JPH0635101B2 - Method for simultaneously processing three surfaces and apparatus used for the method - Google Patents

Method for simultaneously processing three surfaces and apparatus used for the method

Info

Publication number
JPH0635101B2
JPH0635101B2 JP23321286A JP23321286A JPH0635101B2 JP H0635101 B2 JPH0635101 B2 JP H0635101B2 JP 23321286 A JP23321286 A JP 23321286A JP 23321286 A JP23321286 A JP 23321286A JP H0635101 B2 JPH0635101 B2 JP H0635101B2
Authority
JP
Japan
Prior art keywords
processing
spherical
machining tool
tool
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23321286A
Other languages
Japanese (ja)
Other versions
JPS6389259A (en
Inventor
徹 今成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23321286A priority Critical patent/JPH0635101B2/en
Publication of JPS6389259A publication Critical patent/JPS6389259A/en
Publication of JPH0635101B2 publication Critical patent/JPH0635101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばカメラなどの光学機器に用いるレンズ
等の光学素子や、レンズプレス用金属金型などのよう
に、所定の形状の2つの対向する面を有する円盤あるい
は円柱状部分を有する各種部材の製造に好適に利用可能
である、上面、下面及び周壁の3面の同時加工方法及び
該方法に用いる装置に関し、例えば、レンズの構造にお
ける一対の対向するレンズ面の仕上げ加工及び芯取り加
工を同時に行なうのに好適な3面同時加工方法及び該方
法に用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an optical element such as a lens used in an optical device such as a camera, a metal die for a lens press, and the like having two predetermined shapes. The present invention relates to a method for simultaneously processing three surfaces of an upper surface, a lower surface and a peripheral wall, which can be suitably used for manufacturing various members having a disk or a columnar portion having opposing surfaces, and an apparatus used for the method, for example, in a lens structure. The present invention relates to a method for simultaneously processing three surfaces suitable for simultaneously performing a finishing process and a centering process for a pair of opposing lens surfaces, and an apparatus used for the method.

〔従来の技術〕[Conventional technology]

例えば、カメラ等の光学機器に用いるレンズなどの光学
素子は、ガラス等からなる所定の形状に予備加工された
素材に、研磨、研削等の仕上げ加工を片面ずつ別途行な
い、対向する両面を所定のレンズ面として仕上げた後、
更に芯取り加工を行なう工程を含む方法によって従来よ
り製造されてきた。
For example, in an optical element such as a lens used in an optical device such as a camera, a material preliminarily processed into a predetermined shape made of glass or the like is subjected to finishing processing such as polishing and grinding separately for each surface, and both surfaces facing each other are subjected to predetermined processing. After finishing as a lens surface,
It has been conventionally manufactured by a method including a step of performing centering.

ところが、このような従来の方法では、少なくとも片面
加工専用の加工装置が2つ及び芯取り加工装置が必要と
なり、大量加工の際などには多くの台数の装置が必要と
される上に、それらの占有スペースも多大となる。ま
た、加工工程に要する時間も非常に長くなる。
However, in such a conventional method, at least two processing devices dedicated to single-sided processing and a centering processing device are required, and a large number of devices are required for large-scale processing, and moreover, they are required. Takes up a lot of space. In addition, the time required for the working process becomes very long.

これに対して、特開昭 57-102747号には、一対のレンズ
面を同時に加工する装置が開示され、それによれば、レ
ンズ面加工用の装置の台数を半分とすることができる
が、依然としてレンズ面の仕上げ加工後に、更に芯取り
加工を別途行なう必要があることに変りはない。
On the other hand, Japanese Patent Application Laid-Open No. 57-102747 discloses a device for simultaneously processing a pair of lens surfaces, which allows the number of lens surface processing devices to be halved. After finishing the lens surface, it is still necessary to perform additional centering.

