JPH0636367A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0636367A
JPH0636367A JP19205792A JP19205792A JPH0636367A JP H0636367 A JPH0636367 A JP H0636367A JP 19205792 A JP19205792 A JP 19205792A JP 19205792 A JP19205792 A JP 19205792A JP H0636367 A JPH0636367 A JP H0636367A
Authority
JP
Japan
Prior art keywords
magnetic layer
recording medium
magnetic
rare earth
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19205792A
Other languages
Japanese (ja)
Inventor
Takashi Tokunaga
隆志 徳永
Yoshiyuki Nakagi
義幸 中木
Kazuhiko Tsutsumi
和彦 堤
Tatsuya Fukami
達也 深見
Yuji Kawano
裕司 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19205792A priority Critical patent/JPH0636367A/en
Publication of JPH0636367A publication Critical patent/JPH0636367A/en
Priority to US08/209,258 priority patent/US5547751A/en
Priority to US08/543,517 priority patent/US5593791A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the exchange power between 1st and 2nd magnetic layers and to enhance recording and reproducing characteristics and productivity by forming a magnetic layer for controlling exchange power with a rare earth metal-transition metal alloy in which the magnetization of the sub-lattices of the rare earth metal is predominant. CONSTITUTION:This magneto-optical recording medium has a magnetic layer for controlling exchange power formed between the 1st and 2nd magnetic layers 13, 14 with a rare earth metal-transition metal alloy in which the magnetization of the sub-lattices of the rare earth metal is predominant. The saturation magnetization of the alloy at room temp. is 200-550emu/cm<3>. The thickness of the magnetic layer for controlling exchange power is <=400Angstrom , the rare earth metal is essentially based on Gd and the transition metal includes at least one of Fe and Co. The exchange power between the 1st and 2nd magnetic layers can be effectively controlled and recording and reproducing characteristics and productivity can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光変調ダイレクト・
オーバーライト可能な光磁気記録媒体に係り、特に記録
再生特性ならびに生産性の向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to an overwritable magneto-optical recording medium, and more particularly to improvement of recording / reproducing characteristics and productivity.

【0002】[0002]

【従来の技術】図4は例えば特開平3−219449号
公報に示された従来の光磁気記録媒体を示す構成図、図
5は図4に示す光磁気記録媒体への記録を行う記録装置
の概要を示す斜視図である。図において、1は基板、2
はこの基板1上に形成され垂直磁気異方性を有する第1
磁性層、3はこの第1磁性層2に設けられ交換力で第1
磁性層2と結合される第2磁性層、4は第3磁性層、5
は第4磁性層で、これら1〜5で記録媒体10を構成し
ている。6は記録媒体10を回転駆動する駆動モータ、
7はレーザ光8を出射する半導体レーザ、9は半導体レ
ーザ7から出射されるレーザ光8を集光し、記録媒体1
0上に入射する集光レンズ、11はバイアス磁界を発生
させるバイアス磁石である。
2. Description of the Related Art FIG. 4 is a block diagram showing a conventional magneto-optical recording medium disclosed in, for example, Japanese Patent Laid-Open No. 3-219449, and FIG. 5 shows a recording device for recording on the magneto-optical recording medium shown in FIG. It is a perspective view which shows an outline. In the figure, 1 is a substrate, 2
Is formed on the substrate 1 and has a perpendicular magnetic anisotropy.
The magnetic layers 3 are provided on the first magnetic layer 2 and are exchanged with each other to make the first
The second magnetic layer 4 coupled to the magnetic layer 2 is the third magnetic layer 5
Is a fourth magnetic layer, and the recording medium 10 is composed of these 1 to 5. 6 is a drive motor for rotationally driving the recording medium 10,
Reference numeral 7 is a semiconductor laser that emits a laser beam 8, and 9 is a laser beam 8 that is emitted from the semiconductor laser 7 and is focused on the recording medium 1.
A condenser lens that is incident on 0 and a bias magnet 11 that generates a bias magnetic field.

【0003】次に、上記のように構成される従来の光磁
気記録媒体のオーバーライト動作について説明する。ま
ず、記録媒体10は成膜後、第2〜第4磁性層3、4、
5の遷移金属副格子磁気モーメントを最初に一度だけ下
向きに配向させておき、バイアス磁界はバイアス磁石1
1により上向きに発生させる。図6において、白抜き矢
印は磁化を、白抜き矢印中の矢印または単独で示す矢印
は遷移金属副格子磁気モーメントを、斜線部は各磁性層
間で磁壁が生じている状態を、横棒線はキュリー温度以
上に昇温し強磁性が失われている状態をそれぞれ示して
いる。
Next, the overwrite operation of the conventional magneto-optical recording medium having the above structure will be described. First, after the recording medium 10 is formed, the second to fourth magnetic layers 3, 4,
The transition metal sublattice magnetic moment of No. 5 is first oriented downward only once, and the bias magnetic field is
1 raises upward. In FIG. 6, a white arrow indicates magnetization, an arrow in the white arrow or an arrow shown alone indicates a transition metal sublattice magnetic moment, a shaded portion indicates a state in which domain walls are generated between the magnetic layers, and a horizontal bar indicates The states in which the temperature is raised above the Curie temperature and the ferromagnetism is lost are shown.

