JPH06349751A - Method and device for liquid growth - Google Patents

Method and device for liquid growth

Info

Publication number
JPH06349751A
JPH06349751A JP14027793A JP14027793A JPH06349751A JP H06349751 A JPH06349751 A JP H06349751A JP 14027793 A JP14027793 A JP 14027793A JP 14027793 A JP14027793 A JP 14027793A JP H06349751 A JPH06349751 A JP H06349751A
Authority
JP
Japan
Prior art keywords
solvent
substrate
liquid phase
solute
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14027793A
Other languages
Japanese (ja)
Other versions
JP3122283B2 (en
Inventor
Akiyuki Nishida
彰志 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP05140277A priority Critical patent/JP3122283B2/en
Publication of JPH06349751A publication Critical patent/JPH06349751A/en
Application granted granted Critical
Publication of JP3122283B2 publication Critical patent/JP3122283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To continuously form crystals on substrates by supplying a solute to a solvent in a solvent reservoir and circulating the solvent containing the solute through a pipeline and, at the same time, bringing the substrates into contact with the solvent containing the solute at an opening provided at part of the pipeline. CONSTITUTION:Liquid growth is performed by using Sn as a solvent and Si as a solute in such a way that polycrystalline Si is placed on a raw material plate 104 and a (100) single-crystal Si wafer is placed on a slider 108 as a substrate so that the wafer 107 cannot come into contact with the Sn and an electric furnace and heater block 102 are respectively maintained at about 950 deg.C and 960 deg.C. After a sufficient time has elapsed, the wafer 107 is brought into contact with the Sn solvent containing the Si solute by moving the slider 108 and the wafer 107 is kept in the same state for about 30 minutes. Upon completing the growth, the wafer 107 is separated from the Sn solvent by again moving the slider 108. Therefore, crystals can be continuously grown with a simple constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液相成長法およびその装
置に関し、特に連続成長が可能で量産性のある液相成長
法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase growth method and an apparatus therefor, and more particularly to a liquid phase growth method and an apparatus therefor capable of continuous growth and capable of mass production.

【0002】[0002]

【従来の技術】液相成長法は準平衡状態からの結晶成長
であるため化学量論組成に近い良質の結晶が得られ、G
aAs等の化合物半導体の分野においてはすでに確立し
た技術としてLEDやレーザ・ダイオードなどが生産さ
れている。
2. Description of the Related Art Since the liquid phase epitaxy method is crystal growth from a quasi-equilibrium state, high quality crystals close to stoichiometric composition can be obtained.
In the field of compound semiconductors such as aAs, LEDs, laser diodes, etc. are produced as already established technologies.

【0003】最近では厚膜を得る目的でSiの液相成長
も試みられ(例えば特開昭58−89874号公報)、
太陽電池への応用が検討されている。
Recently, liquid phase growth of Si has been attempted for the purpose of obtaining a thick film (for example, Japanese Patent Laid-Open No. 58-89874).
Applications to solar cells are being studied.

【0004】しかしながら、従来の液相成長法では、一
般に、溶媒を冷却して過飽和状態とし、過剰溶質を基板
上に析出させるため、ある程度温度が下がったところで
一旦温度を元に引き上げ、再度結晶成長を行うといった
サイクルになる。そのために量産性に問題があった。特
に比較的厚膜を必要とする太陽電池用Siでは、成長時
における温度の下げ幅が大きく、元の温度に戻すまでの
時間損失がかなりあった。
However, in the conventional liquid phase epitaxy method, in general, the solvent is cooled to a supersaturated state and the excess solute is deposited on the substrate. Therefore, when the temperature drops to some extent, the temperature is temporarily raised to the original temperature and the crystal growth is performed again. It becomes a cycle of doing. Therefore, there was a problem in mass productivity. In particular, in the case of Si for solar cells, which requires a relatively thick film, the range of decrease in temperature during growth was large, and there was considerable time loss until the temperature was returned to the original temperature.

【0005】この点を改良し量産性を上げる目的で溶媒
内にあるいは溶媒と基板間に温度差を設けて連続成長を
可能とした温度差法が提案されている。すなわち、図4
に示されるように、溶媒溜の高さの範囲内に温度差を設
けることで溶媒上面の原料板205から溶媒206の下
面の基板203に溶質が輸送されて成長が行われる。し
かしながら、この場合には、狭い範囲での精密な温度制
御が必要となり、成長装置が高価なものとなってしまう
問題があった。
For the purpose of improving this point and increasing mass productivity, a temperature difference method has been proposed which enables continuous growth by providing a temperature difference in the solvent or between the solvent and the substrate. That is, FIG.
As shown in, by providing a temperature difference within the range of the height of the solvent reservoir, the solute is transported from the raw material plate 205 on the upper surface of the solvent to the substrate 203 on the lower surface of the solvent 206 for growth. However, in this case, there is a problem that precise temperature control in a narrow range is required and the growth apparatus becomes expensive.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述の従来
技術における問題を解決すべく本発明者による鋭意研究
の結果完成に至ったものであり、簡便で量産性のある液
相成長法およびその装置を提供することを目的とする。
The present invention has been completed as a result of earnest research by the present inventors in order to solve the above-mentioned problems in the prior art, and is a simple and mass-producible liquid phase growth method. The purpose is to provide the device.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の方法
は、溶媒溜において溶媒に溶質を供給し、溶質が供給さ
れた溶媒をパイプを介して循環させるとともに、該パイ
プの一部に設けられた開口において基体を、溶質が供給
された溶媒に接触させることにより基体上に結晶を形成
することを特徴とする液相成長法に要旨が存在する。
That is, the method of the present invention is to provide a solute to a solvent in a solvent reservoir, to circulate the solvent supplied with the solute through a pipe, and to provide a part of the pipe. There is a gist in a liquid phase growth method characterized in that a crystal is formed on a substrate by bringing the substrate into contact with a solvent supplied with a solute at the opening.