一方、芯取り加工は、通常金属等からなるクランプによ
って仕上がったレンズ面を介して被加工レンズを、いわ
ゆるベルクランプホールドさせて芯出した状態で、ホル
ダーの中心軸に一致した光軸に被加工レンズの周壁を対
称に加工することによって行なわれるが、クランプによ
るレンズ面の損傷が生じないように特別の配慮を常に行
なっておく必要がある。
On the other hand, centering is a process in which the lens to be processed is centered by the so-called bell clamp hold through the lens surface that is usually finished by a clamp made of metal, etc. This is done by symmetrically processing the peripheral wall of the lens, but special consideration must always be taken so that the lens surface is not damaged by the clamp.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上記のような従来技術に鑑みなされたものであ
り、その目的は、レンズ等の光学素子、あるいはそれら
と同様な形状に加工する被加工物の一対のレンズ面のよ
うな2つの対向する被加工面の同時加工とともに、更に
レンズにおける芯取り加工のような周壁の加工を同時に
行なえる3面同時加工方法及び該方法に用いる装置を提
供し、従来の技術における上述の問題を更により効果的
に解決することにある。
The present invention has been made in view of the above-described conventional techniques, and an object thereof is to provide two facing elements such as a pair of lens surfaces of an optical element such as a lens or a workpiece to be processed into a similar shape. The present invention provides a three-sided simultaneous processing method and a device used for the method, which can simultaneously perform the simultaneous processing of the surface to be processed and the processing of the peripheral wall such as the centering processing in the lens, and further solve the above-mentioned problems in the prior art. It is to solve effectively.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、互いに異なる周速を有し、それぞ
れが形成すべき面に対応する面形状で被加工物の対向す
る2つの被加工面の各々に接触し、かつ互いに押し合う
方向に被加工物を押圧する一対の加工工具面間での被加
工物の挟持状態を維持させて、前記対向する2つの被加
工面を同時加工する過程と;前記工具面間に挟持され、
自転している状態の被加工物の周壁を、該自転中心軸に
対称に加工する過程とを含むことを特徴とする3面同時
加工方法、及び、互いに異なる周速を有し、それぞれが
形成すべき面に対応する面形状で被加工物の対向する2
つの被加工面の各々に接触し、かつ互いに押し合う方向
に被加工物を押圧する一対の加工工具面を形成し、これ
ら加工工具面間での被加工物の挟持状態を維持し得るよ
うに設けられた一対の面加工用の工具と;前記加工工具
面間に挟持されている被加工物の周壁に当接され、該被
加工物の自転を利用して、該自転中心軸に該周壁を対称
に加工し得る周壁加工用の工具とを有してなることを特
徴とする3面同時加工用装置である。
That is, according to the present invention, the two peripheral surfaces having different peripheral velocities are contacted with each other of the two surface-to-be-processed of the workpiece having a surface shape corresponding to the surface to be formed, respectively, and are pressed in the directions of pressing each other. A process of maintaining the sandwiched state of the workpiece between a pair of machining tool surfaces that press the workpiece, and simultaneously machining the two opposed workpiece surfaces; sandwiched between the tool surfaces,
A three-sided simultaneous machining method, characterized in that it includes a process of machining a peripheral wall of a workpiece in a rotating state symmetrically with respect to the rotation center axis, and a peripheral speed different from each other, each of which is formed. 2 to face the work piece with a surface shape corresponding to the surface to be processed
To form a pair of processing tool surfaces that contact each of the two processing surfaces and press the workpiece in the direction of pressing each other, so that the state of clamping the processing object between these processing tool surfaces can be maintained. A pair of surface processing tools provided; abutting against the peripheral wall of the workpiece sandwiched between the processing tool surfaces, and utilizing the rotation of the workpiece, the peripheral wall around the rotation center axis And a peripheral wall machining tool capable of symmetrically machining.

本発明における面加工用の工具とは、所定の面形状で被
加工面に接触し、該面と摺り合うことにより、該面を所
定の面形状に加工するものであり、本発明における加工
工具面とは、加工の際に被加工面に接触している工具の
面部分を言う。
The tool for surface processing in the present invention is a tool for contacting a surface to be processed with a predetermined surface shape and sliding the surface to process the surface into a predetermined surface shape. The surface refers to the surface portion of the tool that is in contact with the surface to be processed during processing.

本発明に用いる面加工用の工具としては、例えば各種の
研磨、研削用などの表面加工用の工具が挙げられ、加工
する面(被加工面)に、所望の形状面精度や表面粗さな
どを付与するのに必要な加工工具面を形成できる構成を
有したものが適宜用いられる。
Examples of the surface processing tool used in the present invention include various surface processing tools such as polishing and grinding. The surface to be processed (processed surface) has a desired shape surface accuracy and surface roughness. Those having a configuration capable of forming the processing tool surface necessary for imparting the are appropriately used.

本発明の加工方法及び該方法に用いる装置は、このよう
な面加工用の工具によって形成された加工工具面間での
被加工物の一対の対向する2面を介した挟持状態を維持
させ、これら面を同時加工するものである。
A machining method of the present invention and an apparatus used for the method maintain a sandwiching state between a pair of opposing two surfaces of a workpiece between machining tool surfaces formed by such a surface machining tool, These surfaces are simultaneously processed.

更に、これら加工工具面の周速は互いに異なるように設
定され、その結果加工工具面間に挟持された被加工物は
自転し、この自転する被加工物の周壁に、周壁加工用工
具が当接される。従って、一対の面加工用の工具は、そ
の構成上あるいは操作上、それらの加工工具面の周速に
被加工物を自転させるために十分な差が生じような構成
を有した組合せで用いられる。
Further, the peripheral speeds of these machining tool surfaces are set to be different from each other, and as a result, the workpiece clamped between the machining tool surfaces rotates, and the peripheral wall machining tool contacts the peripheral wall of the rotating workpiece. Contacted. Therefore, the pair of surface processing tools are used in a combination having a structure in which there is a sufficient difference in the peripheral speeds of the processing tool surfaces to rotate the workpiece due to its configuration or operation. .

〔作用〕[Action]

被加工物の一対の対向する被加工面には、面加工用の工
具によって形成された加工工具面が同時に押圧されて、
それぞれが形状面精度や表面粗さなどの所望の加工状態
に同時加工される。
On the pair of facing work surfaces of the work piece, the working tool surfaces formed by the surface working tool are simultaneously pressed,
Each of them is simultaneously processed into a desired processing state such as shape surface accuracy and surface roughness.

更に、被加工物は周速の異なる加工工具面間に挟持され
ることによって自転し、この自転する被加工物の周壁
に、周壁加工用の工具が当接され、被加工物の周壁は、
該自転中心軸に対称に加工される。
Further, the work piece rotates by being sandwiched between the processing tool surfaces having different peripheral speeds, the peripheral wall of the rotating work piece is brought into contact with the peripheral wall processing tool, and the peripheral wall of the work piece is
It is processed symmetrically with respect to the rotation center axis.

