JPH0635956B2 - Air-fuel ratio detector for internal combustion engine - Google Patents

Air-fuel ratio detector for internal combustion engine

Info

Publication number
JPH0635956B2
JPH0635956B2 JP61048078A JP4807886A JPH0635956B2 JP H0635956 B2 JPH0635956 B2 JP H0635956B2 JP 61048078 A JP61048078 A JP 61048078A JP 4807886 A JP4807886 A JP 4807886A JP H0635956 B2 JPH0635956 B2 JP H0635956B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61048078A
Other languages
Japanese (ja)
Other versions
JPS62203057A (en
Inventor
哲正 山田
暢博 早川
和憲 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61048078A priority Critical patent/JPH0635956B2/en
Publication of JPS62203057A publication Critical patent/JPS62203057A/en
Publication of JPH0635956B2 publication Critical patent/JPH0635956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、排気中の酸素濃度から内燃機関に供給された
燃料混合気の空燃比を検出する、内燃機関の空燃比検出
装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an air-fuel ratio detection device for an internal combustion engine, which detects the air-fuel ratio of a fuel mixture supplied to the internal combustion engine from the oxygen concentration in the exhaust gas. is there.

[従来の技術] 従来より、排気中の酸素濃度から内燃機関の空燃比を検
出する空燃比センサとして、例えば特開昭59−178
354号に記載の如く、酸素イオン伝導性の固体電解質
両面に多孔質電極が形成された2個の検出素子を、間隙
を介して対向配設してなる空燃比センサのように、各検
出素子の一方の多孔質電極を排気の拡散が制限されたガ
ス拡散制限室に接して配設することによって形成された
空燃比センサが知られている。
[Prior Art] Conventionally, as an air-fuel ratio sensor for detecting the air-fuel ratio of an internal combustion engine from the oxygen concentration in exhaust gas, for example, Japanese Patent Laid-Open No. 59-178.
As described in No. 354, each detection element such as an air-fuel ratio sensor in which two detection elements having porous electrodes formed on both surfaces of an oxygen ion conductive solid electrolyte are opposed to each other with a gap therebetween. There is known an air-fuel ratio sensor formed by disposing one of the porous electrodes in contact with a gas diffusion limiting chamber in which the diffusion of exhaust gas is limited.

またこの種の空燃比センサには、一方の検出素子を酸素
濃淡電池素子、他方の検出素子を酸素ポンプ素子として
動作させ、酸素濃淡電池素子両端の電極に生ずる電圧が
一定となるよう酸素ポンプ素子に流れる電流を制御し、
その電流値から空燃比を検出するよう構成された検出回
路、あるいは酸素ポンプ素子に一定の電流を流し、酸素
濃淡電池素子両端の電極に生ずる電圧から空燃比を検出
するよう構成された検出回路が備えられ、これによって
空燃比が検出できるようにされている。つまり上記空燃
比センサと検出回路とで空燃比検出装置が構成され、各
部の動作によって空燃比が検出できるようにされている
のである。
In addition, in this type of air-fuel ratio sensor, one of the detection elements is operated as an oxygen concentration cell element and the other detection element is operated as an oxygen pump element so that the voltage generated at the electrodes at both ends of the oxygen concentration cell element becomes constant. Control the current flowing through
A detection circuit configured to detect the air-fuel ratio from the current value, or a detection circuit configured to apply a constant current to the oxygen pump element and detect the air-fuel ratio from the voltage generated across the electrodes of the oxygen concentration cell element. It is provided so that the air-fuel ratio can be detected. That is, the air-fuel ratio sensor and the detection circuit constitute an air-fuel ratio detecting device, and the air-fuel ratio can be detected by the operation of each part.

そしてこの種の空燃比検出装置は、その検出結果に基づ
き、空燃比が例えば理論空燃比等の目標空燃比になるよ
う、内燃機関に供給される燃料量を補正する、内燃機関
の空燃比制御装置に用いられる。従って空燃比検出装置
は内燃機関が理論空燃比等の目標空燃比に制御されてい
る排気中で動作されることとなり、その動作中にはガス
拡散制限室内の排気も目標空燃比に対応した、HC,C
O,O2 等の少ないガス成分となる。
Then, this type of air-fuel ratio detection apparatus corrects the amount of fuel supplied to the internal combustion engine based on the detection result so that the air-fuel ratio becomes the target air-fuel ratio such as the theoretical air-fuel ratio. Used in equipment. Therefore, the air-fuel ratio detection device is operated in the exhaust gas in which the internal combustion engine is controlled to the target air-fuel ratio such as the theoretical air-fuel ratio, and during that operation, the exhaust gas in the gas diffusion limited chamber also corresponds to the target air-fuel ratio, HC, C
It becomes a small gas component such as O and O2.

[発明が解決しようとする問題点] ところが上記従来の空燃比検出装置は、空燃比制御装置
で空燃比制御が実行されない、いわゆるオープンループ
制御時には、空燃比の検出が不要であることから動作さ
れず、空燃比センサのガス拡散制限室内の排気が目標空
燃比に対応しないガス成分となってしまい、その後空燃
比制御に移行した直後の空燃比の検出が良好に実行でき
ないといった問題があった。
[Problems to be Solved by the Invention] However, the above-described conventional air-fuel ratio detection device is operated because it is not necessary to detect the air-fuel ratio during so-called open-loop control in which air-fuel ratio control is not executed by the air-fuel ratio control device. However, there is a problem that the exhaust gas in the gas diffusion limiting chamber of the air-fuel ratio sensor becomes a gas component that does not correspond to the target air-fuel ratio, and the detection of the air-fuel ratio immediately after shifting to the air-fuel ratio control cannot be performed well.

つまり例えば内燃機関の始動時や加速運転時等には燃料
の増量制御が実行され、空燃比制御を実行しないオープ
ンループ制御となるのであるが、このとき空燃比はリッ
チとなって、ガス拡散制限室内の排気もCOやHCが多
いリッチガスとなることから、ガス拡散制限室内部の多
孔質電極にCO,HC等のリッチガスが吸着してしま
い、その後燃料の増量制御を中止して空燃比を目標空燃
比に制御する通常の制御に移行し、排気が目標空燃比近
傍の排気成分に変化しても、上記電極に吸着したリッチ
ガスが取り除かるまでの間空燃比検出装置による空燃比
の検出を良好に実行することができず、空燃比制御を速
やかに実行することができなかったのである。尚この問
題は燃料増量補正等による空燃比リッチ時だけでなく、
内燃機関の原則運転時等に実行される燃料カット制御に
よって空燃比がリーン域に制御された場合にも同様に起
こる。これは空燃比リーン時には排気中の酸素が多くな
り、ガス拡散制限室内の多孔質電極に酸素が吸着し、酸
化されてしまうからである。
That is, for example, when the internal combustion engine is started or during acceleration operation, the fuel amount increase control is executed, and the open-loop control is performed without executing the air-fuel ratio control. Since the exhaust gas in the room also becomes a rich gas with a large amount of CO and HC, rich gas such as CO and HC is adsorbed to the porous electrode inside the gas diffusion restriction chamber, and then the fuel increase control is stopped and the air-fuel ratio is targeted. Good control of air-fuel ratio by the air-fuel ratio detection device until the rich gas adsorbed on the electrode is removed even if the exhaust gas changes to the exhaust gas component near the target air-fuel ratio after shifting to normal control to control the air-fuel ratio. Therefore, the air-fuel ratio control could not be executed promptly. This problem is not limited to when the air-fuel ratio is rich due to fuel increase correction, etc.
The same occurs when the air-fuel ratio is controlled to the lean range by the fuel cut control executed during the principle operation of the internal combustion engine. This is because when the air-fuel ratio is lean, the amount of oxygen in the exhaust increases, and oxygen is adsorbed and oxidized by the porous electrode inside the gas diffusion limiting chamber.

