharge start voltage with a thickness equivalent to that of a conventional insulation coating. In addition, the insulated wires (Examples 1 to 4) according to the present invention have a high balance of mechanical characteristics (flexibility test results and wear resistance test results) in addition to the partial discharge start voltage. I understand. From this, it is considered that the insulated wire according to the present invention also has sufficient resistance (mechanical characteristics) to the winding process and the rolling process. On the other hand, it can be seen that all of the insulated wires (Comparative Examples 1 to 3) deviating from the provisions of the present invention have an insulating coating thickness of about 45 μm and cannot obtain a partial discharge start voltage of 1000 Vp or more. That is, the insulated wires (Comparative Examples 1 to 3) that deviate from the provisions of the present invention have a thickness equivalent to that of the conventional insulation coating and cannot obtain a high partial discharge starting voltage.

以上説明したように、本発明に係る絶縁電線は、非晶質の熱可塑性樹脂(A)と、非晶質の熱硬化性樹脂(B)とを含むポリマアロイからなる絶縁被膜が形成された絶縁電線であって、非晶質の熱硬化性樹脂(B)は、上記化学式2で示される繰り返し単位を有するポリアミドイミド樹脂からなり、絶縁被膜が海島構造を有し、非晶質の熱硬化性樹脂(B)が海島構造の海成分を成し非晶質の熱可塑性樹脂(A)が海島構造の島成分を成したものである。この特徴により、従来の絶縁被膜と同等の厚さで、高い部分放電開始電圧を有する絶縁電線を得られることが確認された。   As described above, the insulated wire according to the present invention is an insulating wire on which an insulating film made of a polymer alloy containing an amorphous thermoplastic resin (A) and an amorphous thermosetting resin (B) is formed. The amorphous thermosetting resin (B), which is an electric wire, is composed of a polyamide-imide resin having a repeating unit represented by the chemical formula 2, and the insulating coating has a sea-island structure, and is amorphous thermosetting. The resin (B) forms a sea component having a sea-island structure, and the amorphous thermoplastic resin (A) forms a island component having a sea-island structure. With this feature, it was confirmed that an insulated wire having a high partial discharge starting voltage can be obtained with a thickness equivalent to that of a conventional insulating coating.

Claims (6)

非晶質の熱可塑性樹脂(A)と、非晶質の熱硬化性樹脂(B)とを含むポリマアロイからなる絶縁被膜が形成された絶縁電線であって、
前記非晶質の熱硬化性樹脂(B)は、下記化学式1で示される繰り返し単位を有するポリアミドイミド樹脂からなり、
前記絶縁被膜は海島構造を有し、前記非晶質の熱硬化性樹脂(B)が前記海島構造の海成分を成し前記非晶質の熱可塑性樹脂(A)が前記海島構造の島成分を成すことを特徴とする絶縁電線。
Figure 0005407059
[化学式1において、Rは3つ以上の芳香環を有する2価の芳香族基を有する芳香族ジアミン類であり、nは繰り返し数であって、正の整数である。]
An insulated wire having an insulating coating made of a polymer alloy containing an amorphous thermoplastic resin (A) and an amorphous thermosetting resin (B),
The amorphous thermosetting resin (B) is composed of a polyamide-imide resin having a repeating unit represented by the following chemical formula 1,
The insulating coating has a sea-island structure, the amorphous thermosetting resin (B) constitutes a sea component of the sea-island structure, and the amorphous thermoplastic resin (A) becomes an island component of the sea-island structure. An insulated wire characterized by the following.
Figure 0005407059
[In Chemical Formula 1, R is an aromatic diamine having a divalent aromatic group having three or more aromatic rings, and n is a repeating number, which is a positive integer. ]
前記化学式1で示される繰り返し単位を有するポリアミドイミド樹脂は、3つ以上の芳香環を有する2価の芳香族基を有する芳香族ジアミン類からなるジアミン成分と酸成分とを共沸溶剤により合成反応させたイミド基含有ジカルボン酸と、芳香族ジイソシアネート類からなるジイソシアネート成分と、を反応させて得られるポリアミドイミド樹脂からなる請求項1記載の絶縁電線。   The polyamideimide resin having a repeating unit represented by the chemical formula 1 is a synthetic reaction of a diamine component composed of an aromatic diamine having a divalent aromatic group having three or more aromatic rings and an acid component using an azeotropic solvent. The insulated wire according to claim 1, comprising a polyamide-imide resin obtained by reacting an imide group-containing dicarboxylic acid and a diisocyanate component comprising an aromatic diisocyanate. 前記ポリマアロイは、前記化学式1で示される繰り返し単位を有するポリアミドイミド樹脂100重量部に対して、前記非晶質の熱可塑性樹脂(A)が10〜150重量部で配合されている請求項1または2に記載の絶縁電線。   The polymer alloy is blended with 10 to 150 parts by weight of the amorphous thermoplastic resin (A) with respect to 100 parts by weight of the polyamideimide resin having a repeating unit represented by the chemical formula 1. 2. The insulated wire according to 2. 前記島成分は、その平均直径が1μm未満である請求項1乃至3のいずれかに記載の絶縁電線。   The insulated wire according to any one of claims 1 to 3, wherein the island component has an average diameter of less than 1 µm. 前記非晶質の熱可塑性樹脂(A)は、ポリエーテルイミド樹脂からなる請求項1乃至4のいずれかに記載の絶縁電線。   The insulated wire according to any one of claims 1 to 4, wherein the amorphous thermoplastic resin (A) is made of a polyetherimide resin. 前記絶縁被膜は、その膜厚が1μm以上45μm以下である請求項1乃至5のいずれかに記載の絶縁電線。   The insulated wire according to any one of claims 1 to 5, wherein the insulating coating has a thickness of 1 µm to 45 µm.
JP2010014541A 2009-06-18 2010-01-26 Insulated wire Active JP5407059B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010014541A JP5407059B2 (en) 2010-01-26 2010-01-26 Insulated wire
US12/816,699 US8679628B2 (en) 2009-06-18 2010-06-16 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014541A JP5407059B2 (en) 2010-01-26 2010-01-26 Insulated wire