また、一方が球面である一対の対向する面を有する部材
を、これら面にそれぞれ対応した面形状の周速の異なる
2面に挟持させると、挟持面の押圧方向と一致する球面
の球芯を通る軸を中心に部材を自転させることができる
現象を利用して、本発明における加工工具面の少なくと
も一方を、球面状とすることによって、加工工具面の被
加工物に対する押圧方向に沿った該球面の球芯を通る軸
を中心に被加工物を回転させることができる。
Further, when a member having a pair of opposed surfaces, one of which is a spherical surface, is sandwiched between two surfaces having surface shapes corresponding to these surfaces and having different peripheral speeds, a spherical core of a spherical surface that coincides with the pressing direction of the sandwiched surface is formed. By utilizing the phenomenon that a member can be rotated about an axis passing therethrough, by making at least one of the machining tool surfaces of the present invention spherical, the machining tool surface along the pressing direction against the workpiece The workpiece can be rotated around an axis passing through the spherical core.

例えば、レンズ等の光学素子の加工の場合、一対の加工
工具面の一方を球面、他方を平面とし、これら加工工具
面を互いに押し合う方向で被加工物の2つの対向する機
構面となる面(被加工面)に対して押圧すれば、押圧方
向と一致する軸、すなわち球面状加工工具面の球芯を通
り、平面状加工工具面に垂直な軸を中心に被加工物は自
転し、しかもその自転中心軸は、平面と球面との共通の
光軸と自動的に一致し、この自転中心軸に対称に、被加
工物の周壁を加工すれば、被加工物を芯取り加工でき
る。また、一対の加工工具面の両方を球面とし、これら
加工工具面を互いに押し合う方向で被加工物に対して押
圧すれば、押圧方向と一致する軸、すなわち2つの球面
状加工工具面の球芯を通る軸を中心に被加工物は自転
し、しかもその自転中心軸は、球面の共通の光軸と自動
的に一致し、この自転中心軸に対称に、被加工物の周壁
を加工すれば、被加工物を芯取り加工できる。
For example, in the case of processing an optical element such as a lens, one of a pair of processing tool surfaces is a spherical surface and the other is a flat surface, and the surfaces are two opposing mechanical surfaces of a workpiece in a direction in which these processing tool surfaces are pressed against each other. If pressed against the (working surface), the work piece rotates about an axis that coincides with the pressing direction, that is, passes through the spherical core of the spherical machining tool surface and the axis perpendicular to the planar machining tool surface, Moreover, the rotation center axis automatically coincides with the common optical axis of the flat surface and the spherical surface, and if the peripheral wall of the work piece is processed symmetrically with respect to this rotation center axis, the work piece can be centered. Further, if both the pair of machining tool surfaces are spherical surfaces and these machining tool surfaces are pressed against each other in a direction of pressing each other, an axis that coincides with the pressing direction, that is, a sphere of two spherical machining tool surfaces. The work piece rotates about an axis passing through the core, and its rotation center axis automatically coincides with the common optical axis of the spherical surface, and the peripheral wall of the work piece can be machined symmetrically with respect to this rotation center axis. For example, the work can be centered.

〔実施例〕〔Example〕

まず、以下に本発明の3面同時加工用装置の実施例を図
面を参照しつつ詳細に説明する。
First, an embodiment of an apparatus for simultaneous processing of three surfaces of the present invention will be described in detail below with reference to the drawings.

第1図は両凹球面レンズ精研削(メタルペレット)加工
を行なう場合の本発明の精研削加工装置の構成を示す模
式的縦断面図であり、第2図は該装置における各主要構
成要素の位置関係を示した概略図である。
FIG. 1 is a schematic vertical sectional view showing the structure of a precise grinding processing device of the present invention when performing fine grinding (metal pellet) processing on a biconcave spherical lens, and FIG. 2 is a diagram showing main components of the device. It is the schematic which showed the positional relationship.

この装置におけるレンズ面加工用の工具は、台皿2a、2b
の半球形状部の表面の所定位置に軸 0、 0を中心軸
とする球帯状に貼着された凹球面精研削用工具(メタル
ペレット)3a、3bであり、台皿2a、2bが、軸 0、 0
を中心に回転機構(不図示)によって矢印n、n
向に回転されることによって、レンズ面に付与すべき所
定の曲率半径r、rを有し、相対する一対の凹球面
研削のための加工工具面7a、7bを形成できるように設け
られている。加工工具面7a、7bは、台皿2a、2bが回転し
ている状態での被加工レンズへの接触面であり、それぞ
れの球芯(曲率中心)R、Rを通る軸が同軸(
0)をなすように配置されている。
The tools for lens surface processing in this device are the plates 2a and 2b.
The concave spherical fine grinding tools (metal pellets) 3a, 3b attached in a spherical band shape with the axes 0 1 , 0 2 as the central axes at predetermined positions on the surface of the hemispherical portion of the table 2a, 2b. , Axes 0 1 , 0 2
A pair of concave spherical surfaces having predetermined radii of curvature r 1 and r 2 to be given to the lens surface by being rotated in the directions of arrows n 1 and n 2 by a rotation mechanism (not shown) about Are provided so that the machining tool surfaces 7a and 7b for the can be formed. The processing tool surfaces 7a and 7b are contact surfaces with the lens to be processed when the pedestals 2a and 2b are rotating, and the axes passing through the respective spherical cores (centers of curvature) R 1 and R 2 are coaxial (
0 5 ).