そこで本発明は、空燃比制御を実行しないオープンルー
プ制御時に、ガス拡散制限室内の多孔質電極にリッチガ
スや酸素が吸着するのを防止し、オープンループ制御か
ら空燃比制御に切り替わった時点で速やかに良好に空燃
比を検出できる内燃機関の空燃比検出装置を提供するこ
とを目的としてなされたものであって、以下の如き構成
をとった。
Therefore, the present invention prevents the rich gas and oxygen from being adsorbed to the porous electrode in the gas diffusion limiting chamber during the open loop control in which the air-fuel ratio control is not executed, and promptly when the open-loop control is switched to the air-fuel ratio control. The present invention has been made for the purpose of providing an air-fuel ratio detection device for an internal combustion engine that can detect the air-fuel ratio satisfactorily, and has the following configuration.

[問題点を解決するための手段] 即ち上記問題点を解決するための手段としての本発明の
構成は、 酸素イオン伝導性の固体電解質両面に一対の多孔質電極
を積層してなる2個の検出素子、及び該各検出素子の一
方の多孔質電極と接して形成され、排気の拡散が制限さ
れたガス拡散制限室、を有する空燃比センサと、 上記2個の検出素子のうち、一方の検出素子を酸素濃淡
電池素子、他方の検出素子を酸素ポンプ素子、として動
作させ、排気中の酸素濃度に応じた空燃比信号を出力す
る空燃比信号出力手段と、 を備え、内燃機関の空燃比制御実行中に当該内燃機関に
供給された燃料混合気の空燃比を検出する、内燃機関の
空燃比検出装置において、 上記内燃機関の空燃比制御停止時に、該内燃機関に供給
される燃料混合気の空燃比がリッチであるかリーンであ
るかを判別する判別手段と、 該判別手段の判別結果に応じて、上記酸素ポンプ素子に
所定の電流を供給する電流供給手段と、 を設けたことを特徴とする内燃機関の空燃比検出装置を
要旨としている。
[Means for Solving the Problems] That is, the constitution of the present invention as a means for solving the above problems is that two pairs of porous electrodes are laminated on both surfaces of an oxygen ion conductive solid electrolyte. One of the two detection elements, and an air-fuel ratio sensor having a detection element and a gas diffusion limiting chamber that is formed in contact with one porous electrode of each of the detection elements and in which diffusion of exhaust gas is limited. An air-fuel ratio signal output means for operating the detection element as an oxygen concentration cell element and the other detection element as an oxygen pump element to output an air-fuel ratio signal according to the oxygen concentration in the exhaust gas. In an air-fuel ratio detection device for an internal combustion engine, which detects an air-fuel ratio of a fuel mixture supplied to the internal combustion engine during control execution, a fuel mixture supplied to the internal combustion engine when the air-fuel ratio control of the internal combustion engine is stopped. Rich air-fuel ratio The internal combustion engine is characterized in that it is provided with a discrimination means for discriminating between the presence and the lean state, and a current supply means for supplying a predetermined current to the oxygen pump element according to the discrimination result of the discrimination means. The main point is an air-fuel ratio detector.

ここで検出素子に使用される酸素イオン伝導性固体電解
質としては、ジルコニアとイットリアの固溶体、あるい
はジルコニアとカルシアとの固溶体等が代表的なもので
あり、その他二酸化セリウム、二酸化トリウム、二酸化
ハフニウムの各固溶体、ペロブスカイト型酸化物固溶
体、3価金属酸化物固溶体等も使用可能である。
As the oxygen ion conductive solid electrolyte used in the detection element here, a solid solution of zirconia and yttria, or a solid solution of zirconia and calcia is typical, and other cerium dioxide, thorium dioxide, and hafnium dioxide A solid solution, a perovskite type oxide solid solution, a trivalent metal oxide solid solution and the like can also be used.

またその固体電解質両面に設けられる多孔質電極として
は、酸化反応の触媒作用を有する白金やロジウム等を用
いればよく、その形成方法としては、これらの金属粉末
を主成分としてこれに固体電解質と同じセラミック材料
の粉末を混合してペースト化し、厚膜技術を用いて印刷
後、焼結して形成する方法、あるいはフレーム溶射、化
学メッキ、蒸着等の薄膜技術を用いて形成する方法等が
挙げられる。尚、この多孔質電極は測定ガス、即ち排気
に直接接することから、上記電極層に更に、アルミナ、
スピネル、ジルコニア、ムライト等の多孔質保護層を厚
膜技術を用いて形成することが好ましい。
As the porous electrodes provided on both sides of the solid electrolyte, platinum or rhodium, which has a catalytic action for the oxidation reaction, may be used. Examples include a method in which powder of a ceramic material is mixed and made into a paste, which is printed by using a thick film technique and then sintered and formed, or a method in which a thin film technique such as flame spraying, chemical plating or vapor deposition is used. . Since the porous electrode is in direct contact with the measurement gas, that is, exhaust gas, the electrode layer is further provided with alumina,
It is preferable to form a porous protective layer of spinel, zirconia, mullite or the like using a thick film technique.

このように形成された2個の検出素子は、夫々、一方の
多孔質電極が排気の拡散が制限されたガス拡散制限室に
接して設けられ、一方の検出素子が酸素濃淡電池素子、
他方の検出素子が酸素ポンプ素子として用いられる。そ
してこの種の空燃比センサとしては、従来より2個の検
出素子をガス拡散制御室としての間隙を介して対向配設
してなる空燃比センサが知られている。
In the two detection elements thus formed, one porous electrode is provided in contact with the gas diffusion limiting chamber in which diffusion of exhaust gas is limited, and one detection element is an oxygen concentration cell element,
The other detection element is used as an oxygen pump element. As this type of air-fuel ratio sensor, an air-fuel ratio sensor in which two detection elements are arranged to face each other with a gap as a gas diffusion control chamber is known.

またこの種の空燃比センサとして、近年では、得られる
検出特性が排気中の酸素濃度に応じて連続的に変化し、
あらゆる領域で空燃比が良好に検出できるよう、酸素濃
淡電池素子として用いる検出素子のガス拡散制限室とは
接しない多孔質電極側に大気が導入される大気導入室を
形成してなる空燃比センサや、同じくこの電極側に、酸
素を漏出するための漏出抵抗部を介して外部又はガス拡
散制限室と連通された内部基準酸素源を形成してなる空
燃比センサ等が考えられているが、この種の空燃比セン
サにおいても当該発明を適用することができる。尚上記
後者の空燃比センサの場合、酸素濃淡電池素子に一定の
電流を流してガス拡散制限室内の酸素を他方の電極側に
汲み込むことによって、内部基準酸素源の酸素が一定に
保たれ、酸素濃淡電子素子両端の電極間にはガス拡散制
限室内の酸素ガス分圧と内部基準酸素源の酸素ガス分圧
との比に応じた電圧が生ずることとなる。
Further, as an air-fuel ratio sensor of this kind, in recent years, the obtained detection characteristics continuously change according to the oxygen concentration in the exhaust gas,
In order to detect the air-fuel ratio well in all areas, the air-fuel ratio sensor is formed by forming the atmosphere introduction chamber where the atmosphere is introduced on the porous electrode side that is not in contact with the gas diffusion limiting chamber of the detection element used as the oxygen concentration cell element. Or, similarly, on this electrode side, an air-fuel ratio sensor or the like formed by forming an internal reference oxygen source communicated with the outside or a gas diffusion limiting chamber through a leakage resistance portion for leaking oxygen is considered, The present invention can also be applied to this type of air-fuel ratio sensor. Incidentally, in the case of the latter air-fuel ratio sensor, by supplying a constant current to the oxygen concentration battery element to pump oxygen in the gas diffusion limiting chamber to the other electrode side, the oxygen of the internal reference oxygen source is kept constant, A voltage corresponding to the ratio of the partial pressure of oxygen gas in the gas diffusion limiting chamber to the partial pressure of oxygen gas in the internal reference oxygen source is generated between the electrodes at both ends of the oxygen concentration electronic device.

