JPH0635078B2 - Bond flux for latent arc welding - Google Patents

Bond flux for latent arc welding

Info

Publication number
JPH0635078B2
JPH0635078B2 JP2293135A JP29313590A JPH0635078B2 JP H0635078 B2 JPH0635078 B2 JP H0635078B2 JP 2293135 A JP2293135 A JP 2293135A JP 29313590 A JP29313590 A JP 29313590A JP H0635078 B2 JPH0635078 B2 JP H0635078B2
Authority
JP
Japan
Prior art keywords
welding
flux
sol
slag
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2293135A
Other languages
Japanese (ja)
Other versions
JPH04167998A (en
Inventor
薫 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2293135A priority Critical patent/JPH0635078B2/en
Publication of JPH04167998A publication Critical patent/JPH04167998A/en
Publication of JPH0635078B2 publication Critical patent/JPH0635078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、潜弧溶接用ボンドフラックスに係り、特に鉄
骨ボックス柱の角継手溶接等に適し、極厚板の2電極大
入熱1層盛溶接及び多層盛溶接において優れたスラグ剥
離性、耐水素割れ性能、耐繰返し使用性能を有し、しか
もフラックス消費量が少なく経済的な潜弧溶接用ボンド
フラックスに関するものである。
Description: TECHNICAL FIELD The present invention relates to a bond flux for submerged arc welding, and is particularly suitable for corner joint welding of a steel box column, and it is a two-electrode large heat input single layer of extremely thick plate. The present invention relates to an economical bond flux for latent arc welding, which has excellent slag peeling resistance, hydrogen cracking resistance, and repeated use resistance in flat welding and multi-pass welding, and has low flux consumption.

(従来の技術及び解決しようとする課題) 近年、地価の高騰並びにハイテク機能を有したインテリ
ジェントビルの増加に伴い、地上空間の有効活用を図る
ため、超高層化、大スペース化が進み、使用される鉄骨
柱はますます厚肉化の傾向を示し、50〜100mmの超
厚板の溶接が各所で行われている。
(Prior art and problems to be solved) In recent years, along with the skyrocketing land prices and the increase in intelligent buildings with high-tech functions, the skyscrapers and large spaces have been developed and used in order to effectively utilize the ground space. Steel columns have a tendency to become thicker and thicker, and welding of super-thick plates of 50 to 100 mm is performed in various places.

鋼の溶接方法としては被覆アーク溶接法、炭酸ガスアー
ク溶接法、潜弧溶接法などがあるが、厚板の溶接におい
ては、太径ワイヤを用いて高電流溶接が可能なため、高
溶着速度が得られる潜弧溶接法が一般に広く用いられて
いる。
As the welding method for steel, there are a covered arc welding method, a carbon dioxide gas arc welding method, a submerged arc welding method, and the like.However, in the welding of thick plates, high current welding is possible by using a large diameter wire, so a high welding speed The resulting latent arc welding method is generally widely used.

しかし、鉄骨ボックス柱の超厚板角継手部の潜弧溶接に
おける現状の問題点として以下の点が挙げられる。
However, the following problems are presently present problems in the latent arc welding of the ultra-thick plate corner joint of the steel box column.

多層盛溶接において、溶接中に生成するスラグが開先
内にははまり込んでしまうため、スラグ除去に多大な時
間と労力を要すること。
In multi-layer welding, the slag generated during welding gets stuck in the groove, so it takes a lot of time and effort to remove the slag.

溶接金属中の拡散性水素量は溶接入熱の増大と共に増
加するため、特に厚板の多層盛溶接においては、水素割
れ(低温割れ)を防止するために、予熱、パス間温度の
厳しい管理が必要となり、多大な労力を要すること。
Since the amount of diffusible hydrogen in the weld metal increases with an increase in welding heat input, especially in multi-pass welding of thick plates, strict control of preheating and interpass temperature is necessary to prevent hydrogen cracking (cold cracking). It is necessary and requires a lot of work.

大入熱溶接であるがために不可視アークで大気からの
シールド性を確保するのに、フラックス散布高さは通常
の潜弧溶接に比べて極端に高くする必要がある。そのた
め、フラックスの回収作業に手間取りがちであり、強力
なフラックス回収機を使用するケースが多い。その結果
フラックスが粉化微細化し易く、溶接作業性や溶接金属
の機械的性能に悪影響を与えること。
Since it is a high heat input welding, in order to secure the shielding property from the atmosphere by the invisible arc, the flux dispersion height needs to be extremely higher than that of the ordinary subarc welding. Therefore, it takes time and effort to collect the flux, and a powerful flux collector is often used. As a result, the flux is easily pulverized into fine particles, which adversely affects the welding workability and the mechanical performance of the weld metal.

厚板の大入熱溶接においては、溶接で生成するスラグ
量も多大なものとなり、その廃却に要する費用、量力も
多大であること。
In the large heat input welding of thick plates, the amount of slag generated by welding will be enormous, and the cost and quantity required for its disposal will be enormous.