更に、工具3bの設けられた台皿2bには、加工工具面7bを
軸 0方向に被加工レンズ1に対して所望の加圧力Pで
押圧する加工機構(不図示)が接続されている。この装
置では加圧力Pを2段階に調整できるようになってい
る。
Furthermore, the Thai sala 2b provided with the tool 3b, the pressing processing mechanism (not shown) is connected at a desired pressure P with respect to the subject lens 1 a machining tool surface 7b in the axial 0 5 direction . In this device, the pressing force P can be adjusted in two steps.

なお、この例では、台皿2aが固定され、台皿2bが加圧機
構で押圧される構成で、加工工具面による互いに押し合
う方向での被加工レンズの押圧を実現しているが、台皿
2bを固定し、台皿2aにより押圧したり、またこれら両方
を加圧機構に接続して、両者によって押圧してもかまわ
ない。
In this example, the base 2a is fixed, and the base 2b is pressed by the pressing mechanism, and the pressing of the lenses to be processed in the mutually pressing directions by the processing tool surfaces is realized. dish
2b may be fixed and pressed by the pedestal 2a, or both of them may be connected to a pressure mechanism and pressed by both.

更に、台皿2a、2bには、工具3a、3bの回転中心軸 0
0を加工工具面の7a、7bの曲率中心R、Rまわり
でそれぞれ旋回させる旋回機構(不図示)と、曲率中心
、Rまわりで工具3a、3bの回転中心軸 0、 0
を矢印A、Aで示された方向で微少幅揺動させる揺
動機構(不図示)とが接続されている。
Furthermore, Thai sala 2a, the 2b, the tool 3a, the rotation center axis 0 1 of 3b,
0 2 the machining tool surface of 7a, the center of curvature R 1, R 2 about the turning mechanism for turning each of 7b (not shown), the centers of curvature R 1, R 2 around the tool 3a, 3b of the rotational center axis 0 1 , 0 2
Is connected to a swinging mechanism (not shown) that swings a small width in a direction indicated by arrows A 1 and A 2 .

球帯状に設けられた工具3a、3bの幅は、曲率中心R
まわりで台皿2a、2bを矢印A、A方向で揺動さ
せた場合に、レンズ面からはみでないように、該レンズ
面の直径よりもやや狭くしておくと良い。
The widths of the tools 3a, 3b provided in the shape of a spherical belt have a center of curvature R 1 ,
R 2 around the die plates 2a, when a 2b is swung by the arrow A 1, A 2 direction, so as not to protrude from the lens surface, it is advisable to slightly narrower than the diameter of the lens surface.

一方、この装置における被加工レンズの周壁加工用の工
具は、側面に研削面を有する円筒状の砥石4からなる。
これは、回転機構(不図示)によってその中心軸 0
回転中心軸として矢印n方向に回転された状態で、そ
の外周部が被加工レンズ1に加圧機構(不図示)によっ
て所定の圧力Pで圧接されることによって周壁を研削
加工するものである。
On the other hand, the tool for processing the peripheral wall of the lens to be processed in this apparatus is composed of a cylindrical grindstone 4 having a grinding surface on its side surface.
This is a state in which a rotation mechanism (not shown) rotates the center axis 0 3 in the direction of arrow n 3 with the center axis being the rotation center axis. The peripheral wall is ground by being pressed with the pressure P 3 .

この周壁加工用の砥石としては、必要に応じて例えば#
200 〜#400 程度の電着ダイヤモンド砥石等が使用でき
る。
As the grindstone for processing the peripheral wall, for example, #
An electrodeposited diamond grindstone of about 200 to # 400 can be used.

この例においては、軸 0を中心にn方向に回転する
ローラー5が更に設けられており、このローラー5を回
転させつつ矢印P方向に加圧して、被加工レンズ1の
周壁に当接することによって、被加工レンズ1の自転を
補助または助長することができるようになっている。な
お、被加工レンズ1に砥石4での周壁加工に十分な自転
状態が得られるならば、ローラー5は設ける必要はな
い。
In this example, the axis 0 4 and is further provided a roller 5 which rotates in the n 4 direction about the, pressurized in the arrow P 4 direction while rotating the roller 5, against the peripheral wall of the processed lens 1 By contacting, the rotation of the lens 1 to be processed can be assisted or promoted. It should be noted that the roller 5 is not required to be provided as long as the lens 1 to be processed can be rotated about the peripheral wall with the grindstone 4.

この装置における、台皿の回転機構、揺動機構、旋回機
構、加圧機構、砥石及びローラーの回転機構、加圧機構
としては、公知の構成のものから適宜選択して用いれば
良い。また、これらは別々に設けられていても良く、ま
たその2以上が一体となっているものであっても良い。
The plate rotating mechanism, the swinging mechanism, the turning mechanism, the pressure mechanism, the grindstone and roller rotating mechanism, and the pressure mechanism in this apparatus may be appropriately selected from known configurations and used. In addition, these may be provided separately, or two or more thereof may be integrated.

次に、この装置による精研削加工につき説明する。Next, the precise grinding process by this device will be described.

まず、予め仕上り形状に近い形に予備加工された被加工
レンズ1を、工具3aによって加工される面、すなわち曲
率半径 rの球面に精研削加工すべき面を下面として予
め研削剤をその表面に付与しておいた工具3b上に載置
し、更に被加工レンズ1の上面、すなわち曲率半径 r
の球面に精研削加工される面に工具3bを載置する。
First, the surface of the lens 1 to be preliminarily processed into a shape close to the finished shape is preliminarily processed by the tool 3a, that is, the surface to be precisely ground into a spherical surface having a radius of curvature r 1 is used as the lower surface, and the abrasive is preliminarily used. It is placed on the tool 3b that has been attached to the upper surface of the lens 1 to be processed, that is, the radius of curvature r 2
The tool 3b is placed on the surface to be precisely ground on the spherical surface of.