次に上記ガス拡散制限室とは、排気を拡散制限的に導入
する室のことであって、従来技術の項で述べたように2
個の検出素子部を間隙を介して対向配設した場合、この
間隙がガス拡散制限室となるが、この他ガス拡散制限室
としては、例えば2個の検出素子部の間にAl
スピネル、フォルステライト、ステアタイト、ジルコニ
ア等からなる中空のスペーサを挟み、ガス拡散制限部と
してこのスペーサの一部に周囲の測定ガス雰囲気と測定
ガス室とを連通させる孔を設けることによっても形成す
ることができる。
Next, the gas diffusion limiting chamber is a chamber into which exhaust gas is introduced in a diffusion limited manner, and as described in the section of the prior art, 2
When the individual detection element units are arranged to face each other with a gap therebetween, the gap serves as a gas diffusion limiting chamber. As the other gas diffusion limiting chamber, for example, Al 2 O 3 is provided between the two detection element units. ,
It is also formed by sandwiching a hollow spacer made of spinel, forsterite, steatite, zirconia, or the like, and providing a hole for communicating the surrounding measurement gas atmosphere with the measurement gas chamber as a gas diffusion restriction part in a part of this spacer. be able to.

電流供給手段は、判別手段が動作される内燃機関の空燃
比制御停止時、即ち空燃比信号出力手段による空燃比セ
ンサの動作停止時に、酸素ポンプ素子として用いられる
検出素子に、判別手段の判別結果に応じた方向で所定の
電流を流す。これは空燃比制御の停止によって空燃比が
リーン又はリッチとなり、空燃比サンサのガス拡散制限
室内の多孔算電極に酸素や、HC,CO等が吸着するの
を防止するためのものであって、空燃比リーン時にはガ
ス拡散制限室内の酸素を外部に汲み出す方向に電流を流
し、空燃比リッチ時にはガス拡散制限室内に酸素を汲み
込む方向に電流を流すことによって実現される。
The current supply means, when the air-fuel ratio control of the internal combustion engine in which the determination means is operated is stopped, that is, when the operation of the air-fuel ratio sensor by the air-fuel ratio signal output means is stopped, the detection element used as the oxygen pump element is provided with the determination result A predetermined current is passed in the direction according to. This is to prevent the air-fuel ratio from becoming lean or rich by stopping the air-fuel ratio control, and to prevent oxygen, HC, CO, etc. from adsorbing to the porosity calculating electrode in the gas diffusion limiting chamber of the air-fuel ratio sensor. When the air-fuel ratio is lean, a current is passed in a direction to pump oxygen in the gas diffusion limiting chamber to the outside, and when the air-fuel ratio is rich, a current is passed in a direction to pump oxygen in the gas diffusion limiting chamber.

また酸素ポンプ素子に電流を流すにはその両端の多孔質
電極間の所定の電圧を印加すればよく、例えば、空燃比
制御実行時に酸素濃淡電池素子両端に生ずる電圧が一定
となるよう酸素ポンプ素子に流れる電流を制御して空燃
比を検出する際酸素ポンプ素子に印加される最低の電圧
を酸素ポンプ素子に印加するようにすればよい。尚この
値以上の電圧を印加しもよいが、空燃比リッチ時には排
気中の酸素が少なく、電流を流し過ぎると、固体電解質
自体の酸素が分解して検出素子が劣化するといった、い
わゆるブラックニング現象を生ずることがあるので、酸
素ポンプ素子に流れる電流がこの現象を起こさない程度
の電流になるよう設定する必要はある。
Further, a current may be applied to the oxygen pump element by applying a predetermined voltage between the porous electrodes on both ends of the oxygen pump element. For example, the oxygen pump element is controlled so that the voltage generated across the oxygen concentration cell element during air-fuel ratio control becomes constant. The lowest voltage applied to the oxygen pump element when the air-fuel ratio is detected by controlling the current flowing in the oxygen pump element may be applied to the oxygen pump element. It is also possible to apply a voltage above this value, but when the air-fuel ratio is rich, there is little oxygen in the exhaust gas, and if too much current is passed, the oxygen in the solid electrolyte itself decomposes and the detection element deteriorates, a so-called blackening phenomenon. Therefore, it is necessary to set the current flowing through the oxygen pump element to such a level that does not cause this phenomenon.

次に判別手段は内燃機関の空燃比制御停止時に空燃比が
リーンかリッチかを判断し、上記電流供給手段により酸
素ポンプ素子へ流す電流の方向を決定するためのもので
あり、具体的には、例えば空燃比制御の停止によって空
燃比センサの動作が停止された時点で、酸素濃淡電池素
子両端の電極に生ずる電圧を検知し、この電圧が所定値
以上であるか否かを判断するよう構成すればよい。また
この判別手段としては、空燃比制御停止時に空燃比がリ
ーンとなるかリッチとなるかを判別できればよいことか
ら、内燃機関の制御装置から、燃料の増量制御や燃料カ
ット制御等の制御状態を表わす信号を出力するよう構成
してもよい。
Next, the determination means is for determining whether the air-fuel ratio is lean or rich when the air-fuel ratio control of the internal combustion engine is stopped, and for determining the direction of the current flowing to the oxygen pump element by the current supply means. , For example, when the operation of the air-fuel ratio sensor is stopped by stopping the air-fuel ratio control, the voltage generated at the electrodes at both ends of the oxygen concentration battery element is detected, and it is determined whether this voltage is a predetermined value or more. do it. Further, as the determining means, it is sufficient to determine whether the air-fuel ratio becomes lean or rich when the air-fuel ratio control is stopped.Therefore, from the control device of the internal combustion engine, control states such as fuel increase control and fuel cut control are performed. It may be configured to output the signal representing.

[作用] 以上のように構成された本発明の内燃機関の空燃比検出
装置においては、内燃機関の空燃比制御が停止され、空
燃比信号出力手段による空燃比センサの動作が停止され
ると、空燃比に応じて酸素ポンプ素子に所定の電流が供
給され、ガス拡散制限室内の酸素の汲み出し、あるいは
ガス拡散制限室内への酸素の汲み込み、が行なわれる。
従って空燃比制御停止時に、ガス拡散制限室内の電極に
HC,CO等のリッチガスや、酸素が吸着することはな
い。
[Operation] In the air-fuel ratio detection apparatus for an internal combustion engine of the present invention configured as described above, when the air-fuel ratio control of the internal combustion engine is stopped and the operation of the air-fuel ratio sensor by the air-fuel ratio signal output means is stopped, A predetermined current is supplied to the oxygen pump element according to the air-fuel ratio, and oxygen is pumped into the gas diffusion limiting chamber or oxygen is pumped into the gas diffusion limiting chamber.
Therefore, when the air-fuel ratio control is stopped, rich gas such as HC and CO and oxygen are not adsorbed on the electrodes in the gas diffusion limiting chamber.

[実施例] 以下に本発明の一実施例を図面と共に説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

まず第2図及び第3図は本実施例の空燃比センサの構成
を表しており、第2図はその部分破断斜視図、第3図は
その分解斜視図である。
First, FIGS. 2 and 3 show the structure of the air-fuel ratio sensor of this embodiment. FIG. 2 is a partially cutaway perspective view thereof, and FIG. 3 is an exploded perspective view thereof.

第2図及び第3図に示す如く本実施例の空燃比センサ
は、固体電解質板1の両面に多孔質電極2及び3を積層
してなる酸素ポンプ素子4と、同じく固体電解質板5の
両面に多孔質電極6及び7を積層してなる酸素濃淡電池
素子8と、これら各検出素子4及び8の間に積層され、
各検出素子4及び8の対向する多孔質電極3及び6部分
で中空部9aが形成されたスペーサ9と、酸素濃淡電池
素子8の多孔質電極7側に積層される遮蔽体10と、に
より構成されている。
As shown in FIG. 2 and FIG. 3, the air-fuel ratio sensor of this embodiment has an oxygen pump element 4 formed by laminating porous electrodes 2 and 3 on both sides of a solid electrolyte plate 1, and both sides of a solid electrolyte plate 5 as well. An oxygen concentration battery element 8 formed by stacking porous electrodes 6 and 7 on each side, and stacked between these detection elements 4 and 8,
A spacer 9 in which a hollow portion 9a is formed in the facing porous electrodes 3 and 6 of each of the detection elements 4 and 8 and a shield 10 laminated on the porous electrode 7 side of the oxygen concentration battery element 8. Has been done.

