JPH0636424B2 - Protection circuit - Google Patents

Protection circuit

Info

Publication number
JPH0636424B2
JPH0636424B2 JP57069640A JP6964082A JPH0636424B2 JP H0636424 B2 JPH0636424 B2 JP H0636424B2 JP 57069640 A JP57069640 A JP 57069640A JP 6964082 A JP6964082 A JP 6964082A JP H0636424 B2 JPH0636424 B2 JP H0636424B2
Authority
JP
Japan
Prior art keywords
diffusion layer
type diffusion
protection circuit
conductive type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57069640A
Other languages
Japanese (ja)
Other versions
JPS58186969A (en
Inventor
平八郎 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP57069640A priority Critical patent/JPH0636424B2/en
Publication of JPS58186969A publication Critical patent/JPS58186969A/en
Publication of JPH0636424B2 publication Critical patent/JPH0636424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Description

【発明の詳細な説明】 本発明はMOS集積回路に於ける保護回路に関するもの
であって、その目的は性能の向上化に有する。
The present invention relates to a protection circuit in a MOS integrated circuit, the purpose of which is to improve performance.

以下図面に基づいて詳細に説明すると、第1図は従来の
保護回路の構造を示す平面図、第2図は従来の保護回路
の構造を示す断面図、第3図は第2図の構造を模式的に
示した断面図である。
1 will be described in detail with reference to the drawings. FIG. 1 is a plan view showing a structure of a conventional protection circuit, FIG. 2 is a sectional view showing a structure of a conventional protection circuit, and FIG. 3 is a structure showing the structure of FIG. It is sectional drawing shown typically.

第1図、第2図に於て、外部端子1の第1のコンタクト
部2はN型基板11内に設けられたP型拡散抵抗層3と
接続される。該P型拡散抵抗層3の他端の第2コンタク
ト部4は配線材5と接続され、該配線材5の第3コンタ
クト部6はP型拡散層7の内に設けられたN型拡散層8
と接続され、更に保護回路外の回路部分(図示せず)に
接続される。
In FIGS. 1 and 2, the first contact portion 2 of the external terminal 1 is connected to the P-type diffusion resistance layer 3 provided in the N-type substrate 11. The second contact portion 4 at the other end of the P-type diffusion resistance layer 3 is connected to the wiring material 5, and the third contact portion 6 of the wiring material 5 is an N-type diffusion layer provided in the P-type diffusion layer 7. 8
And a circuit portion (not shown) outside the protection circuit.

前記P型拡散抵抗層3及び前記P型拡散層7の周囲には
電位維持のためのN型拡散層9が設けられ、該N型拡散
層9は電源の高電位側Vddに接続される。
An N-type diffusion layer 9 for maintaining a potential is provided around the P-type diffusion resistance layer 3 and the P-type diffusion layer 7, and the N-type diffusion layer 9 is connected to the high potential side Vdd of the power supply.

前記N型拡散層8の周囲には電位維持のためのP型拡散
層10が前記P型拡散層7と接続するように設けられ、
該P型拡散層10は電源の低電位側Vssに接続され
る。尚16はSiOからなる酸化絶縁膜である。
A P-type diffusion layer 10 for maintaining a potential is provided around the N-type diffusion layer 8 so as to be connected to the P-type diffusion layer 7.
The P-type diffusion layer 10 is connected to the low potential side Vss of the power supply. Reference numeral 16 is an oxide insulating film made of SiO 2 .