これらの各々の問題点については、従来より、改善策が
提案されており、スラグ剥離性の改善を意図したもの
(特開平2−41795号、特開昭58−23593
号)、低水素化を図ったもの(特開昭60−19629
0号、特開昭62−203698号)、フラックス回収
性の改善を意図したもの(特公平2−39358号、特
開昭58−19491号)、スラグ生成量の低減を意図
したもの(特公平62−182277号等)などがあ
る。
With respect to each of these problems, conventionally, improvement measures have been proposed, which are intended to improve the slag removability (Japanese Patent Laid-Open Nos. 2-41795 and 58-23593).
No.), which is intended to reduce hydrogen (Japanese Patent Laid-Open No. 60-19629).
No. 0, JP-A-62-203698), those intended to improve flux recovery (Japanese Patent Publication No. 2-39358 and Japanese Patent Publication No. 58-19491), those intended to reduce the amount of slag (Japanese Patent Publication No. 62-182277) and the like.

しかし、いずれも、100〜200KJ/cm以上の大入
熱溶接において、上記全ての問題点を解決できるもので
はない。
However, none of them can solve all the above problems in high heat input welding of 100 to 200 KJ / cm or more.

本発明は、上記従来技術の問題点を解決して、特に極厚
板の大入熱潜弧溶接に適する溶接材料を提供することを
目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide a welding material particularly suitable for large heat input latent arc welding of extremely thick plates.

(課題を解決するための手段) 本発明者は、前記課題を解決するために特にボックスタ
イプの潜弧溶接用フラックスの成分組成について鋭意研
究を重ねた結果、ここに本発明をなしたものである。
(Means for Solving the Problems) The present inventor has made extensive studies as to the composition of the flux for box-type latent arc welding in order to solve the above problems, and as a result, the present invention has been made. is there.

すなわち、本発明は、 totalSiO2:10〜20% Al23:10〜20% totalTiO2:3〜14% MgO:10〜20% CaCO3:5〜15% totalMn:0.5〜8% 鉄粉:20〜40% sol.SiO2:1.0〜6.0% sol.Na2O:1.5〜3.5% を含み、かつ、 sol.Na2O/totalNa2O比:0.60〜 0.98 (但し、sol.Na2Oはsol.Na2O+sol.K2O+so
l.Li2Oの合計量、totalNa2OはtotalNa2O+to
talK2O+totalLi2Oの合計量である) MgO/SiO2(total)比:0.75〜1.30 を満足することを特徴とする潜弧溶接用ボンドフラック
スを要旨とするものである。
That is, the present invention is, totalSiO 2: 10~20% Al 2 O 3: 10~20% totalTiO 2: 3~14% MgO: 10~20% CaCO 3: 5~15% totalMn: 0.5~8% Iron powder: 20-40% sol. SiO 2: 1.0~6.0% sol. Na 2 O: 1.5 to 3.5%, and sol. Na 2 O / totalNa 2 O ratio: 0.60 to 0.98 (however, sol.Na 2 O is sol.Na 2 O + sol.K 2 O + so
l. Total amount of Li 2 O, totalNa 2 O is totalNa 2 O + to
talK 2 O + total Li 2 O) MgO / SiO 2 (total) ratio: 0.75 to 1.30 The bond flux for latent arc welding is characterized by the following.

以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

(作用) 本発明における化学成分の限定理由は次のとおりであ
る。
(Function) The reasons for limiting the chemical components in the present invention are as follows.

totalSiO2:10〜20% SiO2は酸性成分であり、スラグの粘性を調整するの
で必須の成分であるが、10%未満ではスラグの粘性が
不十分となり、ビード幅が不安定又は不均一となる。更
に、スラグ生成量も増すため好ましくない。一方、20
%を超えるとスラグの粘性が過剰となり、ビードの広が
りが悪くなる。また、スラグの剥離性も劣化し、塩基度
が低下するため、靱性も劣化し易い。
totalSiO 2 : 10 to 20% SiO 2 is an acidic component and is an essential component because it adjusts the viscosity of the slag, but if it is less than 10%, the viscosity of the slag becomes insufficient and the bead width becomes unstable or uneven. Become. Furthermore, the amount of slag produced increases, which is not preferable. On the other hand, 20
If it exceeds%, the viscosity of the slag becomes excessive and the spread of the beads becomes poor. In addition, the peelability of the slag also deteriorates and the basicity decreases, so the toughness also tends to deteriorate.