ここでまずスペーサ9は、多孔質電極3と多孔質電極6
との間で測定ガスの拡散が制限されたガス拡散制限室を
形成するためのものであって、その中空部9aがガス拡
散制限室とされる。またこのスペーサ9にはその中空部
9a内に周囲の測定ガスを導入できるよう、中空部9a
周囲の3箇所にガス拡散制限部としての切り欠きTが形
成されている。
First, the spacer 9 is composed of the porous electrode 3 and the porous electrode 6.
Is to form a gas diffusion limiting chamber in which the diffusion of the measurement gas is limited, and the hollow portion 9a serves as a gas diffusion limiting chamber. The spacer 9 has a hollow portion 9a so that the surrounding measurement gas can be introduced into the hollow portion 9a.
Notches T are formed as gas diffusion limiting portions at three locations on the periphery.

次に遮蔽体10は酸素濃淡電池素子8の多孔質電極7を
内部基準酸素源として用いるために、多孔質電極7を外
部の測定ガスより遮蔽するためのものである。あたこの
遮蔽体10に覆われた多孔質電極7は、内部基準酸素源
として用いた際にその内部に発生された酸素をガス拡散
制限室、即ち中空部9a内に漏出できるよう、例えばア
ルミナ等からなる多孔質絶縁体Zと、スルーホールH
と、を介して多孔質電極6のリード部6lと接続されて
いる。つまり多孔質絶縁体Z、スルーホールH、及び多
孔質電極6のリード部6lが、漏出抵抗部として形成さ
れ、多孔質電極7内に発生された酸素をこの漏出抵抗部
を介して中空部9a内に漏出できるようにされているの
である。
Next, the shield 10 is used to shield the porous electrode 7 from the external measurement gas in order to use the porous electrode 7 of the oxygen concentration battery element 8 as an internal reference oxygen source. The porous electrode 7 covered with the shield 10 is made of, for example, alumina so that oxygen generated inside when it is used as an internal reference oxygen source can leak into the gas diffusion limiting chamber, that is, the hollow portion 9a. Porous insulator Z consisting of etc. and through hole H
And is connected to the lead portion 6l of the porous electrode 6 through. That is, the porous insulator Z, the through hole H, and the lead portion 6l of the porous electrode 6 are formed as a leakage resistance portion, and oxygen generated in the porous electrode 7 is allowed to pass through the leakage resistance portion and the hollow portion 9a. It is designed to leak inside.

更に酸素ポンプ素子4及び酸素濃淡電池素子8の各多孔
質電極2,3,6,7の電極端子は、当該空燃比センサ
の外壁面に形成されている。つまり、酸素ポンプ素子4
の多孔質電極2は外部に露出して形成されることから、
そのリード部2lがそのまま電極端子とされ、内部に積
層された酸素ポンプ素子4の多孔質電極3あるいは酸素
濃淡電池素子8の多孔質電極6及び7においては、その
リード部3lあるいは6l及び7lと、固体電解室板1
あるいは遮蔽体10の外壁面に夫々積層された電極端子
3tあるいは6t及び7tとを、スルーホール3hある
いは6h及び7hを介して電気的に接続することによっ
て形成されているのである。
Further, the electrode terminals of the porous electrodes 2, 3, 6, 7 of the oxygen pump element 4 and the oxygen concentration cell element 8 are formed on the outer wall surface of the air-fuel ratio sensor. That is, the oxygen pump element 4
Since the porous electrode 2 of is formed to be exposed to the outside,
In the porous electrode 3 of the oxygen pump element 4 or the porous electrodes 6 and 7 of the oxygen concentration cell element 8 which are laminated inside, the lead portion 2l is directly used as an electrode terminal, and the lead portion 3l or 6l and 7l , Solid electrolytic chamber plate 1
Alternatively, it is formed by electrically connecting the electrode terminals 3t or 6t and 7t respectively laminated on the outer wall surface of the shield 10 through the through holes 3h or 6h and 7h.

このように構成された本実施例の空燃比センサは、第1
図に示す如く、多孔質電極層7の酸素が外部に漏れない
ように密閉し、当該空燃比センサSを固定する固定部1
5、及びねじ部16を介して内燃機関の排気管17に取
り付けられ、センサ駆動制御回路20によって動作され
る。尚図では、空燃比センサSの取り付け状態を解り易
くするために、各多孔質電極のリード部及び電極端子は
省略されている。
The air-fuel ratio sensor of this embodiment configured as described above has the first
As shown in the figure, the fixing portion 1 that seals the porous electrode layer 7 so that oxygen does not leak to the outside and fixes the air-fuel ratio sensor S.
5, and is attached to the exhaust pipe 17 of the internal combustion engine via the screw portion 16 and is operated by the sensor drive control circuit 20. In the figure, in order to facilitate understanding of the attachment state of the air-fuel ratio sensor S, the lead portion and electrode terminal of each porous electrode are omitted.

図に示す如く、センサ駆動制御回路20は、内燃機関の
空燃比制御実行中に空燃比センサSを駆動し、空燃比信
号を出力する空燃比検出回路21と、内燃機関の空燃比
制御停止時に内燃機関の空燃比がリッチであるかリーン
であるかを判断し、その判断結果に応じて空燃比センサ
Sの酸素ポンプ素子4に一定電流を供給する電流供給回
路22と、内燃機関の空燃比制御停止時に図示しない内
燃機関の空燃比制御装置から出力される空燃比制御停止
信号により、空燃比センサSとの接続を、空燃比検出回
路21から電流供給回路22に切り替える切替スイッチ
23及び24と、から構成されている。
As shown in the figure, the sensor drive control circuit 20 drives the air-fuel ratio sensor S during execution of the air-fuel ratio control of the internal combustion engine, outputs an air-fuel ratio signal, and an air-fuel ratio control circuit 21 when the air-fuel ratio control of the internal combustion engine is stopped. It is determined whether the air-fuel ratio of the internal combustion engine is rich or lean, and the current supply circuit 22 that supplies a constant current to the oxygen pump element 4 of the air-fuel ratio sensor S according to the determination result, and the air-fuel ratio of the internal combustion engine. A changeover switch 23 or 24 for switching the connection with the air-fuel ratio sensor S from the air-fuel ratio detection circuit 21 to the current supply circuit 22 by an air-fuel ratio control stop signal output from an air-fuel ratio control device for an internal combustion engine (not shown) when the control is stopped. ,,.

また電流供給回路22は、酸素濃淡電池素子8の多孔質
電極6,7間に生じた電圧Vs が所定電圧E0 以上か否
かを判断し、Vs ≧E0 であるときHighレベルの信
号を出力する、演算増幅器OP1を用いて構成された比
較回路31と、酸素ポンプ素子4の多孔質電極2,3間
に所定の電圧を印加して電流を供給する、演算増幅器O
P2を用いて構成された定電圧回路32と、内燃機関の
空燃比制御装置から出力される空燃比制御停止信号を所
定時間(例えば0.5sec)遅延して入力する、積分
回路等から構成された遅延回路33と、この遅延回路3
3からの出力信号により、比較回路31からの出力信号
を保持する保持回路34と、この保持回路34からの出
力信号に応じて切り替えられ、定電圧回路32の電圧印
加により酸素ポンプ素子4に流れる電流方向を決定する
電流方向切替スイッチ35と、遅延回路33からの出力
信号によりONされ、定電圧回路32と酸素ポンプ素子
4とを接続する電流供給スイッチ36と、から構成され
ている。
Further, the current supply circuit 22 determines whether or not the voltage Vs generated between the porous electrodes 6 and 7 of the oxygen concentration battery element 8 is equal to or higher than a predetermined voltage E0, and outputs a high level signal when Vs ≧ E0. The operational amplifier O, which supplies a current by applying a predetermined voltage between the comparison circuit 31 configured using the operational amplifier OP1 and the porous electrodes 2 and 3 of the oxygen pump element 4.
It is composed of a constant voltage circuit 32 configured by using P2, and an integrator circuit or the like for inputting the air-fuel ratio control stop signal output from the air-fuel ratio control device of the internal combustion engine with a delay of a predetermined time (for example, 0.5 sec). Delay circuit 33 and this delay circuit 3
The holding circuit 34 holding the output signal from the comparison circuit 31 and the output signal from the holding circuit 34 are switched according to the output signal from the holding circuit 34, and the voltage is applied to the constant voltage circuit 32 to flow to the oxygen pump element 4. It is composed of a current direction changeover switch 35 that determines the current direction, and a current supply switch 36 that is turned on by an output signal from the delay circuit 33 and connects the constant voltage circuit 32 and the oxygen pump element 4.