【0004】図6(A)において、まず、半導体レーザ
7の出力を再生時より上昇させ、レーザ光8の集光スポ
ット内の各磁性層を第1磁性層2のキュリー温度近傍ま
で昇温させると、第2磁性層3の副格子磁化方向は変化
せず、第2磁性層3の副格子磁化が第1磁性層2に転写
され、第1磁性層2の副格子磁化は下向きになる。この
とき、第3および第4磁性層4、5は動作に対して特に
寄与することはなく、第3磁性層4の磁化が消失しても
第4磁性層5との交換力で再び同方向に磁化され、状態
「0」、すなわち低パワープロセスが行われる。
In FIG. 6A, first, the output of the semiconductor laser 7 is made higher than that at the time of reproduction, and each magnetic layer in the focused spot of the laser beam 8 is heated to near the Curie temperature of the first magnetic layer 2. Then, the sub-lattice magnetization direction of the second magnetic layer 3 does not change, the sub-lattice magnetization of the second magnetic layer 3 is transferred to the first magnetic layer 2, and the sub-lattice magnetization of the first magnetic layer 2 faces downward. At this time, the third and fourth magnetic layers 4 and 5 do not particularly contribute to the operation, and even if the magnetization of the third magnetic layer 4 disappears, the third magnetic layer 4 and 5 again move in the same direction by the exchange force with the fourth magnetic layer 5. Magnetized to state "0", a low power process.

【0005】又、図6(B)において、第2磁性層3の
キュリー温度近傍まで上記低パワープロセスと同様にし
て昇温させると、第1および第3磁性層2、4の磁化は
消失するが、第4磁性層5の副格子磁化方向は変化しな
い。そして、第1および第3磁性層2、4からの交換力
を受けず、第2磁性層3の副格子磁化はバイアス磁界に
より上向きになる。次に、第1磁性層2のキュリー温度
より降温させると、第2磁性層3の副格子磁化が第1磁
性層2に転写され、第1磁性層2の副格子磁化は上向き
になる。又、第3磁性層4のキュリー温度より降温させ
ると、第3磁性層4の副格子磁化は第4磁性層5と揃い
下向きになる。さらに温度が下がり第2磁性層3の副格
子磁化は第3磁性層4を介して第4磁性層5の副格子磁
化と揃い下向きとなって、状態「1」、すなわち高パワ
ープロセスが行われる。以上のようにして、記録レーザ
強度を少なくとも2値に変調することでオーバーライト
が可能になる。
Further, in FIG. 6B, when the temperature is raised to near the Curie temperature of the second magnetic layer 3 in the same manner as in the low power process, the magnetizations of the first and third magnetic layers 2 and 4 disappear. However, the sublattice magnetization direction of the fourth magnetic layer 5 does not change. Then, the sublattice magnetization of the second magnetic layer 3 is directed upward by the bias magnetic field without receiving the exchange force from the first and third magnetic layers 2 and 4. Next, when the temperature is lowered from the Curie temperature of the first magnetic layer 2, the sub-lattice magnetization of the second magnetic layer 3 is transferred to the first magnetic layer 2, and the sub-lattice magnetization of the first magnetic layer 2 is directed upward. When the temperature is lowered below the Curie temperature of the third magnetic layer 4, the sub-lattice magnetization of the third magnetic layer 4 is aligned with the fourth magnetic layer 5 and faces downward. As the temperature further decreases, the sub-lattice magnetization of the second magnetic layer 3 is aligned downward with the sub-lattice magnetization of the fourth magnetic layer 5 through the third magnetic layer 4, and the state "1", that is, the high power process is performed. . As described above, overwriting becomes possible by modulating the recording laser intensity into at least two values.