Al23:10〜20% Al23は中性成分であり、溶接金属の靱性を損うこと
なくスラグの粘性及び凝固温度を調整するのに有効な成
分である。しかし、10%未満ではスラグの粘性及び凝
固温度が低くなり、ビード幅が不均一となったり、ビー
ド形状が凸形となるため好ましくない。一方、20%を
超えるとスラグの凝固温度が高くなり過ぎるため、ビー
ドの広がりが不十分であったり、蛇行し易い。
Al 2 O 3 : 10 to 20% Al 2 O 3 is a neutral component and is an effective component for adjusting the viscosity and solidification temperature of slag without impairing the toughness of the weld metal. However, if it is less than 10%, the viscosity and solidification temperature of the slag become low, the bead width becomes non-uniform, and the bead shape becomes convex, which is not preferable. On the other hand, if it exceeds 20%, the solidification temperature of the slag becomes too high, so that the bead is not sufficiently spread or is easily meandered.

totalTiO2:3〜14% TiO2はスラグの融点及び粘性調整剤として有効な成
分である。また、TiO2は溶接中還元反応によって溶
接金属中に〔Ti〕を添加し、衝撃性能を向上させる作用
もある。したがって、フラックス中にはルチール、ルコ
キシン等のTiO2源から添加することも可能である
が、Fe−Ti等の合金元素と組合せて使用することも
できる。本発明では、Fe−Ti等の合金からTiを添
加する場合も含め、このような場合にはTiO2に換算
し、TiO2の総量((total)として規定することにし
た。
totalTiO 2: 3~14% TiO 2 is a component effective as a melting point and viscosity modifiers of the slag. TiO 2 also has the effect of adding [Ti] to the weld metal by a reduction reaction during welding and improving impact performance. Therefore, it is possible to add it from the TiO 2 source such as rutile and rucoxin into the flux, but it is also possible to use it in combination with an alloying element such as Fe—Ti. In the present invention, including the case of adding Ti alloy such as Fe-Ti, in such a case in terms of TiO 2, was to be defined as the total amount of TiO 2 ((total).

しかし、TiO2の総量が3%未満では、溶接金属中の
〔Ti〕量が少なく衝撃性能が劣化し、またアンダーカッ
トが発生し易いため好ましくない。一方、14%を超え
るとスラグ剥離性が急激に劣化し、スラグ生成量も増大
する。
However, if the total amount of TiO 2 is less than 3%, the amount of [Ti] in the weld metal is small, impact performance is deteriorated, and undercut is likely to occur, which is not preferable. On the other hand, if it exceeds 14%, the slag releasability deteriorates rapidly and the amount of slag produced also increases.

MgO:10〜20% MgOは塩基性成分であり、溶接金属中の〔O〕を低減
し、靱性を確保するのに有効な成分である。また、粘性
調整剤としての作用も有している。しかし、10%未満
では〔O〕の低減硬化が少なく、靱性が劣化する。ま
た、ビードが蛇行し易く、アンダーカットが発生する。
一方、20%を超えるとスラグ焼付が増すとともに、ポ
ックマークが発生し易い。更にスラグ生成量も増大する
ため好ましくない。
MgO: 10 to 20% MgO is a basic component and is an effective component for reducing [O] in the weld metal and ensuring toughness. It also has a function as a viscosity modifier. However, if it is less than 10%, the reduction hardening of [O] is small and the toughness deteriorates. Further, the bead is likely to meander, and undercut occurs.
On the other hand, if it exceeds 20%, seizure of slag is increased and a pock mark is likely to occur. Further, the amount of slag produced increases, which is not preferable.

CaCO3:5〜15% CaCO3は溶接中にCaOとCO2とに分解され、CO
2ガスによって溶接部を外気からシールドすると共に、
不純物ガス(H2又はN2等)の分圧を低下させ、溶接金
属中への浸入を防止するのに有効な成分である。しか
し、5%未満ではCO2ガスによるシールド効果が不十
分であり、溶接金属中の水素及び窒素量が増大し、低温
割れ及び靱性の低下が生じ易い。特に1層盛(One-Ru
n)溶接において、水素量が増大するため、割れが発生
し易い。一方、15%を超えるとCO2ガスの発生量が
過剰になり、ガスが均一に抜けずに溶接中の吹上げ現象
が極めて多くなり、ビード外観が劣化し易い。特に、多
層盛溶接におけるスラグ剥離性が劣化する。
CaCO 3 : 5 to 15% CaCO 3 is decomposed into CaO and CO 2 during welding, and CO
2 Gas shields the weld from the outside air,
It is an effective component for lowering the partial pressure of the impurity gas (H 2 or N 2 etc.) and preventing it from entering the weld metal. However, if it is less than 5%, the shielding effect by CO 2 gas is insufficient, the amount of hydrogen and nitrogen in the weld metal increases, and cold cracking and toughness decrease easily. Especially one layer (One-Ru
n) During welding, the amount of hydrogen increases, so cracking is likely to occur. On the other hand, if it exceeds 15%, the amount of CO 2 gas generated becomes excessive, the gas does not escape uniformly, and the blow-up phenomenon during welding becomes extremely large, and the bead appearance is likely to deteriorate. In particular, the slag removability in multi-pass welding deteriorates.