更に空燃比検出回路21は、第4図に示す如く、酸素濃
淡電池素子8の多孔質電極7に所定の電圧Vb(例えば
10V)を印加し、基準電圧Vaが印加された他方の多
孔質電極6側に流れる電流を制限する抵抗Rと、酸素濃
淡電池素子8の両側の電極に発生し、基準電圧Va(例
えば5V)で以って嵩上げされた電圧を検出する、演算
増幅器OP3により構成されたバッファ回路41と、こ
のバッファ回路41より出力される検出電圧を増幅す
る、演算増幅器OP4により構成された非反転増幅回路
42と、この非反転増幅回路42により増幅された検出
電圧を所定の基準電圧Vcと比較し、検出電圧が基準電
圧Vcに対し大きいときに所定の積分定数で以って徐々
に低下し逆の場合に所定の積分定数で以って徐々に増加
する第5図に示す如き制御電圧を出力する、演算増幅器
OP5を用いて構成された比較・積分回路43と、上記
基準電圧Vaを出力する、演算増幅器OP6により構成
されたバッファ回路44と、バッファ回路44からの基
準電圧Vaを酸素ポンプ素子4の中空部9a側の多孔質
電極3に印加し、この電極3と比較・積分回路43から
の制御電圧が印加されたもう一方の多孔質電極2との間
で流れる電流を検出するための電流検出用抵抗Riと、
この抵抗Riに生ずる電圧を空燃比信号Vλとして出力
する。演算増幅器OP7により構成された出力回路45
と、から構成されている。
Further, as shown in FIG. 4, the air-fuel ratio detection circuit 21 applies a predetermined voltage Vb (for example, 10 V) to the porous electrode 7 of the oxygen concentration battery element 8, and the other porous electrode to which the reference voltage Va is applied. A resistor R that limits the current flowing to the 6 side and an operational amplifier OP3 that detects the voltage generated at the electrodes on both sides of the oxygen concentration cell element 8 and raised by the reference voltage Va (for example, 5 V). Buffer circuit 41, a non-inverting amplifier circuit 42 configured by an operational amplifier OP4 for amplifying the detection voltage output from the buffer circuit 41, and the detection voltage amplified by the non-inverting amplifier circuit 42 as a predetermined reference. Compared with the voltage Vc, when the detected voltage is larger than the reference voltage Vc, it gradually decreases with a predetermined integration constant, and in the opposite case, it gradually increases with a predetermined integration constant. Like A comparison / integration circuit 43 configured by using an operational amplifier OP5 that outputs a control voltage, a buffer circuit 44 configured by an operational amplifier OP6 that outputs the reference voltage Va, and a reference voltage Va from the buffer circuit 44. Is applied to the porous electrode 3 on the hollow portion 9a side of the oxygen pump element 4, and a current flowing between this electrode 3 and the other porous electrode 2 to which the control voltage from the comparison / integration circuit 43 is applied is applied. A current detection resistor Ri for detecting,
The voltage generated in the resistor Ri is output as the air-fuel ratio signal Vλ. Output circuit 45 composed of operational amplifier OP7
It consists of and.

以上のように構成されたセンサ駆動制御回路20におい
て、まず内燃機関の空燃比制御中には、切替スイッチ2
3及び24が夫々第1図とは反対方向に切り替えられ、
空燃比センサSと空燃比検出回路21とが接続される。
そして空燃比検出回路21では、空燃比センサSの酸素
濃淡電池素子8に所定の電流を流して多孔質電極7内に
酸素を発生させ、この発生された酸素ガス分圧と中空部
9a内の酸素ガス分圧との比に応じて酸素濃淡電池素子
8の多孔質電極6,7間に生ずる電圧が一定となるよ
う、即ち中空部9a内の酸素ガス分圧が一定となるよ
う、酸素ポンプ素子4に流れる電流を双方向に制御する
ことで空燃比センサSを動作させ、そのとき酸素ポンプ
素子4に流れる電流に応じて電流検出用抵抗Riに生ず
る第6図に示す如き電圧を空燃比信号Vλとして出力す
る。
In the sensor drive control circuit 20 configured as described above, first, the changeover switch 2 is activated during the air-fuel ratio control of the internal combustion engine.
3 and 24 are respectively switched in the opposite direction to FIG. 1,
The air-fuel ratio sensor S and the air-fuel ratio detection circuit 21 are connected.
Then, in the air-fuel ratio detection circuit 21, a predetermined current is passed through the oxygen concentration battery element 8 of the air-fuel ratio sensor S to generate oxygen in the porous electrode 7, the generated oxygen gas partial pressure and the hollow portion 9a. An oxygen pump is used so that the voltage generated between the porous electrodes 6 and 7 of the oxygen concentration battery element 8 becomes constant according to the ratio with the oxygen gas partial pressure, that is, the oxygen gas partial pressure in the hollow portion 9a becomes constant. The air-fuel ratio sensor S is operated by bidirectionally controlling the current flowing through the element 4, and at that time, the voltage as shown in FIG. 6 generated in the current detecting resistor Ri in accordance with the current flowing through the oxygen pump element 4 is changed. The signal Vλ is output.

次に内燃機関の空燃比制御が停止されると切替スイッチ
23及び24が夫々第1図に示す方向に切り替えられ、
空燃比センサSと電流供給回路22とが接続される。
Next, when the air-fuel ratio control of the internal combustion engine is stopped, the changeover switches 23 and 24 are changed over to the directions shown in FIG.
The air-fuel ratio sensor S and the current supply circuit 22 are connected.

電流供給回路22ではまず、比較回路31が酸素濃淡電
池素子8の多孔質電極6,7間に生じた電圧Vs により
空燃比がリーンであるかリッチであるかを判断し、空燃
比制御が停止され所定時間経過した後の判断結果を保持
回路34から出力する。即ち空燃比制御実行中上記空燃
比検出回路21によって酸素センサSが動作され、また
空燃比も目標空燃比に制御されている場合には、中空部
9a内の酸素濃度が一定となり、酸素濃淡電池素子8の
多孔質電極6,7間に生ずる電圧も一定の値(例えば5
00mV)に保持されているのであるが、空燃比制御を
停止し、燃料増量制御等によって空燃比が通常よりリッ
チ側に制御されると、中空部9a内に酸素が少ないリッ
チガスが入り、酸素濃淡電池素子8の多孔質電極6,7
間に生ずる電圧が大きくなり、逆に燃料カット制御等に
よって空燃比が通常よりリーン側に制御されると、中空
部9a内に酸素の多い排気(リーンガス)が入り、酸素
濃淡電池素子8の多孔質電極6,7間に生ずる電圧が小
さくなることから、比較回路31でこの電圧値Vs が所
定電圧E0 以上か否かを判断することで、リッチである
かリーンであるかが判断できるのである。従って電圧E
0 の値としては空燃比制御実行中に制御される酸素濃淡
電池素子8の多孔質電極6,7間の電圧Vs に設定して
おけばよい。また保持回路34で空燃比制御が停止さ
れ、所定時間経過した後の判別結果を保持し、出力する
のは、内燃機関の運転状態が変化し、その状態に応じた
排気が空燃比センサSに到達するまである程度時間がか
かることから、この時間を待つためである。
In the current supply circuit 22, first, the comparison circuit 31 determines whether the air-fuel ratio is lean or rich by the voltage Vs generated between the porous electrodes 6 and 7 of the oxygen concentration battery element 8, and the air-fuel ratio control is stopped. The holding circuit 34 outputs the determination result after a predetermined time has elapsed. That is, during execution of the air-fuel ratio control, when the oxygen sensor S is operated by the air-fuel ratio detection circuit 21 and the air-fuel ratio is also controlled to the target air-fuel ratio, the oxygen concentration in the hollow portion 9a becomes constant and the oxygen concentration battery The voltage generated between the porous electrodes 6 and 7 of the element 8 also has a constant value (for example, 5
However, when the air-fuel ratio control is stopped and the air-fuel ratio is controlled to be richer than usual by fuel increase control or the like, rich gas containing less oxygen enters the hollow portion 9a, and the oxygen concentration is reduced. Porous electrodes 6 and 7 of the battery element 8
If the air-fuel ratio is controlled to be leaner than usual by the fuel cut control or the like, the voltage generated between them becomes large, and exhaust gas (lean gas) containing a large amount of oxygen enters the hollow portion 9a, and the oxygen concentration cell element 8 is porous. Since the voltage generated between the quality electrodes 6 and 7 becomes small, it is possible to judge whether it is rich or lean by judging whether or not this voltage value Vs is the predetermined voltage E0 or more by the comparison circuit 31. . Therefore the voltage E
The value of 0 may be set to the voltage Vs between the porous electrodes 6 and 7 of the oxygen concentration battery element 8 which is controlled during execution of the air-fuel ratio control. Further, the holding circuit 34 stops the air-fuel ratio control, and holds and outputs the determination result after a predetermined time has elapsed. The output is that the operating state of the internal combustion engine changes and the exhaust gas according to the state is sent to the air-fuel ratio sensor S. This is because it takes a certain amount of time to reach it, so this time must be waited for.