【0006】又、図7は特開平2−121103号公報
に示されるように、交換力を制御する磁性層を有する従
来の光磁気記録媒体の構成図であり、記録媒体10は図
に示すように、第1磁性層2と第2磁性層3との間に、
希土類優勢金属膜でなり交換力を制御する第5磁性層1
2を有している。そして、この記録媒体20に光変調ダ
イレクトオーバーライトを行う場合は、第2磁性層3の
副格子磁化の向きを予め一方向に揃えておかなければな
らないために、図5に示したバイアス磁石11の他に、
初期化過程のために数KOeもの磁界強度を発生する外
部補助磁界装置13が必要となる。
FIG. 7 is a block diagram of a conventional magneto-optical recording medium having a magnetic layer for controlling exchange force, as shown in Japanese Patent Laid-Open No. 121103/1990, and the recording medium 10 is as shown in the figure. And between the first magnetic layer 2 and the second magnetic layer 3,
Fifth magnetic layer 1 made of rare earth-dominant metal film and controlling exchange force
Have two. When the optical modulation direct overwrite is performed on the recording medium 20, the direction of the sub-lattice magnetization of the second magnetic layer 3 must be aligned in one direction in advance, so that the bias magnet 11 shown in FIG. Others,
An external auxiliary magnetic field device 13 for generating a magnetic field strength of several KOe is required for the initialization process.

【0007】[0007]

【発明が解決しようとする課題】従来の光磁気記録媒体
は以上のように構成されており、第1磁性層2を第2磁
性層3の遷移金属副格子磁化の方向に揃える温度では、
第1磁性層2と第2磁性層3との間の交換力が強いた
め、室温近傍での初期化過程では外部補助磁界装置13
により交換力を弱くする必要があるので装置として複雑
になり、又、交換力を弱くするためには第1および第2
磁性層2、3の膜厚を厚くしなければならない等の理由
で、第1および第2磁性層2、3の膜厚の作成マージン
が狭くなり安定して生産することが困難である等の問題
点があった。
The conventional magneto-optical recording medium is configured as described above, and at a temperature at which the first magnetic layer 2 is aligned with the direction of the transition metal sublattice magnetization of the second magnetic layer 3,
Since the exchange force between the first magnetic layer 2 and the second magnetic layer 3 is strong, the external auxiliary magnetic field device 13 is used during the initialization process near room temperature.
Therefore, it is necessary to weaken the exchange force, which complicates the device, and in order to weaken the exchange force, the first and second
For example, because the magnetic layers 2 and 3 must be made thicker, the margin for creating the film thicknesses of the first and second magnetic layers 2 and 3 is narrowed, and stable production is difficult. There was a problem.

【0008】この発明は上記のような問題点を解消する
ためになされたもので、装置を複雑化することなく第1
磁性層と第2磁性層との間の交換力を効果的に制御し
て、記録、再生特性ならびに生産性の向上を図ることが
可能な光磁気記録媒体を提供することを目的とするもの
である。
The present invention has been made in order to solve the above-mentioned problems, and the first aspect of the present invention does not complicate the apparatus.
An object of the present invention is to provide a magneto-optical recording medium capable of effectively controlling the exchange force between the magnetic layer and the second magnetic layer to improve the recording / reproducing characteristics and the productivity. is there.

【0009】[0009]

【課題を解決するための手段】この発明に係る請求項1
の光磁気記録媒体は、第1磁性層と第2磁性層との間に
室温での飽和磁化が200〜550emu/cm3で希
土類副格子磁化優勢な希土類−遷移金属合金でなる交換
力制御用の磁性層を設けたものであり、又、請求項2の
光磁気記録媒体は、請求項1において交換力制御用の磁
性層の膜厚を400オングストローム以下として、希土
類金属はCdを主成分とし遷移金属には少なくともFe
またはCoのいずれか一方を含むようにしたものであ
る。
[Means for Solving the Problems] Claim 1 according to the present invention
Is a rare earth-transition metal alloy having a saturation magnetization at room temperature of 200 to 550 emu / cm 3 between the first magnetic layer and the second magnetic layer and having a rare earth sublattice magnetization dominant. The magneto-optical recording medium according to claim 2 is the magneto-optical recording medium according to claim 1, wherein the magnetic layer for exchange force control has a thickness of 400 angstroms or less, and the rare earth metal is Cd as a main component. At least Fe for the transition metal
Alternatively, either one of Co and Co is included.

【0010】[0010]

【作用】この発明における光磁気記録媒体の交換力制御
用の磁性層は、第1磁性層と第2磁性層との間の交換力
を効果的に制御する。
The magnetic layer for controlling the exchange force of the magneto-optical recording medium according to the present invention effectively controls the exchange force between the first magnetic layer and the second magnetic layer.