上記の保護回路に於て、前記外部端子1に高電位Vdd
よりも高い電圧が印加された場合、第3図の矢印で示す
如く、前記P型拡散抵抗層3からN型基板11に対して
キャリアが注入される。このキャリアは前記N型拡散層
9により吸収されなければならないのであるが、注入さ
れたキャリアの数が多いと、該キャリアの一部は前記N
型拡散層9の外側に流れ出す。このN型拡散層9の外側
に流れ出たキャリアの一部は前記P型拡散層7に捕捉さ
れるが、それ以外は保護回路の外へ流れ出て、他の回路
例えば不揮発性メモリー等を構成している部分に達す
る。ここに電位がしっかりとは固定されていないP型拡
散層が有ると、該P型拡散層は流れ込むキャリアにより
電位が上昇し、更に該P型拡散層内に、低い電位に接続
されたN型拡散層は有ると、このP型拡散層とN型拡散
層とによるPN接合部に電流が流れる事により、ラッチ
アップ現象を引き起す事になる。
In the above protection circuit, the high potential Vdd is applied to the external terminal 1.
When a higher voltage is applied, carriers are injected from the P-type diffusion resistance layer 3 into the N-type substrate 11 as shown by the arrow in FIG. This carrier must be absorbed by the N-type diffusion layer 9. However, if the number of injected carriers is large, a part of the carrier will be absorbed by the N-type diffusion layer 9.
It flows out to the outside of the mold diffusion layer 9. Some of the carriers flowing out of the N-type diffusion layer 9 are captured by the P-type diffusion layer 7, but the other carriers flow out of the protection circuit to form another circuit such as a non-volatile memory. Reach the part that is. If there is a P-type diffusion layer whose potential is not firmly fixed, the potential of the P-type diffusion layer rises due to the carriers flowing into the P-type diffusion layer, and the N-type diffusion layer connected to a low potential is further present in the P-type diffusion layer. If there is a diffusion layer, a current will flow in the PN junction between the P-type diffusion layer and the N-type diffusion layer, which will cause a latch-up phenomenon.

そこで本発明は上記の欠点を防ぐための保護回路を提供
するものである。第4図は本発明を理解するため模式的
構造として示した断面図であって、前記N型拡散層9の
外側にP型拡散層12を設ける事により、キャリアの発
散を防ぐ構造を示すものである。即ち前記高濃度のN型
拡散層9の外側に設けられた前記P型拡散層12は後述
の如くいずれかの電源に接続され、前記N型拡散層9に
補足されずに該N型拡散層9の更に外側に発散したキャ
リアを効果的に補足しキャリアの迷走を阻止する。この
場合、前記P型拡散層3、前記N型基板11、前記P型
拡散層12がラテラルPNPトランジスターを形成する
事は明らかである。即ち前記P型拡散層3がエミッタ
ー、前記N型基板11がベース、前記P型拡散層12が
コレクターとして作用し、従って該拡散層12のキャリ
ア補足能力は極めて強力なものとなる。
Therefore, the present invention provides a protection circuit for preventing the above-mentioned drawbacks. FIG. 4 is a cross-sectional view showing a schematic structure for understanding the present invention, showing a structure for preventing carrier divergence by providing a P-type diffusion layer 12 outside the N-type diffusion layer 9. Is. That is, the P-type diffusion layer 12 provided outside the high-concentration N-type diffusion layer 9 is connected to any power source as described later and is not captured by the N-type diffusion layer 9. It effectively captures the carriers that diverge further outside 9 and prevents the carriers from straying. In this case, it is clear that the P-type diffusion layer 3, the N-type substrate 11, and the P-type diffusion layer 12 form a lateral PNP transistor. That is, the P-type diffusion layer 3 acts as an emitter, the N-type substrate 11 acts as a base, and the P-type diffusion layer 12 acts as a collector, so that the carrier trapping ability of the diffusion layer 12 becomes extremely strong.

前記P型拡散層3、前記N型基板11、前記P型拡散層
12をラテラルPNPトランジスターとして効率よく作
用させるため、前記N型基板11内に於いて前記P型拡
散層3と前記P型拡散層12との間に前記高濃度のN型
拡散層9が介在しない通路部分を有する如く構成する事
が必要であり、第4図ではこの通路部分は前記N型拡散
層9の下側に形成されている。
In order to allow the P-type diffusion layer 3, the N-type substrate 11, and the P-type diffusion layer 12 to efficiently act as a lateral PNP transistor, the P-type diffusion layer 3 and the P-type diffusion layer are formed in the N-type substrate 11. It is necessary to form a passage portion between the layer 12 and the high-concentration N-type diffusion layer 9, and this passage portion is formed below the N-type diffusion layer 9 in FIG. Has been done.