保持回路34からの出力信号は電流方向切替スイッチ3
5に入力され、酸素ポンプ素子4に流す電流方向が決定
される。第1図において電流方向切替スイッチ35は、
保持回路34からの出力信号がHighレベルであると
きの状態、即ち空燃比リッチ時の状態を表わしており、
この場合には酸素ポンプ素子4の中空部9a側の多孔質
電極3から、外部の多孔質電極2方向に電流が流れるよ
うに電流方向が決定される。つまりこれは空燃比制御停
止時の空燃比がリッチであるとき、中空部9a内に酸素
を汲み込む方向に電流を流し、その内部の酸素濃度を空
燃比制御実行中の酸素濃度に近づけることで、中空部9
a内の多孔質電極3,6(特に酸素濃淡電池素子8の多
孔質電極6)にリッチガスが吸着するのを防止している
のである。一方空燃比リーン時には、保持回路34から
の出力信号がLowレベルとなり、電流方向切替スイッ
チ35が第1図とは逆方向、つまり酸素ポンプ素子4の
外部の多孔質電極2から中空部9aに接した多孔質電極
3側に電流を流す方向に切り替えられる。すると中空部
9a内の酸素は外部に汲み出され、その内部の酸素濃度
が空燃比制御実行中の酸素濃度に近づけられて、中空部
9a内の多孔質電極3,6への酸素の吸着が防止され
る。
The output signal from the holding circuit 34 is the current direction changeover switch 3
5 is input to the oxygen pump element 4, and the direction of the current flowing through the oxygen pump element 4 is determined. In FIG. 1, the current direction changeover switch 35 is
It shows a state when the output signal from the holding circuit 34 is at a high level, that is, a state when the air-fuel ratio is rich,
In this case, the current direction is determined so that the current flows from the porous electrode 3 on the hollow portion 9a side of the oxygen pump element 4 toward the external porous electrode 2. That is, when the air-fuel ratio at the time of stopping the air-fuel ratio control is rich, a current is caused to flow in the hollow portion 9a in the direction of pumping oxygen to bring the oxygen concentration inside the hollow portion 9a close to the oxygen concentration during air-fuel ratio control execution. , Hollow part 9
The rich gas is prevented from adsorbing to the porous electrodes 3 and 6 in the a (particularly the porous electrode 6 of the oxygen concentration battery element 8). On the other hand, when the air-fuel ratio is lean, the output signal from the holding circuit 34 becomes Low level, and the current direction changeover switch 35 is in the direction opposite to that in FIG. 1, that is, the porous electrode 2 outside the oxygen pump element 4 contacts the hollow portion 9a. The current can be switched to the direction in which a current is passed to the porous electrode 3 side. Then, the oxygen in the hollow portion 9a is pumped to the outside, the oxygen concentration inside the hollow portion 9a is brought close to the oxygen concentration during the execution of the air-fuel ratio control, and the adsorption of oxygen to the porous electrodes 3 and 6 in the hollow portion 9a is prevented. To be prevented.

また定電圧回路32は、遅延回路33の動作によって空
燃比制御が停止され所定時間経過した後、即ち保持回路
34から空燃比のリーン,リッチを表わす信号が出力さ
れ、電流方向切替スイッチ35が切り替えられた時点
で、酸素ポンプ素子4のいずれかの多孔質電極2又は3
に接続され、その両端の多孔質電極2,3間に一定電圧
を印加する。これによって酸素ポンプ素子8に電流が供
給され、上記のようにガス拡散制限室としての中空部9
aの酸素濃度が空燃比制御実行時の酸素濃度に近づけら
れることとなる。尚この印加電圧Einには、上記空燃
比検出回路21の動作によって酸素ポンプ素子8に印加
される最低の電圧が設定されている。つまり空燃比検出
回路21で上記のように空燃比センサSを動作した際多
孔質電極2,3間に印加される電圧は、第6図に示す空
燃比信号Vλの検出特性と対応して表わすと第7図に示
す如くなることから、このときの最低電圧値、即ち空気
過剰率λ=1付近の電圧値(例えば0.5V)が設定さ
れているのである。
Further, in the constant voltage circuit 32, after the air-fuel ratio control is stopped by the operation of the delay circuit 33 and a predetermined time elapses, that is, the holding circuit 34 outputs a signal indicating lean or rich of the air-fuel ratio, and the current direction changeover switch 35 is switched. At that time, either of the porous electrodes 2 or 3 of the oxygen pump element 4 is
And a constant voltage is applied between the porous electrodes 2 and 3 at both ends thereof. As a result, a current is supplied to the oxygen pump element 8, and as described above, the hollow portion 9 serving as the gas diffusion limiting chamber.
The oxygen concentration of a is brought close to the oxygen concentration at the time of executing the air-fuel ratio control. The applied voltage Ein is set to the lowest voltage applied to the oxygen pump element 8 by the operation of the air-fuel ratio detection circuit 21. That is, the voltage applied between the porous electrodes 2 and 3 when the air-fuel ratio detecting circuit 21 operates the air-fuel ratio sensor S as described above is expressed in correspondence with the detection characteristic of the air-fuel ratio signal Vλ shown in FIG. As shown in FIG. 7, the minimum voltage value at this time, that is, the voltage value in the vicinity of the excess air ratio λ = 1 (for example, 0.5 V) is set.

以上説明したように本実施例の空燃比検出装置では、内
燃機関の空燃比制御が停止されると、その運転状態に応
じて制御される空燃比に応じて空燃比センサSの酸素ポ
ンプ素子4に所定の電圧が印加されて電流が流れ、空燃
比センサSの中空部9a内の酸素濃度が空燃比制御実行
時の酸素濃度に近づけられることとなる。従って空燃比
制御停止時に中空部9a内の多孔質電極にリッチガスや
酸素が吸着するのを防止することができ、その後内燃機
関が空燃比制御に入ったときの空燃比の検出を速やかに
行なうことができるようになる。
As described above, in the air-fuel ratio detection device of the present embodiment, when the air-fuel ratio control of the internal combustion engine is stopped, the oxygen pump element 4 of the air-fuel ratio sensor S is controlled according to the air-fuel ratio controlled according to its operating state. A predetermined voltage is applied to the electric current and a current flows, and the oxygen concentration in the hollow portion 9a of the air-fuel ratio sensor S is brought close to the oxygen concentration at the time of executing the air-fuel ratio control. Therefore, it is possible to prevent the rich gas and oxygen from adsorbing to the porous electrode in the hollow portion 9a when the air-fuel ratio control is stopped, and to quickly detect the air-fuel ratio when the internal combustion engine subsequently enters the air-fuel ratio control. Will be able to.

このような効果は、以下に説明する実験によって裏付け
られる。尚以下の実験を行なうに当っては、上記実施例
と同様に構成され、表−1に示す寸法で作成された2個
の空燃比センサを用いた。
Such an effect is supported by the experiments described below. In carrying out the following experiment, two air-fuel ratio sensors each having the same configuration as that of the above-mentioned embodiment and having the dimensions shown in Table 1 were used.