【0011】[0011]

【実施例】【Example】

実施例1.以下、この発明の実施例を図について説明す
る。図1はこの発明の実施例1における光磁気記録媒体
を示す構成図である。図において、11はバイアス磁界
を発生させるバイアス磁石、12はガラスまたはプラス
チックの透明基板、13ないし16は互いに交換結合さ
れた第1磁性層、第2磁性層、第3磁性層および第4磁
性層、17は第1磁性層13と第2磁性層14との間に
設けられ、両磁性層13、14間の交換力を制御する第
5の磁性層で、これら各磁性層13〜17は透明基板1
2上に順次スパッタ法により成膜され記録媒体20を構
成している。なお、図示はしないがこのように形成され
た磁性層は誘電体層および保護層により両側から挟持さ
れている。
Example 1. Embodiments of the present invention will be described below with reference to the drawings. 1 is a block diagram showing a magneto-optical recording medium according to Embodiment 1 of the present invention. In the figure, 11 is a bias magnet for generating a bias magnetic field, 12 is a glass or plastic transparent substrate, and 13 to 16 are exchange-coupled first magnetic layer, second magnetic layer, third magnetic layer and fourth magnetic layer. , 17 is a fifth magnetic layer which is provided between the first magnetic layer 13 and the second magnetic layer 14 and controls the exchange force between the magnetic layers 13 and 14, and these magnetic layers 13 to 17 are transparent. Board 1
The recording medium 20 is formed by sequentially depositing films on the film 2 by sputtering. Although not shown, the magnetic layer thus formed is sandwiched from both sides by the dielectric layer and the protective layer.

【0012】以下に上記各構成部材の詳細を示す。 基板12 :1.2mmt溝付きPC基板 誘電体層 :SiNX 第1磁性層13:TbFeCo3元系非晶質合金 Tb24Fe72Co4 膜厚:300オングストローム 第5磁性層17:GdFeCo3元系非晶質合金 Gd30Fe49Co21 膜厚:150オングストローム [飽和磁化Ms=456emu/cm3] 第2磁性層14:DyFeCo3元系非晶質合金 Dy25Fe45Co30 膜厚:500オングストローム 第3磁性層15:TbFe2元系非晶質合金 Tb18Fe84 膜厚:200オングストローム 第4磁性層16:TbCo2元系非晶質合金 Tb30Co70 膜厚:400オングストローム 保護層 :SiNX The details of each of the above components will be described below. Substrate 12: PC substrate with 1.2 mmt groove Dielectric layer: SiN x First magnetic layer 13: TbFeCo ternary amorphous alloy Tb 24 Fe 72 Co 4 film thickness: 300 angstrom Fifth magnetic layer 17: GdFeCo ternary non Crystalline alloy Gd 30 Fe 49 Co 21 Film thickness: 150 Å [Saturation magnetization Ms = 456 emu / cm 3 ] Second magnetic layer 14: DyFeCo ternary amorphous alloy Dy 25 Fe 45 Co 30 Film thickness: 500 angstrom Third Magnetic layer 15: TbFe binary amorphous alloy Tb 18 Fe 84 film thickness: 200 angstrom Fourth magnetic layer 16: TbCo binary binary amorphous alloy Tb 30 Co 70 film thickness: 400 angstrom protective layer: SiN x

【0013】上記のように構成された記録媒体20を用
い、ビット長2μmの信号上にビット長0.76μmの
信号を、線速11m/sec、印加磁界300Oe、光
ビーム強度を13mWと5mWで光変調して、光変調ダ
イレクトオーバーライトの動作確認を行った結果、消去
比45dB以上でCN比47dBが得られた。図2は第
5磁性層17の飽和磁化Msを変化させた場合のビット
長0.76μm(記録周波数4.93MHz、線速度
7.5m/sec)におけるCN比の飽和磁化Ms依存
性を示す。図からも明かなように、第5磁性層17の飽
和磁化Msが200〜550emu/cm3において、
45dB以上の良好なCN比が得られた。このときの第
5磁性層17の膜厚は200オングストロームであっ
た。すなわち、第5磁性層17に200emu/cm3
以下の飽和磁化Msのものを用いた場合は、第1および
第2磁性層13、14間の交換力を十分に制御できずノ
イズレベルが上昇し、又、550emu/cm3以上の
飽和磁化Msのものを用いた場合は、交換力の不足によ
り光変調ダイレクトオーバーライト記録後の消去比が低
下することによりCN比が劣化する。
Using the recording medium 20 configured as described above, a signal having a bit length of 2 μm, a signal having a bit length of 0.76 μm, a linear velocity of 11 m / sec, an applied magnetic field of 300 Oe, and light beam intensities of 13 mW and 5 mW are used. As a result of performing optical modulation and confirming the operation of the optical modulation direct overwrite, a CN ratio of 47 dB was obtained at an erasing ratio of 45 dB or more. FIG. 2 shows the saturation magnetization Ms dependence of the CN ratio at a bit length of 0.76 μm (recording frequency 4.93 MHz, linear velocity 7.5 m / sec) when the saturation magnetization Ms of the fifth magnetic layer 17 is changed. As is clear from the figure, when the saturation magnetization Ms of the fifth magnetic layer 17 is 200 to 550 emu / cm 3 ,
A good CN ratio of 45 dB or more was obtained. At this time, the film thickness of the fifth magnetic layer 17 was 200 Å. That is, 200 emu / cm 3 is applied to the fifth magnetic layer 17.
When the following saturation magnetization Ms is used, the exchange force between the first and second magnetic layers 13 and 14 cannot be sufficiently controlled and the noise level rises, and the saturation magnetization Ms of 550 emu / cm 3 or more is used. In the case of using No. 1, the CN ratio is deteriorated because the erasing ratio after the optical modulation direct overwrite recording is lowered due to the lack of exchange power.