totalMn:0.5〜8% Mnはスラグの粘性、凝固温度を調整するのに有効な成
分であるだけでなく、溶接金属中のMn量を調整し、引
張性能、衝撃性能を確保するために必須の成分である。
しかし、0.5%未満ではアンダーカット及びスラグ焼
付きが発生し易く好ましくない。また、安価な低Mnワ
イヤと組合せた場合、溶接金属中の〔Mn〕量が不足し、
引張強度及び靱性が低下する。一方、8%を超えるとビ
ードが蛇行し易く、且つフラックス消費量が増大するた
め好ましくない。
total Mn: 0.5 to 8% Mn is not only an effective component for adjusting the viscosity and solidification temperature of slag, but also adjusts the amount of Mn in the weld metal to ensure tensile performance and impact performance. It is an essential ingredient.
However, if it is less than 0.5%, undercut and slag seizure are likely to occur, which is not preferable. Also, when combined with an inexpensive low Mn wire, the amount of [Mn] in the weld metal is insufficient,
The tensile strength and toughness decrease. On the other hand, if it exceeds 8%, the bead tends to meander and the amount of flux consumed increases, which is not preferable.

なお、Mn成分は、金属MnやFe−Mnなどの化合物
及びMnO、MnO2などの酸化物の形でフラックス中
に添加されるが、本発明ではMnの総量としてtotalM
nで規定することにした。したがって、totalMn量は
0.5〜8%の範囲とする。
The Mn component is added to the flux in the form of a compound such as metal Mn or Fe-Mn and an oxide such as MnO or MnO 2. In the present invention, the total amount of Mn is total M.
I decided to specify it by n. Therefore, the total Mn amount is set to the range of 0.5 to 8%.

鉄粉:20〜40% フラックス中に鉄粉を添加すると、溶接中に溶融池へ移
行し、消費量が増加する。これにより溶接能率の向上と
溶接入熱の低下を図ることが可能である。しかし、20
%未満ではこの効果が少なく、大入熱溶接時の吹上げも
増大するため、好ましくない。一方、40%を超えると
ビードの広がりが悪くなったり、スラグ巻込みが発生し
易くなる。
Iron powder: 20-40% When iron powder is added to the flux, it shifts to the molten pool during welding and the consumption increases. This makes it possible to improve the welding efficiency and reduce the welding heat input. But 20
If it is less than%, this effect is small and the blow-up at the time of high heat input welding increases, which is not preferable. On the other hand, when it exceeds 40%, the spread of the beads becomes poor and slag entrainment easily occurs.

sol.SiO2:1.0〜6.0% sol.SiO2はフラックスの耐粉化性及び耐吸湿性(吸
湿量が増大すると溶接金属中の拡散性水素量が増す)を
改善するために規制する。ここで、sol.SiO2は水に
可溶性のSiO2である。
sol. SiO 2: 1.0~6.0% sol. SiO 2 is regulated in order to improve the pulverization resistance and moisture absorption resistance of the flux (the amount of diffusible hydrogen in the weld metal increases as the amount of moisture absorption increases). Here, sol. SiO 2 is water-soluble SiO 2 .

しかし、1.0%未満では、極力な回収機でフラックス
を回収すると粉化、微細化するため好ましくない。フラ
ックスが粉化した際、一番問題となるのは、ガス抜けが
悪くなり、異常な吹上げが発生したり、ポックマークが
発生し易いなどが挙げられる。一方、6.0%を超える
と、フラックスの耐吸湿性が劣化し、特に厚板の多層盛
溶接においては水素割れが発生し易いため好ましくな
い。
However, if it is less than 1.0%, it is not preferable because the flux is pulverized and refined when the flux is recovered by an extremely efficient recovery machine. When the flux is pulverized, the most problematic factors are that outgassing becomes poor, abnormal blow-up occurs, and pock marks are likely to occur. On the other hand, if it exceeds 6.0%, the moisture absorption resistance of the flux deteriorates, and hydrogen cracking easily occurs particularly in multi-layer welding of thick plates, which is not preferable.

sol.Na2O:1.5〜3.5% sol.Na2Oはアーク安定性の確保のための必須成分で
ある。厚板でしかも大入熱溶接になるほど溶接は難しく
なり、その適正溶接条件範囲は狭くなる。特にアーク電
圧の制御が非常に重要である。しかし、1.5%未満で
は電圧計の針の振れが非常に大きくなるため、所定の電
圧値にセットする際、溶接オペレータによって個人差が
発生し、結果としてアンダーカットや溶込み不足の欠陥
につながることが非常に多い。また、アーク電圧が不安
定であるため、溶接長が長くなるほど均一な溶接結果が
得られにくいという問題も発生する。一方、3.5%を
超えるとフラックスの耐吸湿性が劣化するため好ましく
ない。
sol. Na 2 O: 1.5~3.5% sol. Na 2 O is an essential component for ensuring arc stability. The thicker the plate and the larger the heat input welding, the more difficult the welding becomes and the narrower the range of appropriate welding conditions. In particular, control of the arc voltage is very important. However, if it is less than 1.5%, the deflection of the voltmeter needle will be very large, so when setting to a predetermined voltage value, individual differences will occur depending on the welding operator, resulting in defects such as undercut and insufficient penetration. Very often connected. Further, since the arc voltage is unstable, there is a problem that it becomes difficult to obtain a uniform welding result as the welding length becomes longer. On the other hand, if it exceeds 3.5%, the moisture absorption resistance of the flux deteriorates, which is not preferable.