第4図に於いては前記P型拡散層12を形成する工程が
前記P型拡散層7と同一である場合を示した。この場
合、該P型拡散層12を該P型拡散層7の一部とする事
が出来、その実施例を第5図に示す。また前記P型拡散
層12を前記P型拡散層7とは異なる工程で作成したP
型拡散層12aとしても良く、この実施例を第6図に示
す。また前記P型拡散層12は前記P型拡散層7の一部
でない場合は、該P型拡散層12の電位は前記P型拡散
層7とは異なる電位とする事が出来、この実施例を第6
図に併せて示す。
FIG. 4 shows the case where the process of forming the P-type diffusion layer 12 is the same as that of the P-type diffusion layer 7. In this case, the P-type diffusion layer 12 can be a part of the P-type diffusion layer 7, and an example thereof is shown in FIG. Further, the P-type diffusion layer 12 is formed by a process different from that of the P-type diffusion layer 7.
The type diffusion layer 12a may be used, and this embodiment is shown in FIG. When the P-type diffusion layer 12 is not a part of the P-type diffusion layer 7, the potential of the P-type diffusion layer 12 can be different from that of the P-type diffusion layer 7. Sixth
It is also shown in the figure.

第5図は本発明の一実施例である保護回路の構造を示す
平面図であって、第1図に於ける高電位側Vddに接続
されたN型拡散層9の一部を切断し、その開口部を利用
して前記P型拡散層7を伸長した伸長部7aを形成し、
更にこの伸長部7aは、第5図に示す如くP型拡散抵抗
層3を囲む前記N型拡散層9の外側をガードするよう構
成されている。
FIG. 5 is a plan view showing the structure of a protection circuit according to an embodiment of the present invention, in which a part of the N-type diffusion layer 9 connected to the high potential side Vdd in FIG. 1 is cut off, Using the opening, an extended portion 7a is formed by extending the P-type diffusion layer 7,
Further, the extending portion 7a is configured to guard the outside of the N-type diffusion layer 9 surrounding the P-type diffusion resistance layer 3 as shown in FIG.

第6図は本発明の他の実施例である保護回路の構造を示
す平面図であって、前記P型拡散層12を前記P型拡散
層7とは異なる工程で作成したP型拡散層12aとし、
かつ前記P型拡散層7とは分離して設けたものであり、
P型拡散層3の外側を囲むN型拡散層9の更に外側をP
型拡散層12aで囲む構造となっている。この場合該P
型拡散層12aは低電位Vss又は高電位Vddのいず
れかに接続される。
FIG. 6 is a plan view showing a structure of a protection circuit according to another embodiment of the present invention, in which the P-type diffusion layer 12 is formed by a process different from that of the P-type diffusion layer 7. age,
And is provided separately from the P-type diffusion layer 7,
The outside of the N type diffusion layer 9 surrounding the outside of the P type diffusion layer 3 is P
The structure is surrounded by the type diffusion layer 12a. In this case the P
The type diffusion layer 12a is connected to either the low potential Vss or the high potential Vdd.

ところで、図6において前記P型拡散層12a(または
12、以下同じ)の電位をVddとすべきかVssとす
べきかは問題のあるところである。一般には、電位が低
い方が迷走キャリアの捕捉能力は高いと(若干ではある
が)はずであるから当然Vssとすべきだとの結論とな
ろう。しかしながら本願発明になる強力は保護回路を必
要とする場合には、外部から印加される雑音電圧が極め
て大きなエネルギーを有する場合がある。例えば圧電ブ
ザーに接続された集積回路の出力端子には、圧電ブザー
は機械的衝撃を受けたときに発生する起電力が印加され
るが、このエネルギーは集積回路の通常のアルミニュー
ム配線を溶融する程大きい。
By the way, there is a problem in FIG. 6 whether the potential of the P-type diffusion layer 12a (or 12, the same applies hereinafter) should be Vdd or Vss. In general, it should be concluded that the lower the potential, the higher the trapping ability of the stray carrier is (albeit slightly), so Vss should be set. However, when the strong protection circuit according to the present invention is required, the noise voltage applied from the outside may have extremely large energy. For example, an electromotive force generated when the piezoelectric buzzer is subjected to a mechanical shock is applied to the output terminal of the integrated circuit connected to the piezoelectric buzzer, and this energy melts the normal aluminum wiring of the integrated circuit. Big enough.