【0014】図3は第1および第2の磁性層13、14
間の室温における交換力σwの第5磁性層17の飽和磁
化Ms依存性を示す。図に示すように、交換力σwは飽
和磁化Msの上昇とともに減少し、又、第5磁性層17
の膜厚が厚くなると低下する。これは第5磁性層17の
垂直磁気異方性エネルギーの低下で説明される。これよ
り第1および第2磁性層13、14間の室温での交換力
σwは、第5磁性層17に高飽和磁化膜を用いること、
および膜厚をより薄くすることにより低下することが明
確である。なお、低飽和磁化膜でも膜厚を厚くすること
により交換力σwを低下させることはできるが、総膜厚
が厚くなることにより記録感度が低下してしまう。例え
ば、第5磁性層17に200emu/cm3程度の膜を
用いた場合、交換力の制御のため第5磁性層17の膜厚
を厚くする必要があるが記録感度において400オング
ストロームが実用上問題のない上限の膜厚である。従っ
て、高飽和磁化膜を用いる方が第5磁性膜17の膜を薄
くすることができ記録感度において望ましい。以上によ
り、第5磁性層17としては飽和磁化Msと膜厚tを考
慮すると、Ms×t<10-3emu/cm3が望まし
い。
FIG. 3 shows the first and second magnetic layers 13 and 14.
The dependence of the exchange force σw at room temperature during this period on the saturation magnetization Ms of the fifth magnetic layer 17 is shown. As shown in the figure, the exchange force σw decreases as the saturation magnetization Ms increases, and the fifth magnetic layer 17
The film thickness decreases as the film thickness increases. This is explained by the reduction of the perpendicular magnetic anisotropy energy of the fifth magnetic layer 17. From this, the exchange force σw at room temperature between the first and second magnetic layers 13 and 14 is that a high saturation magnetization film is used for the fifth magnetic layer 17,
And it is clear that the film thickness is reduced by making it thinner. The exchange force σw can be reduced by increasing the film thickness even with a low saturation magnetization film, but the recording sensitivity is deteriorated by increasing the total film thickness. For example, when a film of about 200 emu / cm 3 is used for the fifth magnetic layer 17, it is necessary to increase the thickness of the fifth magnetic layer 17 to control the exchange force, but 400 angstrom is a practical problem in recording sensitivity. There is no upper limit film thickness. Therefore, it is preferable to use the high saturation magnetization film because the thickness of the fifth magnetic film 17 can be made thinner and the recording sensitivity is improved. From the above, considering the saturation magnetization Ms and the film thickness t, the fifth magnetic layer 17 is preferably Ms × t <10 −3 emu / cm 3 .

【0015】[0015]

【発明の効果】以上のように、この発明によれば第1磁
性層と第2磁性層との間に、室温での飽和磁化が200
〜550emu/cm3で希土類副格子磁化優勢な希土
類−遷移金属合金でなる交換力制御用の磁性層とを備
え、又、交換力制御用の磁性層の膜厚を400オングス
トローム以下とし、且つ希土類金属はCdを主成分とし
遷移金属には少なくともFeまたはCoのいずれか一方
を含有させることにより、第1磁性層と第2磁性層との
間の交換力を効果的に制御して、記録、再生特性ならび
に生産性の向上を図ることが可能な光磁気記録媒体を提
供することができる。
As described above, according to the present invention, the saturation magnetization at room temperature is 200 between the first magnetic layer and the second magnetic layer.
A magnetic layer for controlling the exchange force, which is made of a rare earth-transition metal alloy in which the rare earth sublattice magnetization is dominant at 550 emu / cm 3 , and the thickness of the magnetic layer for controlling the exchange force is 400 angstroms or less, and the rare earth When the metal is Cd as a main component and the transition metal contains at least one of Fe and Co, the exchange force between the first magnetic layer and the second magnetic layer is effectively controlled, and recording, It is possible to provide a magneto-optical recording medium capable of improving reproduction characteristics and productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1における光磁気記録媒体を
示す構成図である。
FIG. 1 is a configuration diagram showing a magneto-optical recording medium according to a first embodiment of the present invention.

【図2】第5磁性層の飽和磁化Msを変化させた場合に
おけるCN比の飽和磁化Ms依存性を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing the dependency of the CN ratio on the saturation magnetization Ms when the saturation magnetization Ms of the fifth magnetic layer is changed.