ここで工具3bを押圧する加圧機構の圧力Pを、回転した
状態のこれら工具間での被加工レンズ1の挟持状態が維
持され、両被加工レンズ面が加工されるのに十分な高さ
としておき、加工液をその供給手段6から供給しなが
ら、各工具をn、n方向に回転機構によってそれぞ
れ回転させる。すると、各工具の回転によって、所定の
曲率半径r、rの加工工具面7a、7bが形成され、こ
れら面が被加工レンズのレンズ面に所定圧で押圧される
とともに、加工工具面7a、7bの周速差によって被加工レ
ンズが、自転し、その状態で研削が進行する。
Here, the pressure P of the pressurizing mechanism that presses the tool 3b is high enough to maintain the sandwiched state of the lens 1 to be processed between these tools in a rotated state and process both lens surfaces. Then, while supplying the working fluid from the supply means 6, the respective tools are rotated in the n 1 and n 2 directions by the rotating mechanism. Then, by the rotation of each tool, machining tool surfaces 7a and 7b having predetermined radii of curvature r 1 and r 2 are formed, and these surfaces are pressed against the lens surface of the lens to be processed with a predetermined pressure, and the machining tool surface 7a , 7b causes the lens to be processed to rotate on its axis, and grinding proceeds in that state.

なお、各工具を回転させる際に、被加工レンズ1の安定
自転状態を得るためには、回転開始時からの回転立上げ
をできるだけゆっくり行なうのが好ましい。その際、徐
々に回転を上げていくうちに、被加工レンズ1の自転が
安定したら、研削に必要な所定の回転数に一気に持って
いってもかまわない。また、どちらか一方の回転数が極
端に高いと、そちら側の面で摩擦力が大きくなり、被加
工レンズ1が加工具3a、3b間から飛び出してしまうの
で、なるべく両者の回転立上げを揃えて行なうのが良
い。
In order to obtain a stable rotation state of the lens 1 to be processed when rotating each tool, it is preferable that the rotation start-up from the start of rotation is performed as slowly as possible. At this time, if the rotation of the lens 1 to be processed stabilizes while gradually increasing the rotation, the predetermined number of rotations required for grinding may be taken all at once. Also, if either one of the rotation speeds is extremely high, the frictional force on that side increases, and the lens 1 to be processed jumps out between the processing tools 3a and 3b. It is good to do it.

この回転数の制御には、インバーター等の変速回転機構
等を用いることができる。
A variable speed rotating mechanism such as an inverter can be used for controlling the rotation speed.

両レンズ面の同時球面加工が安定し、各レンズ面と、加
工工具面7a、7bとが完全な接触状態となったところで、
工具の回転中心軸 0、 0を曲率中心r、rまわ
りで微小幅揺動させる。これによって、レンズ面をくま
なく研削することができる。
Simultaneous spherical processing of both lens surfaces is stable, and when each lens surface is in complete contact with the processing tool surfaces 7a, 7b,
The rotation center axes 0 1 and 0 2 of the tool are slightly swung around the centers of curvature r 1 and r 2 . As a result, the lens surface can be ground thoroughly.

また、一対の回転する研削手段によって安定して挟持さ
れつつ研削加工され、両レンズ面と、加工工具面7a、7b
とがそれぞれ十分に接触している状態では、加工工具面
7a、7bによる押圧方向と加工工具面7a、7bの球芯を通る
軸とが一致した状態、すなわち、被加工レンズ1がこれ
ら工具によってベルクランプホールドされている形とな
る。しかも、前述したように加圧方向に沿った球芯を通
る軸、すなわち加工工具面7a、7bの球芯を通る軸(両球
面の共通の光軸)を中心に被加工レンズ1は自転し、被
加工レンズ1の芯出しが行なわれる。
Further, the pair of rotating grinding means is stably sandwiched and ground, and both lens surfaces and the processing tool surfaces 7a and 7b are processed.
When and are in sufficient contact with each other,
The pressing direction by 7a, 7b and the axis passing through the spherical core of the processing tool surfaces 7a, 7b coincide with each other, that is, the lens 1 to be processed is bell clamped by these tools. Moreover, as described above, the lens 1 to be processed rotates about the axis passing through the spherical core along the pressing direction, that is, the axis passing through the spherical core of the processing tool surfaces 7a and 7b (the optical axis common to both spherical surfaces). The lens 1 to be processed is centered.

この状態で、加圧機構による圧力Pを、外壁加工用砥石
4が被加工レンズに所定圧Pで当接された際に、工具
3a、3bによる挟持状態を維持するのに十分な程度に高め
たのち、砥石4を高速回転させつつ被加工レンズの周壁
に所定圧で当接する。このときの砥石4の圧接力が大き
いと、被加工レンズ1の自転がスムーズに行なわれなく
なることがあるので、そのような時には、例えばゴム状
リング5を有する円筒状のローラー等を回転状態で当接
させ被加工レンズ1の自転を補助あるいは助長すれば良
い。
In this state, when the outer wall processing grindstone 4 is brought into contact with the lens to be processed at a predetermined pressure P 4 by the pressure P generated by the pressing mechanism,
After being raised enough to maintain the sandwiched state by 3a and 3b, the grindstone 4 is rotated at a high speed and brought into contact with the peripheral wall of the lens to be processed with a predetermined pressure. At this time, if the pressure contact force of the grindstone 4 is large, the lens 1 to be processed may not rotate smoothly. Therefore, in such a case, for example, a cylindrical roller having the rubber ring 5 may be rotated. It is sufficient to bring them into contact with each other to assist or promote the rotation of the lens 1 to be processed.