このような大きなエネルギーが外部端子1が正となる向
きに印加されたとすると、本願発明になる保護回路の働
きにより、極めて大きな電流が前記P型拡散層12aに
流れ込む事になる。周知のように集積回路内の電源線の
抵抗は0ではないから、この大電流は該P型拡散層12
aに接続された電源線の電位を正の方向に変動させる事
になる。この場合該電源線がVssの場合はP型拡散層
12aの近傍局部のVssが瞬間的に上昇する事によ
り、この近傍にある回路に印加される電源が短絡された
状況に陥る。
If such a large energy is applied in the direction in which the external terminal 1 is positive, an extremely large current will flow into the P-type diffusion layer 12a by the function of the protection circuit according to the present invention. As is well known, the resistance of the power supply line in the integrated circuit is not zero, so this large current is generated by the P-type diffusion layer 12
The potential of the power supply line connected to a is changed in the positive direction. In this case, when the power supply line is Vss, Vss in the local area near the P-type diffusion layer 12a instantaneously rises, and the power applied to the circuit in the vicinity is short-circuited.

相補型MOS集積回路においては各論理ゲートの入力端
には微少な入力容量が存在し、この容量の電荷保持機能
により電源が遮断(開路)した場合でも数msの期間で
有れば開路の状態は記憶され、電源が復帰すれば引き続
き正常動作が可能である。しかし電源が短絡された場合
は事情が異なる。すなわち当該論理ゲートの入力端に接
続されたMOSトランジスタのドレインと電源線の間に
は必ずダイオードが存在するため、電源短絡時には前記
入力容量を蓄えられていた電荷は前記ダイオードを介し
て電源に放電され、一瞬の内に状態の記憶が失われてし
まうのである。従って電源が正常に復帰しても回路の動
作の継続性は失われ、時計用回路等のような連続動作が
重要回路では致命的な故障に至ってしまうのである。
In the complementary MOS integrated circuit, there is a minute input capacitance at the input end of each logic gate, and even if the power is cut off (open) by the charge holding function of this capacitance, it is in the open state if it is a period of several ms. Is stored, and normal operation can be continued when the power is restored. However, the situation is different when the power supply is short-circuited. That is, since the diode is always present between the drain of the MOS transistor connected to the input end of the logic gate and the power supply line, the charge stored in the input capacitance is discharged to the power supply through the diode when the power supply is short-circuited. The memory of the state is lost in an instant. Therefore, the continuity of the operation of the circuit is lost even if the power source returns to the normal state, and the continuous operation such as the clock circuit causes a fatal failure in the important circuit.

一方前記P型拡散層12aに接続された電源線がVdd
の場合はP型拡散層12a近傍のVddが瞬間的に上昇
するが、この場合は前記入力容量による状態記憶作用が
失われる事がないため、電源が正常に復帰すれば回路の
動作の継続性が保たれるのである。
On the other hand, the power line connected to the P-type diffusion layer 12a is Vdd
In this case, Vdd in the vicinity of the P-type diffusion layer 12a rises momentarily, but in this case, the state memorizing action due to the input capacitance is not lost. Therefore, if the power is restored to normal, the continuity of the circuit operation is continued. Is maintained.

すなわち前記P型拡散層12aに接続する電源線は保護
回路としての機能のみでなく、保護回路が動作したとき
の回路全体の動作を考慮して決めなければならない。
That is, the power supply line connected to the P-type diffusion layer 12a must be determined in consideration of not only the function of the protection circuit but also the operation of the entire circuit when the protection circuit operates.

もし前記P型拡散層12aに接続する電源線をVddと
すべきならば、本願発明の保護回路は図6に示した構
造、すなわち新たなガード用のP型拡散層12aは少な
くともP型拡散層7とは独立して設ける構造としなけれ
ばならない。
If the power supply line connected to the P-type diffusion layer 12a should be Vdd, the protection circuit of the present invention has the structure shown in FIG. 6, that is, the new guard P-type diffusion layer 12a is at least the P-type diffusion layer. The structure must be provided independently of 7.