【図3】第1および第2磁性層間の室温における交換力
σwの第5磁性層の飽和磁化Ms依存性を示す特性図で
ある。
FIG. 3 is a characteristic diagram showing the dependency of the exchange force σw between the first and second magnetic layers at room temperature on the saturation magnetization Ms of the fifth magnetic layer.

【図4】従来の光磁気記録媒体を示す構成図である。FIG. 4 is a block diagram showing a conventional magneto-optical recording medium.

【図5】図4に示す光磁気記録媒体への記録を行う記録
装置の概要を示す斜視図である。
5 is a perspective view showing an outline of a recording device for recording on the magneto-optical recording medium shown in FIG.

【図6】図4に示す光磁気記録媒体への記録動作を説明
するための模式図である。
FIG. 6 is a schematic diagram for explaining a recording operation on the magneto-optical recording medium shown in FIG.

【図7】従来の交換力を制御する磁性層を有する光磁気
記録媒体を示す構成図である。
FIG. 7 is a block diagram showing a conventional magneto-optical recording medium having a magnetic layer for controlling exchange force.

【符号の説明】[Explanation of symbols]

1、12 基板 2、13 第1磁性層 3、14 第2磁性層 4、15 第3磁性層 5、16 第4磁性層 7 半導体レーザ 8 レーザ光 9 集光レンズ 10、20 記録媒体 11 バイアス磁石 17 第5磁性層(交換力調整用の磁性層) 1, 12 Substrate 2, 13 First magnetic layer 3, 14 Second magnetic layer 4, 15 Third magnetic layer 5, 16 Fourth magnetic layer 7 Semiconductor laser 8 Laser light 9 Condensing lens 10, 20 Recording medium 11 Bias magnet 17 Fifth magnetic layer (magnetic layer for exchange force adjustment)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月10日[Submission date] November 10, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】又、図7は特開平2−121103号公報
に示されるように、交換力を制御する磁性層を有する従
来の光磁気記録媒体の構成図であり、記録媒体10は図
に示すように、第1磁性層2と第2磁性層3との間に、
希土類優勢金属膜でなり交換力を制御する第5磁性層1
2を有している。そして、この記録媒体20に光変調ダ
イレクトオーバーライトを行う場合は、第2磁性層3の
副格子磁化の向きを予め一方向に揃えておかなければな
らないために、図5に示したバイアス磁石11の他に、
初期化過程のために数kOeもの磁界強度を発生する外
部補助磁界装置13が必要となる。
FIG. 7 is a block diagram of a conventional magneto-optical recording medium having a magnetic layer for controlling exchange force, as shown in Japanese Patent Laid-Open No. 121103/1990, and the recording medium 10 is as shown in the figure. And between the first magnetic layer 2 and the second magnetic layer 3,
Fifth magnetic layer 1 made of rare earth-dominant metal film and controlling exchange force
Have two. When the optical modulation direct overwrite is performed on the recording medium 20, the direction of the sub-lattice magnetization of the second magnetic layer 3 must be aligned in one direction in advance, so that the bias magnet 11 shown in FIG. Others,
An external auxiliary magnetic field device 13 that generates a magnetic field strength of several kOe is required for the initialization process.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【課題を解決するための手段】この発明に係る請求項1
の光磁気記録媒体は、第1磁性層と第2磁性層との間に
室温での飽和磁化が200〜550emu/cm3で希
土類副格子磁化優勢な希土類−遷移金属合金でなる交換
力制御用の磁性層を設けたものであり、又、請求項2の
光磁気記録媒体は、請求項1において交換力制御用の磁
性層の膜厚を400オングストローム以下として、希土
類金属はGdを主成分とし遷移金属には少なくともFe
またはCoのいずれか一方を含むようにしたものであ
る。
[Means for Solving the Problems] Claim 1 according to the present invention
Is a rare earth-transition metal alloy having a saturation magnetization at room temperature of 200 to 550 emu / cm 3 between the first magnetic layer and the second magnetic layer and having a rare earth sublattice magnetization dominant. In the magneto-optical recording medium according to claim 2, the magnetic layer for controlling exchange force has a thickness of 400 angstroms or less, and the rare earth metal contains Gd as a main component. At least Fe for the transition metal
Alternatively, either one of Co and Co is included.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】以下に上記各構成部材の詳細を示す。 基板12 :1.2mmt溝付きPC基板 誘電体層 :SiNX 第1磁性層13:TbFeCo3元系非晶質合金 Tb24Fe72Co4 膜厚:300オングストローム 第5磁性層17:GdFeCo3元系非晶質合金 Gd30Fe49Co21 膜厚:150オングストローム [飽和磁化Ms=456emu/cm3] 第2磁性層14:DyFeCo3元系非晶質合金 Dy25Fe45Co30 膜厚:500オングストローム 第3磁性層15:TbFe2元系非晶質合金Tb16 Fe84 膜厚:200オングストローム 第4磁性層16:TbCo2元系非晶質合金 Tb30Co70 膜厚:400オングストローム 保護層 :SiN The details of each of the above components will be described below. Substrate 12: PC substrate with 1.2 mmt groove Dielectric layer: SiN x First magnetic layer 13: TbFeCo ternary amorphous alloy Tb 24 Fe 72 Co 4 film thickness: 300 angstrom Fifth magnetic layer 17: GdFeCo ternary non Crystalline alloy Gd 30 Fe 49 Co 21 Film thickness: 150 Å [Saturation magnetization Ms = 456 emu / cm 3 ] Second magnetic layer 14: DyFeCo ternary amorphous alloy Dy 25 Fe 45 Co 30 Film thickness: 500 angstrom Third Magnetic layer 15: TbFe binary amorphous alloy Tb 16 Fe 84 Film thickness: 200 angstrom Fourth magnetic layer 16: TbCo binary binary amorphous alloy Tb 30 Co 70 Film thickness: 400 angstrom Protective layer: SiN X