このようにして砥石4によって、光軸と一致した軸 0
を中心として回転する被加工レンズの周壁を、該軸に対
称に加工、すなわち被加工レンズ1の芯取り加工が行な
われる。
In this way, with the grindstone 4, the axis 0 5
The peripheral wall of the lens to be processed, which rotates around, is processed symmetrically to the axis, that is, the lens 1 to be processed is centered.

なお、本発明においては、レンズ面加工用の工具の構成
を種々変更することによって、例えば凹メニスカスや平
凹レンズ等も加工可能である。
In the present invention, for example, a concave meniscus or a plano-concave lens can be processed by changing the configuration of the lens surface processing tool.

例えば、第3図に示した構成の装置によって平凹レンズ
の加工が可能である。
For example, a plano-concave lens can be processed by the device having the configuration shown in FIG.

この装置では、円盤状の台皿2bに、その回転にともなっ
て軸 0を中心として回転し、該軸に直角をなす平面状
の加工工具面7bを形成する加工工具面3bが設けられてい
る。各加工工具面による押圧方向は、加工工具面7bに直
角で、球面状の加工工具面7aの球芯を通る方向である。
In this apparatus, a disk-shaped Thai sala 2b, rotates about the axis 0 5 along with its rotation, and the working tool surface 3b to form a planar machining tool surface 7b at right angles to the axis is provided There is. The pressing direction by each processing tool surface is a direction that is perpendicular to the processing tool surface 7b and passes through the spherical core of the spherical processing tool surface 7a.

なお、以上説明した例では、レンズ面の精研削加工と芯
取り加工のための本発明の実施例であったが、加工する
レンズの構成や所望とする面精度に応じて、加工用工具
の形状や構成を種々変更し得ることはいうまでもない。
In the example described above, it was an embodiment of the present invention for precise grinding and centering of the lens surface, but depending on the configuration of the lens to be processed and the desired surface accuracy, It goes without saying that the shape and configuration can be variously changed.

また、本発明における加工用の工具としては、固定砥粒
を用いた加工のみならず、遊離砥粒を用いる工具を使用
することもできる。
Further, as the processing tool in the present invention, not only processing using fixed abrasives but also tools using free abrasives can be used.

一方、周壁加工用の工具を総形加工用の工具とすれば、
周壁を任意の形状で芯取り加工することができる。ま
た、面加工用の工具としては、回転状態で本発明でいう
加工工具面を形成できるならば、上記の実施例のように
連続した面を有していないもの、例えば工具面に溝など
が設けられてその全面で連続していないものでも、回転
状態で、所望の形状の加工工具面を形成できるものであ
れば使用可能である。
On the other hand, if the tool for peripheral wall processing is a tool for forming,
The peripheral wall can be centered in any shape. Further, as the surface processing tool, if it is possible to form a processing tool surface in the present invention in a rotating state, those that do not have a continuous surface as in the above embodiment, such as a groove on the tool surface Even if it is provided and is not continuous on the entire surface, it can be used as long as it can form a machining tool surface having a desired shape in a rotating state.

更に、本発明は、上記実施例のようなレンズの加工のみ
ならず、2つの対向する面を有する円盤状あるいは円柱
状部分を有する各種部材の3面同時加工に好適に適用で
きる。
Further, the present invention can be suitably applied not only to the processing of the lens as in the above-described embodiment but also to the simultaneous processing of three surfaces of various members having a disk-shaped or columnar portion having two facing surfaces.

〔発明の効果〕〔The invention's effect〕

例えば、レンズの加工の場合には、一対の対向する両レ
ンズ面と、芯取り加工とを一台の加工装置で同時に行な
うことができるなど、本発明によれば所定の形状の2つ
の対向する面を有する円盤あるいは円柱状部分を有する
各種部材の上面、下面及び周壁の3面を一台の加工装置
で同時加工することが可能であり、従来の加工方法にお
けるよりも加工装置の台数及びそれらの占有スペース
を、大幅に削減することができる。
For example, in the case of processing a lens, a pair of opposing lens surfaces and centering processing can be simultaneously performed by one processing apparatus. According to the present invention, two opposing surfaces having a predetermined shape are provided. It is possible to simultaneously process the upper surface, the lower surface and the peripheral wall of various members having a disk having a surface or a cylindrical portion with one processing device, and the number of processing devices and those It is possible to significantly reduce the occupied space of.

また、上面、下面及び周壁の3面を同時加工するので、
加工時間も大幅に削減可能となった。
Also, since the upper surface, the lower surface and the peripheral wall are machined simultaneously,
The processing time has also been greatly reduced.

しかも、面加工用の工具に加工される上面、下面がホー
ルドされた状態で被加工物の周壁が加工されるので、す
なわち金属等のクランプですでに仕上った上面、下面を
ホールドして周壁を加工する従来の加工方法を用いない
ので、被加工面の損傷という問題を考慮する必要は全く
なくなった。
Moreover, since the peripheral wall of the workpiece is machined while the upper and lower surfaces to be machined by the surface processing tool are held, that is, the upper and lower surfaces already finished with a metal clamp are held to secure the peripheral wall. Since the conventional processing method for processing is not used, there is no need to consider the problem of damage to the surface to be processed.