なお、sol.Na2Oはsol.Na2O+sol.K2O+so
l.Li2Oの合計量であり、sol.Na2O、sol.K
2O、sol.Li2Oはそれぞれ水に可溶性のNa2O、K
2O、Li2Oである。
In addition, sol. Na 2 O is sol. Na 2 O + sol. K 2 O + so
l. The total amount of Li 2 O, sol. Na 2 O, sol. K
2 O, sol. Li 2 O is water-soluble Na 2 O and K, respectively.
2 O and Li 2 O.

sol.Na2O/totalNa2O比:0.60〜0.98 sol.Na2O/totalNa2O比は、フラックスの耐粉化
性及び耐吸湿性を改善するために規制する。しかし、
0.60%未満では、製造時の製品歩留りが低下し、ア
ークの安定性も劣るため好ましくない。一方、0.98
を超えると、フラックスに20〜40%の鉄粉を含有す
る鉄粉系ボンドフラックスの耐粉化性が劣化し、繰返し
使用時にフラックスが微細化し易い。また、フラックス
の耐吸湿性も劣化し、水素割れが発生し易いため好まし
くない。
sol. Na 2 O / totalNa 2 O ratio: .60 to .98 sol. Na 2 O / totalNa 2 O ratio is regulated to improve耐粉resistance and moisture absorption resistance of the flux. But,
If it is less than 0.60%, the product yield at the time of production is lowered and the arc stability is also inferior, which is not preferable. On the other hand, 0.98
If it exceeds, the resistance to pulverization of the iron powder bond flux containing 20 to 40% of iron powder deteriorates, and the flux is likely to become fine during repeated use. Further, the moisture absorption resistance of the flux is deteriorated, and hydrogen cracking is likely to occur, which is not preferable.

ここで、totalNa2OはtotalNa2O+totalK2O+to
talLi2Oの合計量である。
Here, totalNa 2 O is totalNa 2 O + totalK 2 O + to
It is the total amount of talLi 2 O.

MgO/SiO2比:0.75〜1.30 MgO/SiO2比は、溶接作業性を確保するために規
制する必要がある。しかし、0.75未満では、開先内
でのスラグ剥離性が劣化する。一方、1.30を超える
とフラックス消費量(スラグ生成量)が増大し、スラグ
の焼付けも発生するため好ましくない。また、ビード形
状も凸となり、ビードの広がりもない。
MgO / SiO 2 ratio: 0.75 to 1.30 The MgO / SiO 2 ratio needs to be regulated in order to secure welding workability. However, if it is less than 0.75, the slag removability in the groove deteriorates. On the other hand, if it exceeds 1.30, the flux consumption amount (slag generation amount) increases, and slag baking occurs, which is not preferable. Also, the bead shape is convex, and the bead does not spread.

その他の成分としては、例えば、大入熱潜弧溶接時の靱
性向上のために適量の〔Ti〕及び〔B〕を溶接金属中に
添加することは良く知られているが、本発明においても
同様に、必要に応じて〔B〕添加量が溶接金属中で0.
0015〜0.0050%となる量を添加できる。この
場合、フラックスから又はワイヤから或いは双方から添
加できる。
As other components, for example, it is well known that appropriate amounts of [Ti] and [B] are added to the weld metal in order to improve the toughness at the time of large heat input latent arc welding, but also in the present invention. Similarly, the addition amount of [B] is 0.
An amount of 0015 to 0.0050% can be added. In this case, it can be added from the flux or from the wire or both.

なお、本発明のフラックスがボンドタイプとするのは、
ボンドフラックスは原材料を水硝子等の固着剤を用いて
造粒し、その後焼成する工程で製造されるため、溶融型
フラックスに比べて、CaCO3などの金属炭酸塩を添
加できるため、溶接金属の低水素化が図れること、鉄粉
添加により高溶着速度が得られること、大入熱溶接に必
要なスラグの塩基度、凝固温度、粘性の調整が容易であ
ることなどの利点があるためである。
The flux of the present invention is of bond type,
Since the bond flux is manufactured in the process of granulating the raw material using a fixing agent such as water glass and then firing it, it is possible to add a metal carbonate such as CaCO 3 as compared with the melt type flux. This is because it has advantages such as low hydrogenation, high deposition rate by adding iron powder, and easy adjustment of basicity of slag, solidification temperature, and viscosity required for high heat input welding. .