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】図3は第1および第2の磁性層13、14
間の室温における交換力を決める界面磁壁エネルギーσ
w(以下、交換力σw)の第5磁性層17の飽和磁化M
s依存性を示す。図に示すように、交換力σwは飽和磁
化Msの上昇とともに減少し、又、第5磁性層17の膜
厚が厚くなると低下する。これは第5磁性層17の垂直
磁気異方性エネルギーの低下で説明される。これより第
1および第2磁性層13、14間の室温での交換力σw
は、第5磁性層17に高飽和磁化膜を用いること、およ
び膜厚をより厚くすることにより低下することが明確で
ある。なお、低飽和磁化膜でも膜厚を厚くすることによ
り交換力σwを低下させることはできるが、総膜厚が厚
くなることにより記録感度が低下してしまう。例えば、
第5磁性層17に200emu/cm程度の膜を用い
た場合、交換力の制御のため第5磁性層17の膜厚を厚
くする必要があるが記録感度において400オングスト
ロームが実用上問題のない上限の膜厚である。従って、
高飽和磁化膜を用いる方が第5磁性膜17の膜を薄くす
ることができ記録感度において望ましい。以上により、
第5磁性層17としては飽和磁化Msと膜厚tを考慮す
ると、Ms×t<10-3emu/cm3が望ましい。
FIG. 3 shows the first and second magnetic layers 13 and 14.
Interfacial domain wall energy σ that determines the exchange force at room temperature between
The saturation magnetization M of the fifth magnetic layer 17 having w (hereinafter, exchange force σw)
Shows s dependency. As shown in the figure, the exchange force σw decreases as the saturation magnetization Ms increases, and also decreases as the thickness of the fifth magnetic layer 17 increases. This is explained by the reduction of the perpendicular magnetic anisotropy energy of the fifth magnetic layer 17. From this, the exchange force σw between the first and second magnetic layers 13 and 14 at room temperature
It is the use of a high saturation magnetization film to a fifth magnetic layer 17, and it is clear that reduced by thicker film thickness. The exchange force σw can be reduced by increasing the film thickness even with a low saturation magnetization film, but the recording sensitivity is deteriorated by increasing the total film thickness. For example,
When a film of about 200 emu / cm 3 is used for the fifth magnetic layer 17, it is necessary to increase the thickness of the fifth magnetic layer 17 to control the exchange force, but 400 angstrom is practically no problem in recording sensitivity. This is the upper limit film thickness. Therefore,
It is preferable to use a high saturation magnetization film because the thickness of the fifth magnetic film 17 can be made thinner and the recording sensitivity is improved. From the above,
Considering the saturation magnetization Ms and the film thickness t, the fifth magnetic layer 17 preferably has Ms × t <10 −3 emu / cm 3 .

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】[0015]