特に本発明をレンズ等の光学素子の加工に用いた場合、
芯取り加工時のホルダーによって機能面を損傷するとい
う心配は全くなくなった。
Particularly when the present invention is used for processing an optical element such as a lens,
There is no need to worry about the functional surface being damaged by the holder during centering.

【図面の簡単な説明】[Brief description of drawings]

第1図は両凹球面レンズ精研削(メタルペレット)加工
を行なう場合の本発明の精研削加工装置の構成を示す模
式的縦断面図、第2図は該装置における各主要構成要素
の位置関係を示した該略図図、第3図は本発明の加工装
置の他の例の模式的縦断面図である。 1:被加工レンズ、2a、2b:台皿 3a、3b:レンズ面加工用の工具 4:砥石、5:ローラー 6:研磨液供給手段、7a、7b:加工工具面
FIG. 1 is a schematic vertical cross-sectional view showing the configuration of a fine grinding processing device of the present invention for performing fine grinding (metal pellet) processing of a biconcave spherical lens, and FIG. 2 is a positional relationship of each main constituent element in the device. 3 is a schematic vertical sectional view of another example of the processing apparatus of the present invention. 1: Lens to be processed, 2a, 2b: Plate 3a, 3b: Tool for lens surface processing 4: Grinding stone, 5: Roller 6: Polishing liquid supply means, 7a, 7b: Processing tool surface

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】互いに異なる周速を有し、それぞれが形成
すべき面に対応する面形状で被加工物の対向する2つの
被加工面の各々に接触し、かつ互いに押し合う方向に被
加工物を押圧する一対の加工工具面間での被加工物の挟
持状態を維持させて、前記対向する2つの被加工面を同
時加工する過程と;前記工具面間に挟持され、自転して
いる状態の被加工物の周壁を、該自転中心軸に対称に加
工する過程とを含むことを特徴とする3面同時加工方
法。
1. A work piece having different peripheral velocities, each of which has a surface shape corresponding to a surface to be formed, is in contact with each of two facing work surfaces of a work piece, and is pressed against each other. A process of simultaneously holding two workpiece surfaces facing each other while maintaining a sandwiched state of the workpiece between a pair of processing tool surfaces that press an object; and sandwiching and rotating between the tool surfaces. And a process of processing the peripheral wall of the work piece in a state of being symmetrical about the rotation center axis.
【請求項2】前記一対の加工工具面の一方が球面形状を
なし、他の一方が平面をなし、かつ該平面に直角な方向
で前記一対の加工工具面が被加工物を押圧し、更に該加
工工具面と加工面とが十分に接触した状態で、前記周壁
を加工する特許請求の範囲第1項に記載の3面同時加工
方法。
2. One of the pair of machining tool surfaces has a spherical shape, the other has a plane surface, and the pair of machining tool surfaces presses a workpiece in a direction perpendicular to the plane surface. The three-sided simultaneous processing method according to claim 1, wherein the peripheral wall is processed in a state where the processing tool surface and the processing surface are sufficiently in contact with each other.
【請求項3】前記一対の加工工具面が共に球面形状をな
し、かつ両球面の球芯を通る軸に沿った方向で前記加工
工具面が被加工物を押圧し、更に該加工工具面と被加工
面とが十分に接触した状態で、前記周壁を加工する特許
請求の範囲第1項に記載の3面同時加工方法。
3. The pair of machining tool surfaces both have a spherical shape, and the machining tool surfaces press the workpiece in a direction along an axis passing through the spherical cores of both spherical surfaces. The three-sided simultaneous processing method according to claim 1, wherein the peripheral wall is processed in a state where the surface to be processed is in sufficient contact.
【請求項4】前記球面状の加工工具面が、被加工面の直
径よりも小さい幅を有する球帯形状を有してなり、該球
帯がその中心軸を中心に回転することにより形成される
特許請求の範囲第2項または第3項に記載の3面同時加
工方法。
4. The spherical machining tool surface has a spherical zone shape having a width smaller than the diameter of the surface to be machined, and the spherical zone is formed by rotating about its central axis. The simultaneous three-side processing method according to claim 2 or 3.
【請求項5】互いに異なる周速を有し、それぞれが形成
すべき面に対応する面形状で被加工物の対向する2つの
被加工面の各々に接触し、かつ互いに押し合う方向に被
加工物を押圧する一対の加工工具面を形成し、これら加
工工具面間での被加工物の挟持状態を維持し得るように
設けられた一対の面加工用の工具と;前記加工工具面間
に挟持されている被加工物の周壁に当接され、該被加工
物の自転を利用して、該自転中心軸に該周壁を対称に加
工し得る周壁加工用の工具とを有してなることを特徴と
する3面同時加工用装置。
5. A work piece having different peripheral velocities, being in contact with each of two facing work surfaces of a work piece in a surface shape corresponding to a surface to be formed, and in a direction in which they are pressed against each other. A pair of machining tools surfaces for pressing an object, and a pair of surface machining tools provided so as to maintain a sandwiched state of the workpiece between these machining tool surfaces; and between the machining tool surfaces A peripheral wall machining tool which is brought into contact with a peripheral wall of a workpiece to be sandwiched and which can symmetrically machine the peripheral wall around the rotation center axis by utilizing the rotation of the workpiece. A device for simultaneous processing of three surfaces.
【請求項6】前記一対の加工工具面の一方が球面形状を
なし、他の一方が平面をなし、かつ該平面に直角な方向
で前記一対の加工工具面が被加工物を押圧するように設
けられている特許請求の範囲第5項に記載の3面同時加
工用装置。
6. One of the pair of machining tool surfaces has a spherical shape, the other has a plane surface, and the pair of machining tool surfaces presses a workpiece in a direction perpendicular to the plane surface. An apparatus for simultaneous processing of three surfaces according to claim 5, which is provided.
【請求項7】前記一対の加工工具面が共に球面形状をな
し、かつ各球面の球芯を通る軸に沿った方向で前記加工
工具面が被加工物を押圧するように設けられている特許
請求の範囲第5項に記載の3面同時加工用装置。
7. A patent in which the pair of machining tool surfaces both have a spherical shape, and the machining tool surfaces press the workpiece in a direction along an axis passing through a spherical core of each spherical surface. The apparatus for simultaneous processing of three surfaces according to claim 5.
【請求項8】前記球面状の加工工具面を形成する面加工
用の工具が、被加工面の直径よりも小さい幅を有する球
帯形状を有してなり、該球帯が、その中心軸を中心に回
転して球面状の前記加工工具面を形成するものである特
許請求の範囲第6項または第7項に記載の3面同時加工
用装置。
8. A surface processing tool forming the spherical processing tool surface has a spherical zone shape having a width smaller than the diameter of the surface to be machined, and the spherical zone has a central axis thereof. The apparatus for simultaneous three-side machining according to claim 6 or 7, wherein the machining tool surface having a spherical shape is formed by rotating about a center.
【請求項9】前記球帯形状の面加工工具を、その球面状
の加工工具面の曲率中心まわりで揺動可能とした特許請
求の範囲第8項に記載の3面同時加工用装置。
9. An apparatus for simultaneous three-side machining according to claim 8, wherein the spherical surface machining tool can be swung around the center of curvature of the spherical machining tool surface.
【請求項10】前記面加工用工具の回転数を除々に上昇
可能ととした特許請求の範囲第8項または第9項に記載
の3面同時加工用装置。
10. The apparatus for simultaneous machining of three surfaces according to claim 8 or 9, wherein the rotational speed of the surface machining tool can be gradually increased.
【請求項11】前記加工工具面の被加工面への押圧力を
所望に応じて変化可能とした特許請求の範囲第5項〜第
10項のいずれかに記載の3面同時加工用装置。
11. A pressing method according to claim 5, wherein the pressing force of the processing tool surface against the surface to be processed can be changed as desired.
The apparatus for simultaneous processing of three surfaces according to any one of 10 items.
JP23321286A 1986-10-02 1986-10-02 Method for simultaneously processing three surfaces and apparatus used for the method Expired - Lifetime JPH0635101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23321286A JPH0635101B2 (en) 1986-10-02 1986-10-02 Method for simultaneously processing three surfaces and apparatus used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23321286A JPH0635101B2 (en) 1986-10-02 1986-10-02 Method for simultaneously processing three surfaces and apparatus used for the method