(実験1) まず第8図は上記の如く作成された2個の空燃比センサ
のうち、一方の空燃比センサS1の酸素ポンプ素子には
中空部に酸素を汲み込む方向に電流を流すよう所定の電
圧0.5Vを印加し、他方の空燃比センサS2の酸素ポ
ンプ素子には電圧を印加しないで、各空燃比センサS
1,S2をリッチガス雰囲気中に2sec,10se
c,10min間放置し、その後周囲雰囲気をリーンガ
スに変化した場合に、各酸素濃淡電池素子の多孔質電極
間に生じた電圧の変化を表わしている。
(Experiment 1) First, FIG. 8 shows that, of the two air-fuel ratio sensors produced as described above, one of the air-fuel ratio sensors S1 has a predetermined oxygen pump element in which a current is passed in the direction of pumping oxygen into the hollow portion. Is applied to the oxygen pump element of the other air-fuel ratio sensor S2 without applying a voltage to the oxygen pump element of the other air-fuel ratio sensor S2.
1, S2 in rich gas atmosphere for 2 sec, 10 sec
It represents the change in voltage generated between the porous electrodes of each oxygen concentration battery element when the ambient atmosphere was changed to lean gas after being left for 10 minutes for 10 minutes.

図に破線で示す如く、酸素ポンプ素子に電圧を印加しな
い空燃比センサS2では、リッチガスに晒される時間が
長くなるに従って、酸素濃淡電池素子に生ずる電圧Vs
が空燃比リーンを表わす電圧になるまでの時間、即ち応
答時間が長くなっている。これはリッチガスに晒される
と酸素濃淡電池素子の中空部側の多孔質電極内にリッチ
ガスが吸着され、その後周囲雰囲気がリーンガスに変化
してリッチガスが取り除かれるまでに時間がかかり、空
燃比の検出遅れが生ずることを表わしている。
As indicated by the broken line in the figure, in the air-fuel ratio sensor S2 that does not apply a voltage to the oxygen pump element, the voltage Vs generated in the oxygen concentration battery element increases as the time of exposure to the rich gas increases.
The time until the voltage becomes a voltage representing the lean air-fuel ratio, that is, the response time becomes longer. This is because when exposed to rich gas, the rich gas is adsorbed in the porous electrode on the hollow side of the oxygen concentration battery element, and then it takes time until the ambient atmosphere changes to lean gas and the rich gas is removed, and the detection of the air-fuel ratio is delayed. Is generated.

これに対し酸素ポンプ素子に所定の電圧を印加した空燃
比センサS1では、図に実線で示すようにリッチガスに
晒される時間が長くなっても酸素濃淡電池素子の応答時
間は殆んど変化せず、空燃比の検出遅れが生じないこと
がわかる。従って上記実施例のように空燃比リッチ時に
酸素ポンプ素子に所定の電圧を印加し、中空部に酸素を
汲み込む方向に電流を流しておけば、酸素濃淡電池素子
の中空部側の多孔質電極内にリッチガスが吸着するのを
防止でき、空燃比の検出遅れを防止できることがわか
る。
On the other hand, in the air-fuel ratio sensor S1 in which a predetermined voltage is applied to the oxygen pump element, the response time of the oxygen concentration cell element hardly changes even when the time of exposure to the rich gas becomes long as shown by the solid line in the figure. It can be seen that the detection delay of the air-fuel ratio does not occur. Therefore, when a predetermined voltage is applied to the oxygen pump element when the air-fuel ratio is rich as in the above embodiment, and a current is passed in the direction of pumping oxygen into the hollow portion, the porous electrode on the hollow portion side of the oxygen concentration battery element is formed. It can be seen that the rich gas can be prevented from being adsorbed inside, and the detection delay of the air-fuel ratio can be prevented.

尚この実験に際しては、ヒータで以って各検出素子を充
分活性化したのは勿論のこと、酸素濃淡電池素子の中空
部とは接しない側の多孔質電極に基準酸素を発生させる
ため、酸素濃淡電池素子に一定電流を流した。
In addition, in this experiment, it goes without saying that each detection element was sufficiently activated by the heater, and in order to generate the reference oxygen in the porous electrode on the side not in contact with the hollow portion of the oxygen concentration battery element, A constant current was applied to the concentration cell element.

(実験2) 上記実験1はリッチガスによる空燃比の検出遅れに関す
るものであったが、今度はリーンガスとし大気を用い、
空燃比リーン時の検出遅れに関する実験を行なった。
(Experiment 2) The above Experiment 1 was related to the detection delay of the air-fuel ratio due to the rich gas, but this time, using the atmosphere as lean gas,
An experiment was conducted on the detection delay when the air-fuel ratio was lean.

この実験はまず上記各空燃比センサS1,S2の酸素ポ
ンプ素子の中空部内の酸素を汲み出す方向に8.5mA
の電流を流し、そのとき各酸素濃淡電池素子に生ずる電
圧Vs を測定し、その後一方の空燃比センサS1の酸素
ポンプ素子に中空部内の酸素を汲み出す方向に電流が流
れるよう所定電圧0.7Vを印加し、他方の空燃比セン
サS2の酸素ポンプ素子には電圧を印加せず、各空燃比
センサS1,S2を夫々、常温(20℃)の空気が流速
50/minで流れる排気管に64時間放置すること
で空燃比リーン時の耐久試験を行ない、上記と同様各空
燃比センサS1,S2の酸素濃淡電池素子に生ずる電圧
Vs を測定することにより行なった。尚この実験に際し
ても上記実験1と同様ヒータで以って各センサS1,S
2を加熱し、各検出素子を活性化すると共に、酸素濃淡
電池素子両端に生ずる電圧を検出する際には、一定の電
流を流して中空部とは反対側の電極に基準酸素を発生さ
せた。
In this experiment, first, 8.5 mA was applied in the direction of pumping out oxygen in the hollow portion of the oxygen pump element of each of the air-fuel ratio sensors S1 and S2.
Current is applied to measure the voltage Vs generated in each oxygen concentration battery element at that time, and then a predetermined voltage of 0.7 V is applied so that the oxygen pump element of one air-fuel ratio sensor S1 has a current flowing in the direction of pumping out the oxygen in the hollow portion. Is applied and no voltage is applied to the oxygen pump element of the other air-fuel ratio sensor S2, and the air-fuel ratio sensors S1 and S2 are respectively applied to the exhaust pipe through which air at room temperature (20 ° C.) flows at a flow velocity of 50 / min. A durability test when the air-fuel ratio was lean was carried out by leaving it for a while, and the voltage Vs generated in the oxygen concentration cell elements of the air-fuel ratio sensors S1 and S2 was measured in the same manner as above. Also in this experiment, as in Experiment 1, the sensors S1 and S
2 was heated to activate each detection element, and when detecting the voltage generated across the oxygen concentration cell element, a constant current was passed to generate reference oxygen at the electrode on the side opposite to the hollow portion. .

この実験による測定結果は表−2に示す如くなった。The measurement results of this experiment are shown in Table 2.

この実験から酸素ポンプ素子に電流を流しておいた空燃
比センサS1では、耐久試験前と耐久試験後の測定結果
が殆んど変化していないのに対し、酸素ポンプ素子に電
流を流していない空燃比センサS2では耐久試験前と耐
久試験後の測定結果が大きく変化し空燃比センサS2が
劣化しているのがわかる。これは酸素ポンプ素子に電流
を流し、中空部内の酸素を外部に汲み出していない場
合、中空部内部の多孔質電極に酸素が吸着し、電極が酸
化されるためである。従って上記実施例のように空燃比
リーン時には酸素ポンプ素子に中空部の酸素を汲み出す
方向に電流を流しておけば空燃比センサは劣化せず、そ
の後空燃比を検出する際には、速やかに良好な検出特性
が得られることがわかる。
From the experiment, in the air-fuel ratio sensor S1 in which a current was passed through the oxygen pump element, the measurement results before and after the durability test showed almost no change, whereas no current was passed through the oxygen pump element. It can be seen that in the air-fuel ratio sensor S2, the measurement results before and after the endurance test greatly change and the air-fuel ratio sensor S2 deteriorates. This is because when an electric current is passed through the oxygen pump element and oxygen in the hollow portion is not pumped to the outside, oxygen is adsorbed by the porous electrode inside the hollow portion and the electrode is oxidized. Therefore, when the air-fuel ratio is lean as in the above-described embodiment, the air-fuel ratio sensor does not deteriorate if a current is passed through the oxygen pump element in the direction of pumping out oxygen in the hollow portion, and when detecting the air-fuel ratio thereafter, promptly It can be seen that good detection characteristics can be obtained.