一方、もし新たなガード用のP型拡散層に接続する電源
線をVssとすべきならば、本願発明の保護回路は図5
に示した構造、すなわち新たなカード用のP型拡散層7
aを少なくともP型拡散層7と共通にする構造、及び図
6に示した構造のどちらでも良い事になる。しかし、図
6に示す構造は新たなガード用のP型拡散層12aとP
型拡散層7との分離を必要とするのであるから、配線面
積も含めて必然的に大きな余分な面積を必要とし、集積
度の低下を招いてしまう。
On the other hand, if the power supply line connected to the new P-type diffusion layer for guard should be Vss, the protection circuit of the present invention is shown in FIG.
The structure shown in FIG. 2, that is, the P-type diffusion layer 7 for a new card
Either a structure in which a is at least shared with the P-type diffusion layer 7 or the structure shown in FIG. 6 is acceptable. However, the structure shown in FIG. 6 has a new P-type diffusion layer 12a and P
Since it needs to be separated from the type diffusion layer 7, a large extra area is inevitably required including the wiring area, and the degree of integration is reduced.

この観点から新たなガード用のP型拡散層に接続する電
源線をVssとするならば図5の構造、すなわち新たな
P型拡散層7aの中にN型拡散層8を設ける構造を取る
べきである。
From this viewpoint, if the power supply line connected to the new guard P-type diffusion layer is Vss, the structure of FIG. 5, that is, the structure of providing the N-type diffusion layer 8 in the new P-type diffusion layer 7a should be adopted. Is.

なお第5図、第6図に於いて、前記P型拡散層3は従来
の保護回路の代表例にのっとり、ダイオード機能の他、
抵抗機能をも有する如くに記載した。しかしながら本発
明による保護回路は従来にない強力な保護能力を有する
ため、場合によっては抵抗機能を配線抵抗等のみとして
該P型拡散層3の抵抗機能を省略し、ダイオード機能の
みを担わせる事で保護機能を満足する事が考えられる。
上記説明に於いて明らかな如く、本発明は前記P型拡散
層3のダイオード機能により、前記N型基板11に流れ
出すキャリアの補足に関係するものであり、該P型拡散
層3の抵抗機能とは直接関係がないから、該P型拡散層
3に抵抗機能がない場合に於いても本発明の実施により
保護機能が向上する事は言うまでもない。即ち、例えば
第5図に於いて前記第1のコンタクト部2と前記第2の
コンタクト部4が共通であっても本発明の実施による作
用は変わらず、上記の説明に何等の変更も必要がない事
は明らかである。
In FIGS. 5 and 6, the P-type diffusion layer 3 is a typical example of a conventional protection circuit and has a diode function,
It is described as having a resistance function. However, since the protection circuit according to the present invention has a strong protection capability which has not been available in the past, the resistance function of the P-type diffusion layer 3 may be omitted and the diode function may be performed only in some cases by making the resistance function only the wiring resistance or the like. It is possible to satisfy the protection function.
As apparent from the above description, the present invention relates to the supplement of carriers flowing out to the N-type substrate 11 by the diode function of the P-type diffusion layer 3, and the resistance function of the P-type diffusion layer 3 It is needless to say that the protection function is improved by implementing the present invention even when the P-type diffusion layer 3 does not have a resistance function, since it is not directly related to. That is, for example, in FIG. 5, even if the first contact portion 2 and the second contact portion 4 are common, the operation by the practice of the present invention does not change, and it is necessary to change the above description. It's clear that nothing is.