Publications (2)

Publication Number Publication Date
JPS6389259A JPS6389259A (en) 1988-04-20
JPH0635101B2 true JPH0635101B2 (en) 1994-05-11

Family

ID=16951512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23321286A Expired - Lifetime JPH0635101B2 (en) 1986-10-02 1986-10-02 Method for simultaneously processing three surfaces and apparatus used for the method

Country Status (1)

Country Link
JP (1) JPH0635101B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145364A (en) * 1997-11-12 1999-05-28 Denso Corp Resin encapsulating type of semiconductor device, and its manufacture

Also Published As

Publication number Publication date
JPS6389259A (en) 1988-04-20

Similar Documents

Publication Publication Date Title
JPH0635101B2 (en) Method for simultaneously processing three surfaces and apparatus used for the method
JP2945021B2 (en) Lens processing method
JPS5919671A (en) Polishing device
JPS60104645A (en) Sphere machining device
JPH0192063A (en) Both surfaces polishing machine
JP2000198068A (en) Sheet type polishing machine
JP2944176B2 (en) Ultra-precision polishing method and polishing apparatus for wafer
JP2001001243A (en) Method and device for chamfering outer circumferential portion of thin disklike work
JP3007678B2 (en) Polishing apparatus and polishing method
JPS63212454A (en) Spherical face honing method
JPS6328552A (en) Nonspherical face machining method
JPS59232758A (en) Spherical face working system
JPH01183353A (en) Sphere working device
JP2721642B2 (en) Inclined lapping method
JPS60242951A (en) Bevelling system
JP3907814B2 (en) Cutting and chamfering simultaneous processing method and processing apparatus
JPS6133851A (en) Multi-face symultaneous machining device
KR960005294B1 (en) Device and method for grinding cylinderical surfaces externally by using multi-clamp
JPH05309535A (en) Machine tool
KR940010329B1 (en) Working device
JP2752710B2 (en) Optical element processing method and apparatus
JPS63232963A (en) Polishing device for spherical surface
JPH04101759A (en) Spherical grinding/polishing method
JP2005028513A (en) Spherical form finish-machining method for ball to be machined, and spherical form finish-machining device for ball to be machined
JPS6347060A (en) Shaping method and device therefor