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) JIS Z 3351 YS−S6相当で第1表に示す
化学成分の供試ワイヤ(ワイヤ径:先行極は6.4mm
φ、後行極は6.4mmφ)と、第2表に示す化学成分の
供試フラックスを用いて、以下の条件で潜弧溶接試験を
行った。なお、供試フラックスにおけるsol.SiO2
及びsol.Na2O量やsol.Na2O/totalNa2O比は、
主に水ガラスの化学組成とフラックスの乾燥条件とを組
み合わせることによりコントロールした。
(Example) Test wire equivalent to JIS Z 3351 YS-S6 and having chemical components shown in Table 1 (wire diameter: leading electrode is 6.4 mm)
φ, and the trailing electrode was 6.4 mmφ), and a test arc of chemical composition shown in Table 2 was used to perform a latent arc welding test under the following conditions. The sol.SiO 2 amount and sol.Na 2 O amount and the sol.Na 2 O / totalNa 2 O ratio in the test flux are
It was controlled mainly by combining the chemical composition of water glass and the drying conditions of flux.

〔他の溶接条件〕[Other welding conditions]

・電極数:2電極溶接 ・電源極性:AC−AC ・供試鋼板及び溶接条件: 50mmt×1000mml寸法のSM50B鋼を用い、3
5°Y形開先(ルート面2mm)で、潜弧溶接により1層
盛溶接(One−Run溶接)を行なう。溶接入熱量は41
0KJ/cmである。
-Number of electrodes: 2-electrode welding-Power supply polarity: AC-AC-Test steel plate and welding conditions: SM50B steel with dimensions of 50 mmt x 1000 mml is used and 3
Performs one-layer welding (one-run welding) by latent arc welding with a 5 ° Y-shaped groove (root surface 2 mm). Welding heat input is 41
It is 0 KJ / cm.

100mmt×1000mml寸法のSM50B鋼を用い、
50Y°形開先(ルート面2mm)で、潜弧溶接により7
層16パスの多層盛溶接を行なう。溶接入熱量は16パ
スの平均値で180KJ/cmである。
Using SM50B steel with dimensions of 100 mmt x 1000 mml,
With a 50Y ° groove (root surface 2mm), 7 by latent arc welding
Multi-layer welding with 16 passes is performed. The welding heat input is 180 KJ / cm on average for 16 passes.

第3表及び第4表に試験結果(スラグ剥離性、耐水素割
れ性、フラックス回収性、スラグ生成量、溶接作業性及
びビード外観、溶接金属の衝撃特性)を示す。
Tables 3 and 4 show the test results (slag removability, hydrogen cracking resistance, flux recoverability, slag generation amount, welding workability and bead appearance, and weld metal impact characteristics).

なお、これらの評価方法は以下のとおりである。Note that these evaluation methods are as follows.

スラグ剥離性 スラグ剥離性は多層盛溶接の初層部で特に問題となるの
で、100mmtの供試鋼板の多層溶接で評価した。その
基準は以下のとおり。
Slag releasability Since slag releasability is a particular problem in the first layer of multi-layer welding, it was evaluated by multi-layer welding of 100 mmt test steel sheets. The criteria are as follows.

○:チッパーを使用しなくてもスラグ剥離する。◯: Slag is peeled off without using a chipper.

×:チッパーを使用してもスラグ剥離しにくい。X: Slag is difficult to peel off even if a chipper is used.

耐水素割れ性 100mmtの供試鋼板の多層盛溶接で評価した。すなわ
ち、予熱温度:室温、パス間温度:75℃で管理しなが
ら多層盛溶接を実施し、その後、48時間以上放置した
後、超音波探傷試験にて割れを調査した。フラックスは
初層の溶接を開始する前に250℃×1hrの再乾燥を行
なったものを用いた。但し、その後は大気中にそのまま
放置した。評価基準は以下のとおり。
Hydrogen cracking resistance It was evaluated by multi-pass welding of a test steel plate having 100 mmt. That is, multi-layer welding was carried out while controlling the preheating temperature: room temperature and the temperature between passes: 75 ° C., and after leaving for 48 hours or more, cracks were investigated by an ultrasonic flaw detection test. The flux used was one that was re-dried at 250 ° C. for 1 hour before starting the welding of the first layer. However, after that, it was left as it was in the atmosphere. The evaluation criteria are as follows.

○:割れなし、×:割れあり フラックス回収性 50mmtの供試鋼板の1層盛溶接で評価した。すなわ
ち、新品フラックスを回収機で10回繰返し回収した
後、溶接を行ない、作業性を調べた。評価基準は以下の
とおり。
◯: No cracks, ×: Cracks Flux recovery was evaluated by 1-layer welding of 50 mmt sample steel sheet. That is, new flux was repeatedly collected 10 times by a collecting machine, and then welding was performed to examine workability. The evaluation criteria are as follows.

○:新品フラックスと同様で作業性に大きな変化は認め
られない。
◯: Similar to new flux, no significant change in workability was observed.

×:異常な吹上げやポックマーク発生、ビード外観劣
化。
X: Abnormal blow-up, occurrence of pock mark, and deterioration of bead appearance.