[発明の効果] 以上詳述した如く、本発明の内燃機関の空燃比検出装置
では、内燃機関の空燃比制御が停止され、空燃比の検出
が行なわれないような場合であっても、空燃比センサの
酸素ポンプ素子には空燃比のリーン,リッチに応じて所
定の電流が供給されることから、ガス拡散制限室内の酸
素濃度を空燃比制御実行時の酸素濃度に近づけることが
でき、その内部の多孔質電極にHC,CO等のリッチガ
スや酸素が吸着するのを防止することができる。従っ
て、その後空燃比制御が再開された場合には、空燃比を
速やかに、しかも精度よく検出することができるように
なり、空燃比制御の応答遅れを防止することができるよ
うになる。
[Effects of the Invention] As described in detail above, in the air-fuel ratio detection device for an internal combustion engine of the present invention, even when the air-fuel ratio control of the internal combustion engine is stopped and the air-fuel ratio is not detected, Since a predetermined current is supplied to the oxygen pump element of the fuel ratio sensor in accordance with lean or rich of the air-fuel ratio, the oxygen concentration in the gas diffusion limiting chamber can be brought close to the oxygen concentration during execution of the air-fuel ratio control. It is possible to prevent adsorption of rich gas such as HC and CO and oxygen to the internal porous electrode. Therefore, when the air-fuel ratio control is restarted after that, the air-fuel ratio can be detected quickly and accurately, and the delay in the response of the air-fuel ratio control can be prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第8図は本発明の一実施例を示し、第1図
は本実施例の空燃比センサ及びセンサ駆動制御回路の構
成を表わす構成図、第2図は空燃比センサの部分破断斜
視図、第3図はその分解斜視図、第4図は空燃比検出回
路を表わす電気回路図、第5図は空燃比検出回路内で発
生される酸素ポンプ素子の制御信号を表わす線図、第6
図は空燃比検出回路により得られる空燃比信号を表わす
線図、第7図は空燃比検出時に空燃比センサの酸素ポン
プ素子に印加される電圧を表わす線図、第8図は排気が
リッチガスからリーンガスに変化したときの酸素濃淡電
池素子の応答遅れを測定した実験1による実験データを
表わす線図、である。 4……酸素ポンプ素子 8……酸素濃淡電池素子 9……スペーサ 9a……中空部(ガス拡散制限室) 20……センサ駆動制御回路 21……空燃比検出回路 22……電流供給回路 31……比較回路 32……定電圧回路
1 to 8 show an embodiment of the present invention, FIG. 1 is a configuration diagram showing the configuration of an air-fuel ratio sensor and a sensor drive control circuit of this embodiment, and FIG. 2 is a partial fracture of the air-fuel ratio sensor. FIG. 3 is a perspective view, FIG. 3 is an exploded perspective view thereof, FIG. 4 is an electric circuit diagram showing an air-fuel ratio detection circuit, and FIG. 5 is a diagram showing control signals of an oxygen pump element generated in the air-fuel ratio detection circuit. Sixth
Fig. 7 is a diagram showing the air-fuel ratio signal obtained by the air-fuel ratio detection circuit, Fig. 7 is a diagram showing the voltage applied to the oxygen pump element of the air-fuel ratio sensor at the time of detecting the air-fuel ratio, and Fig. 8 is exhaust gas from rich gas. It is a diagram showing the experimental data by the experiment 1 which measured the response delay of the oxygen concentration battery element when changing to lean gas. 4 ... Oxygen pump element 8 ... Oxygen concentration battery element 9 ... Spacer 9a ... Hollow part (gas diffusion limiting chamber) 20 ... Sensor drive control circuit 21 ... Air-fuel ratio detection circuit 22 ... Current supply circuit 31 ... … Comparison circuit 32 …… Constant voltage circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性の固体電解質両面に一対
の多孔質電極を積層してなる2個の検出素子、及び該各
検出素子の一方の多孔質電極と接して形成され、排気の
拡散が制限されたガス拡散制限室、を有する空燃比セン
サと、 上記2個の検出素子のうち、一方の検出素子を酸素濃淡
電池素子、他方の検出素子を酸素ポンプ素子、として動
作させ、排気中の酸素濃度に応じた空燃比信号を出力す
る空燃比信号出力手段と、 を備え、内燃機関の空燃比制御実行中に当該内燃機関に
供給された燃料混合気の空燃比を検出する、内燃機関の
空燃比検出装置において、 上記内燃機関の空燃比制御停止時に、該内燃機関に供給
される燃料混合気の空燃比がリッチであるかリーンであ
るかを判別する判別手段と、 該判別手段の判別結果に応じて、上記酸素ポンプ素子に
所定の電流を供給する電流供給手段と、 を設けたことを特徴とする内燃機関の空燃比検出装置。
1. Diffusion of exhaust gas, which is formed by contacting with two detection elements formed by laminating a pair of porous electrodes on both surfaces of an oxygen ion conductive solid electrolyte and one porous electrode of each of the detection elements. An air-fuel ratio sensor having a limited gas diffusion limiting chamber, and one of the two detection elements is operated as an oxygen concentration cell element, and the other detection element is operated as an oxygen pump element. An air-fuel ratio signal output means for outputting an air-fuel ratio signal according to the oxygen concentration of the internal combustion engine, and detecting the air-fuel ratio of the fuel mixture supplied to the internal combustion engine during execution of the air-fuel ratio control of the internal combustion engine. In the air-fuel ratio detection device, the determination means for determining whether the air-fuel ratio of the fuel mixture supplied to the internal combustion engine is rich or lean when the air-fuel ratio control of the internal combustion engine is stopped; Depending on the discrimination result, the above An air-fuel ratio detection device for an internal combustion engine, comprising: a current supply means for supplying a predetermined current to an oxygen pump element.
JP61048078A 1986-03-03 1986-03-03 Air-fuel ratio detector for internal combustion engine Expired - Lifetime JPH0635956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61048078A JPH0635956B2 (en) 1986-03-03 1986-03-03 Air-fuel ratio detector for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61048078A JPH0635956B2 (en) 1986-03-03 1986-03-03 Air-fuel ratio detector for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62203057A JPS62203057A (en) 1987-09-07
JPH0635956B2 true JPH0635956B2 (en) 1994-05-11

Family

ID=12793300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048078A Expired - Lifetime JPH0635956B2 (en) 1986-03-03 1986-03-03 Air-fuel ratio detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0635956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674697B2 (en) * 2008-12-04 2011-04-20 日本特殊陶業株式会社 Control device and control method for gas sensor element

Also Published As

Publication number Publication date
JPS62203057A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
US6533921B2 (en) Apparatus for detecting concentration of nitrogen oxide
US6214207B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration
US4722779A (en) Air/fuel ratio sensor
US4755274A (en) Electrochemical sensing element and device incorporating the same
WO1998012550A1 (en) Gas sensor
JPH01277751A (en) Measuring device of concentration of nox
JPH10185868A (en) Gas detecting device
JPH1172478A (en) Oxide gas concentration detecting device and recording medium used therefor
JPH0513262B2 (en)
JP3431822B2 (en) Nitrogen oxide concentration detector
JPH11166911A (en) Air-fuel ratio sensor
JP2000180400A (en) Oxygen concentration detector
JP3469407B2 (en) Gas component concentration detector
JPH0635956B2 (en) Air-fuel ratio detector for internal combustion engine
JPH0413961A (en) Air/fuel ratio detector
JPH0643986B2 (en) Activation detection device for air-fuel ratio sensor
JP3431493B2 (en) Nitrogen oxide concentration detector
JPH0521499B2 (en)
JP3565520B2 (en) Oxygen concentration sensor
JPH0641931B2 (en) Air-fuel ratio detector
JPH0668482B2 (en) Air-fuel ratio sensor
JPS60200157A (en) Apparatus for detecting gaseous composition
JPH10132782A (en) Gas-detecting apparatus
JPS62197759A (en) Activation detector for air/fuel ratio detector
JPS6183956A (en) Air/fuel ratio sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term