以上本発明によれば外部端子1に高電圧を印加しても回
路がラッチアップする事がなく、信頼性が著しく向上す
るため、実施による効果が大である。なお上記説明にお
いては、説明の都合上、前記基板11及び該基板11に
設けられている各拡散層に付き、それぞれP型若しくは
N型を明示したが、当業者で有れば容易に行える若干の
分言の修正(例えば電源の高電位と低電位の読み替え
等)を行えば、本発明は、上記説明中「P」としたとこ
ろを「N」、「N」としたところを「P」と置き換えて
も成立する事は明らかである。従って特許請求の範囲に
於いては、P型、N型に何れか一方を第1導伝型、他の
一方を第2導伝型と表現し、また第5図に示した実施例
に於ける記号7a、及び第6図に於ける記号12aは、
ともに第4図に於ける記号12に相当し、単に前記拡散
層12の態様が第4図の場合とは異なる事を表したにす
ぎず、従って特許請求の範囲に於いては第4図に於ける
記号12以外に、第5図に於ける記号7a、第6図に於
ける記号12a等の態様を含めて拡散層12と表現す
る。
As described above, according to the present invention, the circuit does not latch up even if a high voltage is applied to the external terminal 1, and the reliability is significantly improved. In the above description, for convenience of description, the substrate 11 and each diffusion layer provided on the substrate 11 are described as P-type or N-type, respectively, but can be easily understood by those skilled in the art. According to the present invention, if the phrase is corrected (for example, the high potential and the low potential of the power source are replaced), the present invention will be replaced with “N” for “P” and “P” for “N”. It is clear that it will hold even if replaced with. Therefore, in the claims, one of the P type and the N type is referred to as a first conductive type and the other is referred to as a second conductive type, and in the embodiment shown in FIG. The symbol 7a and the symbol 12a in FIG. 6 are
Both of them correspond to the symbol 12 in FIG. 4 and merely show that the mode of the diffusion layer 12 is different from that in FIG. 4, and accordingly, in the claims, FIG. In addition to the symbol 12 in FIG. 5, it is expressed as the diffusion layer 12 including aspects such as the symbol 7a in FIG. 5 and the symbol 12a in FIG.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の保護回路の構造を示す平面図、第2図は
従来の保護回路の構造を示す断面図、第3図は従来の保
護回路の欠点を説明するため模式的に構造を示した断面
図である。第4図は本発明の主旨を説明するため保護回
路の構造を模式的に示した断面図、第5図は本発明の一
実施例である保護回路の構造を示す平面図、第6図は本
発明の他の実施例である保護回路の構造を示す平面図で
ある。 1……外部端子、 3、7、12、12a……P型拡散層、 7a……伸長部、9……N型拡散層、 11……N型基板、
FIG. 1 is a plan view showing the structure of a conventional protection circuit, FIG. 2 is a cross-sectional view showing the structure of a conventional protection circuit, and FIG. 3 is a schematic view for explaining the defects of the conventional protection circuit. FIG. FIG. 4 is a sectional view schematically showing the structure of a protection circuit for explaining the gist of the present invention, FIG. 5 is a plan view showing the structure of the protection circuit which is one embodiment of the present invention, and FIG. It is a top view which shows the structure of the protection circuit which is another Example of this invention. 1 ... External terminal, 3,7,12,12a ... P type diffusion layer, 7a ... extension part, 9 ... N type diffusion layer, 11 ... N type substrate,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】外部端子1を第1導伝型の基板11に設け
た第2導伝型の拡散層3に接続し、該拡散層3は更に前
記基板11に設けた第2導伝型の拡散層7内に設けた第
1導伝型の拡散層8に接続し、前記拡散層3の側面周囲
の少なくとも1部に高濃度の第1導伝型拡散層9を設け
てこれを第1の電源に接続し、前記拡散層7を第2の電
源に接するとともに、更に前記拡散層9の側面周囲の少
なくとも一部に前記拡散層7とは分離した第2導伝型の
拡散層12を設けてなるMOS集積回路の保護回路に於
いて、該拡散層12を前記第1の電源線に接続した事を
特徴とする保護回路。
1. An external terminal 1 is connected to a second conductive type diffusion layer 3 provided on a first conductive type substrate 11, and the diffusion layer 3 is further provided on the substrate 11 as a second conductive type. Connected to the first conductive type diffusion layer 8 provided in the diffusion layer 7, and a high-concentration first conductive type diffusion layer 9 is provided on at least a part of the periphery of the side surface of the diffusion layer 3. The second conductive type diffusion layer 12 is connected to the first power source, the diffusion layer 7 is in contact with the second power source, and the side surface of the diffusion layer 9 is at least partially separated from the diffusion layer 7. A protection circuit for a MOS integrated circuit, wherein the diffusion layer 12 is connected to the first power supply line.
【請求項2】外部端子1を第1導伝型の基板11に設け
た第2導伝型の拡散層3に接続し、該拡散層3は更に前
記基板11に設けた第2導伝型の拡散層7内に設けた第
1導伝型の拡散層8に接続し、前記拡散層3の側面周囲
の少なくとも1部に高濃度の第1導伝型拡散層9を設け
てこれを第1の電源に接続し、前記拡散層7を第2の電
源に接続するとともに、更に前記拡散層9の側面周囲の
少なくとも一部に、第2導伝型の拡散層12を設けてな
るMOS集積回路の保護回路に於いて、該拡散層12を
前記拡散層7の1部とした事を特徴とする保護回路。
2. An external terminal 1 is connected to a second conductive type diffusion layer 3 provided on a first conductive type substrate 11, and the diffusion layer 3 is further provided on the substrate 11 as a second conductive type. Connected to the first conductive type diffusion layer 8 provided in the diffusion layer 7, and a high-concentration first conductive type diffusion layer 9 is provided on at least a part of the periphery of the side surface of the diffusion layer 3. 1 is connected to a power source, the diffusion layer 7 is connected to a second power source, and a second conductive type diffusion layer 12 is further provided on at least a part of the side surface of the diffusion layer 9. A protection circuit for a circuit, wherein the diffusion layer 12 is a part of the diffusion layer 7.
JP57069640A 1982-04-27 1982-04-27 Protection circuit Expired - Lifetime JPH0636424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57069640A JPH0636424B2 (en) 1982-04-27 1982-04-27 Protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57069640A JPH0636424B2 (en) 1982-04-27 1982-04-27 Protection circuit