スラグ生成量 50mmtの供試鋼板の1層盛溶接で評価した。すなわ
ち、溶接長1m当りのフラックス消費量、ワイヤ消費量
を測定し、フラックス消費率 (フラックス消費量/ワイヤ消費量)を計算で求めた。
フラックス消費量が多いということは経済的にも問題が
あり、この方式で評価した。評価基準は以下のとおり。
Evaluation was carried out by single-layer welding of a test steel sheet having a slag generation amount of 50 mmt. That is, the flux consumption amount per 1 m of welding length and the wire consumption amount were measured, and the flux consumption rate (flux consumption amount / wire consumption amount) was calculated.
High flux consumption is economically problematic and was evaluated using this method. The evaluation criteria are as follows.

○:フラックス消費率…1.15未満 △:フラックス消費率…1.15〜1.40 ×:フラックス消費率…1.40超 溶接作業性及びビード外観検査 50mmt、100mmtの両供試鋼板の各溶接において、目
視検査により判定した。
○: Flux consumption rate ... Less than 1.15 △: Flux consumption rate ... 1.15 to 1.40 ×: Flux consumption rate ... 1.40 Welding workability and bead appearance inspection Each of both test steel sheets of 50 mmt and 100 mmt In welding, it was judged by visual inspection.

○:良好、×:不良 溶接金属の衝撃性能 50mmtの供試鋼板の1層盛溶接で評価した。すなわ
ち、母材表面10mmよりJIS Z 311A4号試験
片を採取し、0℃で試験を行ない、3本の平均値を求め
た。
◯: good, ×: poor Impact performance of weld metal Evaluated by single-layer welding of a test steel sheet of 50 mmt. That is, a JIS Z 311A4 test piece was sampled from the surface of the base material 10 mm, and the test was carried out at 0 ° C. to obtain the average value of three pieces.

また、sol.SiO2、sol.Na2Oの定量は次の1〜3の
手順に従って行った。
Further, sol.SiO 2, sol.Na 2 O Quantification was carried out following the instructions at 1-3.

(手順1)フラックスを振動ミルによって十分に粉砕
し、そこから約0.2gサンプリングし、それを石英製
三角フラスコに蒸留水100mlと共に入れ、可溶性成分
の抽出を行う。
(Procedure 1) Flux is sufficiently crushed by a vibration mill, and about 0.2 g of the flux is sampled and put into a quartz Erlenmeyer flask together with 100 ml of distilled water to extract soluble components.

(手順2)可溶性成分の抽出は、煮沸下で4時間行っ
た。
(Procedure 2) Soluble components were extracted under boiling for 4 hours.

(手順3)抽出液を一昼夜放置した後、上澄液をサンプ
リングし、Li、Na、K等のアルカリ金属イオンは原
子吸光法で、Si量は吸光光度法でそれぞれ定量した。
(Procedure 3) After allowing the extract to stand overnight, the supernatant was sampled, and alkali metal ions such as Li, Na, and K were quantified by an atomic absorption method, and the amount of Si was quantified by an absorptiometry method.

第3表及び第4表より明らかなように、本発明例は、極
厚板の1層盛溶接や多層盛溶接において溶接作業性が優
れていることは勿論のこと、スラグ剥離性、耐水素割れ
性、耐繰返し使用性能等々も優れており、フラックス消
費量も少ない。
As is clear from Tables 3 and 4, it is obvious that the examples of the present invention have excellent welding workability in single-layer welding and multi-layer welding of extremely thick plates, as well as slag removability and hydrogen resistance. It has excellent cracking resistance, repeated use resistance, etc., and consumes less flux.