Publications (2)

Publication Number Publication Date
JP2011154819A JP2011154819A (en) 2011-08-11
JP5407059B2 true JP5407059B2 (en) 2014-02-05

Family

ID=44540653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014541A Active JP5407059B2 (en) 2009-06-18 2010-01-26 Insulated wire

Country Status (1)

Country Link
JP (1) JP5407059B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6226169B2 (en) 2013-06-11 2017-11-08 日立化成株式会社 Insulated coated wire and multi-wire wiring board
US10187981B2 (en) 2014-02-27 2019-01-22 Hitachi Chemical Company, Ltd. Multi-wire wiring board
JP2016059090A (en) * 2014-09-05 2016-04-21 日立オートモティブシステムズ株式会社 Stator for rotary electric machine and rotary electric machine equipped with the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965278B2 (en) * 1991-12-24 1999-10-18 松下電工株式会社 Thermosetting polyimide resin composition, thermosetting product, and method for producing the same
JP4245244B2 (en) * 1999-11-30 2009-03-25 住友電工ウインテック株式会社 Insulated wire
JP2000235818A (en) * 1998-12-15 2000-08-29 Sumitomo Electric Ind Ltd Insulated wire
JP3988482B2 (en) * 2002-02-20 2007-10-10 日立化成工業株式会社 Flame retardant heat resistant resin composition, adhesive film using the same, and polyimide film with adhesive
JP2005179513A (en) * 2003-12-19 2005-07-07 Hitachi Chem Co Ltd Heat resistant resin composition, adhesive film using this and polyimide film with adhesive

Also Published As

Publication number Publication date
JP2011154819A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5626530B2 (en) Insulating paint, method for producing the same, insulated wire using the same, and method for producing the same
JP5365899B2 (en) Polyamideimide resin insulating paint and insulated wire using the same
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
EP2555204B1 (en) Insulated wire
JP5540671B2 (en) Insulated wire
JP5609732B2 (en) Insulating paint and insulated wire using the same
JP5447188B2 (en) Insulating paint and insulated wire using the same
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
JP2012195290A (en) Insulated wire
US8679628B2 (en) Insulated wire
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
US20130161061A1 (en) Insulated wire and coil using the same
JP5407059B2 (en) Insulated wire
JP2007270074A (en) Processing resistant polyamide-imide resin vanish and electrical insulating wire
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2012233123A (en) Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor
CN109293920B (en) Resin composition and insulated wire using same
JP5617698B2 (en) Insulating paint and insulated wire using the same
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JP5837397B2 (en) Insulated wire and electric coil and motor using the same
JP2011159578A (en) Insulation wire, and electric coil and motor using the same
JP2011207955A (en) Insulating coating material and insulated wire using the same
JP2012097177A (en) Polyamideimide varnish, and insulated wire, electric coil and motor using the same
JP2011003375A (en) Insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5407059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350