Publications (2)

Publication Number Publication Date
JPS58186969A JPS58186969A (en) 1983-11-01
JPH0636424B2 true JPH0636424B2 (en) 1994-05-11

Family

ID=13408656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57069640A Expired - Lifetime JPH0636424B2 (en) 1982-04-27 1982-04-27 Protection circuit

Country Status (1)

Country Link
JP (1) JPH0636424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138381A (en) * 1983-01-28 1984-08-08 Nec Corp Integrated circuit
JP6461725B2 (en) * 2015-06-22 2019-01-30 ラピスセミコンダクタ株式会社 Semiconductor device and control method of internal circuit

Also Published As

Publication number Publication date
JPS58186969A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
US4300152A (en) Complementary field-effect transistor integrated circuit device
US6573566B2 (en) Low-voltage-triggered SOI-SCR device and associated ESD protection circuit
US4616243A (en) Gate protection for a MOSFET
US4849801A (en) Semiconductor memory device having increased capacitance for the storing nodes of the memory cells
JPS6245706B2 (en)
KR100305440B1 (en) Semiconductor integrated circuit device
US4143391A (en) Integrated circuit device
JPH0144021B2 (en)
EP0066429A2 (en) Semiconductor memory
US4320409A (en) Complementary field-effect transistor integrated circuit device
KR100226508B1 (en) Semiconductor device having pull-up or pull-down resistor
EP0184222B1 (en) Mos type integrated circuit having charging and discharging transistors
JPH0878624A (en) Semiconductor device
JPH0636424B2 (en) Protection circuit
JPH07335894A (en) Semiconductor device
JPH044755B2 (en)
JPH0878536A (en) Complementary device using thin film transistor with improved electric current driving
US5371023A (en) Gate circuit, semiconductor integrated circuit device and method of fabrication thereof, semiconductor memory and microprocessor
JP2968836B2 (en) Semiconductor substrate potential generation circuit
JPH0144023B2 (en)
JPH0456465B2 (en)
JP2569004B2 (en) Semiconductor integrated circuit device
JPH0656850B2 (en) Semiconductor device
JP2623641B2 (en) Semiconductor storage device
JPH09306999A (en) Semiconductor device