(発明の効果) 以上詳述したように、本発明によれば、特に極板厚の潜
弧溶接において、溶接作業用性、スラグ剥離性、耐水素
割れ性、耐繰返し使用性能等々の優れた性能を発揮し、
またスラグ消費量も少なく経済的である。鉄骨ボックス
柱の角継手溶接等の極厚板の2電極大入熱1層盛溶接及
び多層盛溶接に適している。
(Effects of the Invention) As described in detail above, according to the present invention, particularly in the arc welding of the plate thickness, excellent workability, slag peeling resistance, hydrogen cracking resistance, repeated use resistance and the like are excellent. Demonstrate the performance,
In addition, it consumes less slag and is economical. Suitable for two-electrode large heat input single-layer welding and multi-layer welding of extremely thick plates such as corner joint welding of steel box columns.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で(以下、同じ)、 totalSiO2:10〜20% A23:10〜20% totalTiO2:3〜14% MgO:10〜20% CaCO3:5〜15% totalMn:0.5〜8% 鉄粉:20〜40% sol.SiO2:1.0〜6.0% sol.Na2O:1.5〜3.5% を含み、かつ、 sol.Na2O/totalNa2O比:0.60〜 0.98 (但し、sol.Na2Oはsol.Na2O+sol.K2O+so
l.Li2Oの合計量、totalNa2OはtotalNa2O+to
talK2O+totalLi2Oの合計量である) MgO/SiO2(total)比:0.75〜1.30 を満足することを特徴とする潜弧溶接用ボンドフラック
ス。
1. A weight% (hereinafter, the same), totalSiO 2: 10~20% A 2 O 3: 10~20% totalTiO 2: 3~14% MgO: 10~20% CaCO 3: 5~15% total Mn: 0.5-8% Iron powder: 20-40% sol. SiO 2: 1.0~6.0% sol. Na 2 O: 1.5 to 3.5%, and sol. Na 2 O / totalNa 2 O ratio: 0.60 to 0.98 (however, sol.Na 2 O is sol.Na 2 O + sol.K 2 O + so
l. Total amount of Li 2 O, totalNa 2 O is totalNa 2 O + to
talK 2 O + total Li 2 O) MgO / SiO 2 (total) ratio: 0.75 to 1.30, which is a bond flux for latent arc welding.
【請求項2】2電極1層盛又は多層盛溶接用である請求
項1に記載の潜弧溶接用ボンドフラックス。
2. The bond flux for latent arc welding according to claim 1, which is for welding two-layer one-layer or multi-layer welding.
JP2293135A 1990-10-30 1990-10-30 Bond flux for latent arc welding Expired - Lifetime JPH0635078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293135A JPH0635078B2 (en) 1990-10-30 1990-10-30 Bond flux for latent arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293135A JPH0635078B2 (en) 1990-10-30 1990-10-30 Bond flux for latent arc welding

Publications (2)

Publication Number Publication Date
JPH04167998A JPH04167998A (en) 1992-06-16
JPH0635078B2 true JPH0635078B2 (en) 1994-05-11

Family

ID=17790874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293135A Expired - Lifetime JPH0635078B2 (en) 1990-10-30 1990-10-30 Bond flux for latent arc welding

Country Status (1)

Country Link
JP (1) JPH0635078B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792050B2 (en) * 2011-01-31 2015-10-07 株式会社神戸製鋼所 Submerged arc welding method for low temperature steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057435A (en) * 1983-09-07 1985-04-03 Mitsubishi Electric Corp Microprocessor
JPS6313694A (en) * 1986-07-02 1988-01-20 Kobe Steel Ltd Baked flux for submerged arc welding
JPS63192593A (en) * 1987-02-04 1988-08-09 Nippon Steel Corp Bonded flux for submerged arc welding
JPH01241380A (en) * 1988-03-23 1989-09-26 Kobe Steel Ltd Submerged arc welding method for square joint part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057435A (en) * 1983-09-07 1985-04-03 Mitsubishi Electric Corp Microprocessor
JPS6313694A (en) * 1986-07-02 1988-01-20 Kobe Steel Ltd Baked flux for submerged arc welding
JPS63192593A (en) * 1987-02-04 1988-08-09 Nippon Steel Corp Bonded flux for submerged arc welding
JPH01241380A (en) * 1988-03-23 1989-09-26 Kobe Steel Ltd Submerged arc welding method for square joint part

Also Published As

Publication number Publication date
JPH04167998A (en) 1992-06-16

Similar Documents

Publication Publication Date Title
EP3266560B1 (en) Multi-coated electrode for welding stainless steel
JP2006272348A (en) Bonded flux for submerged arc welding
EP0066660B1 (en) Basic bonded fluxes for submerged arc welding having an excellent removability of slag at a narrow groove
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JPH0635078B2 (en) Bond flux for latent arc welding
JP7078436B2 (en) Flux for submerged arc welding and its manufacturing method
JPH0635079B2 (en) Bond flux for latent arc welding
JP3620383B2 (en) Firing-type flux for submerged arc welding, manufacturing method thereof, and submerged arc fillet welding method
JP6845094B2 (en) High titanium oxide shielded metal arc welding rod
JP2978744B2 (en) Downward fillet submerged arc welding method for steel plate
JPH0521677B2 (en)
JP3563614B2 (en) Low hydrogen coated arc welding rod
JPS5946716B2 (en) Narrow gap submerged arc welding method
WO2006126519A1 (en) Fused flux for submerged arc welding
CN111918749B (en) Flux for submerged arc welding
JP3160535B2 (en) Large heat input 2-electrode submerged arc welding method
JP6152316B2 (en) Flux for single-sided submerged arc welding
JP6908547B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
KR100355580B1 (en) Agglomerated flux for submerged arc welding
JP6999461B2 (en) High titanium oxide-based shielded metal arc welding rod
JPH01138098A (en) Coated electrode for stainless steel
JPH082513B2 (en) High heat input submerged arc welding firing type flux
CN114769942A (en) Multi-element environment-friendly smelting flux for welding low-alloy steel and preparation and application thereof
JP3488357B2 (en) Non-low hydrogen coated arc welding rod
JPH08290271A (en) Method for one side submerged arc welding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 17