【発明の効果】以上のように、この発明によれば第1磁
性層と第2磁性層との間に、室温での飽和磁化が200
〜550emu/cm3で希土類副格子磁化優勢な希土
類−遷移金属合金でなる交換力制御用の磁性層とを備
え、又、交換力制御用の磁性層の膜厚を400オングス
トローム以下とし、且つ希土類金属はGdを主成分とし
遷移金属には少なくともFeまたはCoのいずれか一方
を含有させることにより、第1磁性層と第2磁性層との
間の交換力を効果的に制御して、記録、再生特性ならび
に生産性の向上を図ることが可能な光磁気記録媒体を提
供することができる。
As described above, according to the present invention, the saturation magnetization at room temperature is 200 between the first magnetic layer and the second magnetic layer.
A magnetic layer for controlling the exchange force, which is made of a rare earth-transition metal alloy in which the rare earth sublattice magnetization is dominant at 550 emu / cm 3 , and the thickness of the magnetic layer for controlling the exchange force is 400 angstroms or less, and the rare earth The metal is Gd as a main component, and the transition metal contains at least one of Fe and Co to effectively control the exchange force between the first magnetic layer and the second magnetic layer for recording, It is possible to provide a magneto-optical recording medium capable of improving reproduction characteristics and productivity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深見 達也 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 (72)発明者 川野 裕司 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料デバイス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuya Fukami 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Material Device Research Center (72) Inventor Yuji Kawano 8-1-1 Tsukaguchihonmachi, Amagasaki Mitsubishi Electric Device Co., Ltd. Material Device Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 垂直磁気異方性を有する第1磁性層と、
この第1磁性層に設けられ上記第1磁性層と交換力で結
合された第2磁性層と、上記第1磁性層と第2磁性層と
の間に設けられ室温での飽和磁化が200〜550em
u/cm3で希土類副格子磁化優勢な希土類−遷移金属
合金でなる交換力制御用の磁性層とを備えたことを特徴
とする光磁気記録媒体。
1. A first magnetic layer having perpendicular magnetic anisotropy,
A second magnetic layer provided on the first magnetic layer and coupled to the first magnetic layer by exchange force, and a saturation magnetization at room temperature of 200 to 200 provided between the first magnetic layer and the second magnetic layer. 550em
A magneto-optical recording medium comprising a magnetic layer for controlling exchange force, which is made of a rare earth-transition metal alloy having a rare earth sublattice magnetization predominant at u / cm 3 .
【請求項2】 交換力制御用の磁性層の膜厚は400オ
ングストローム以下であり、希土類金属はCdを主成分
とし遷移金属には少なくともFeまたはCoのいずれか
一方が含まれていることを特徴とする請求項1記載の光
磁気記録媒体。
2. The film thickness of the magnetic layer for controlling the exchange force is 400 angstroms or less, the rare earth metal is Cd as a main component, and the transition metal contains at least one of Fe and Co. The magneto-optical recording medium according to claim 1.
JP19205792A 1992-04-10 1992-07-20 Magneto-optical recording medium Pending JPH0636367A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19205792A JPH0636367A (en) 1992-07-20 1992-07-20 Magneto-optical recording medium
US08/209,258 US5547751A (en) 1992-04-10 1994-03-14 Magneto-optical recording medium and method of manufacturing the same
US08/543,517 US5593791A (en) 1992-04-10 1995-10-16 Magneto-optical recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19205792A JPH0636367A (en) 1992-07-20 1992-07-20 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH0636367A true JPH0636367A (en) 1994-02-10

Family

ID=16284903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19205792A Pending JPH0636367A (en) 1992-04-10 1992-07-20 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0636367A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117645A (en) * 1989-10-25 1992-04-17 Nec Corp Magneto-optical recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04117645A (en) * 1989-10-25 1992-04-17 Nec Corp Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
EP0496556B1 (en) Magneto-optical recording
JP3519293B2 (en) Magneto-optical recording medium, reproducing method of magneto-optical recording medium, magneto-optical recording and reproducing apparatus
US5343449A (en) Over-write capable magnetooptical recording medium having reading layer
JPH0542062B2 (en)
JPH0636367A (en) Magneto-optical recording medium
KR950003184B1 (en) Magneto-optical recording medium
US5949743A (en) Magnetooptical recording medium having a bias layer related by Curie temperature to a writing layer, which is capable of being overwritten by light modulation
JP2888218B2 (en) Magneto-optical recording medium
JP2941486B2 (en) Magneto-optical recording medium
JP2770835B2 (en) Method for manufacturing magneto-optical recording medium
JP2815034B2 (en) Method for manufacturing magneto-optical recording medium
JPH0714230A (en) Magneto-optical recording medium and its reproduction method
JP2570948B2 (en) Optical recording method
JP2770836B2 (en) Method for manufacturing magneto-optical recording medium
KR930010474B1 (en) Manufacturing method of optical magnetic materials
JP2707796B2 (en) Magneto-optical recording medium
JP2531327B2 (en) Magneto-optical recording medium
JP3592399B2 (en) Magneto-optical recording medium
JP2782957B2 (en) Magneto-optical recording medium
JPH06309708A (en) Magneto-optical recording medium
JPH06103631A (en) Overwritable magneto-optical recording and reproducing method and magneto-optical recording device used in this method and magneto-optical recording medium
JPH06309710A (en) Magneto-optical recording medium
JPH04192135A (en) Magneto-optical recording medium
JPH087884B2 (en) Magneto-optical recording method
JPH07192330A (en) Magneto-optical recording medium