【0008】本発明装置は、溶媒に溶質を溶かし込んで
基体上に結晶を析出させる液相成長装置において、前記
溶媒に前記溶質を供給する溶媒溜と、前記溶質が供給さ
れた溶媒を循環させるパイプとを備え、該パイプの両端
が前記溶媒溜側壁に繋がっており、前記パイプの途中に
は基体と接触させるための開口が設けられていることを
特徴とする液相成長装置に要旨が存在する。
The apparatus of the present invention is a liquid phase growth apparatus in which a solute is dissolved in a solvent to precipitate crystals on a substrate, and a solvent reservoir for supplying the solute to the solvent and a solvent supplied with the solute are circulated. And a pipe, both ends of the pipe are connected to the side wall of the solvent reservoir, and an opening for contacting with a substrate is provided in the middle of the pipe. To do.

【0009】[0009]

【作用】本発明の方法および装置は、図1に示されるよ
うに溶媒溜と成長を行う場所が別々に設けられ、それぞ
れが違う温度で一定に制御されており、その間をパイプ
により溶媒を循環させることで容易に溶媒溜と基板との
間に温度差を付けることができる。以下に本発明者らの
行った実験に基づき本発明の作用を詳述する。
In the method and apparatus of the present invention, as shown in FIG. 1, a solvent reservoir and a growth place are separately provided, and each is controlled to be constant at different temperatures, and the solvent is circulated by a pipe between them. By doing so, a temperature difference can be easily established between the solvent reservoir and the substrate. The operation of the present invention will be described in detail below based on experiments conducted by the present inventors.

【0010】(実験1)静止基板上への成長 図1に示すように、カーボン製の溶媒溜105と、この
溶媒溜105の片側側面から出て、途中成長基板107
を載置したスライダ108に開口部109で接して、再
び溶媒溜105のもう一方の側面にもどるカーボン製の
平型パイプ103とが電気炉101内に配置されてお
り、溶媒溜105はさらにヒータブロック102で囲ま
れ、独立に温度制御ができるようになっている。スライ
ダ108は長さ方向に移動できるようになっており、ス
ライダ108の移動により基板107上への成長を開始
/終了する。図2に示すように溶媒溜301の内部には
数枚のカーボン製の仕切板302が設置されており、溶
液溜の蓋となる原料板303と組合わさって同図(b)
のように溶媒の流路を形成する。この流路を溶媒が通る
間に原料板303から溶媒中に溶質が溶け込んで飽和状
態となる。溶媒溜105から出た溶媒は平型パイプで形
成された熱交換器104を循環する間に溶液溜105よ
り低い温度に設定された電気炉内101の温度により過
飽和状態となり、スライダ108と接した開口部109
においてスライダ上の基板107に溶質を析出させる。
(Experiment 1) Growth on stationary substrate As shown in FIG. 1, a solvent reservoir 105 made of carbon, and one side surface of the solvent reservoir 105, and a mid-growth substrate 107.
The flat pipe 103 made of carbon, which comes into contact with the slider 108 on which is mounted at the opening 109 and returns to the other side surface of the solvent reservoir 105, is arranged in the electric furnace 101. Surrounded by a block 102, the temperature can be controlled independently. The slider 108 is movable in the length direction, and the movement of the slider 108 starts / stops the growth on the substrate 107. As shown in FIG. 2, several carbon partition plates 302 are installed inside the solvent reservoir 301, and in combination with a raw material plate 303 serving as a lid of the solution reservoir, the same figure (b).
The solvent flow path is formed as described above. While the solvent is passing through this flow path, the solute is dissolved from the raw material plate 303 into the solvent and becomes saturated. The solvent discharged from the solvent reservoir 105 is in a supersaturated state due to the temperature of the electric furnace 101 which is set to a temperature lower than that of the solution reservoir 105 while circulating in the heat exchanger 104 formed of a flat pipe, and contacts the slider 108. Opening 109
At, a solute is deposited on the substrate 107 on the slider.

【0011】水素雰囲気中で十分純化したSnを溶媒と
して溶媒溜105および平型パイプ103内に満たし、
多結晶Siの原料板104で溶液溜に蓋をし、電気炉内
温度を950℃一定にして(100)単結晶Si基板1
07をスライダ108上に置いた。予めスライダの位置
を調節してSi基板107が平型パイプの開口部109
において接しないようにしておき、ヒータブロック10
2により溶媒溜105の温度がその周りの電気炉内の温
度よりも5℃高くなるように設定して溶媒をロータ10
6を用いて循環させた。
The solvent reservoir 105 and the flat pipe 103 are filled with Sn sufficiently purified in a hydrogen atmosphere as a solvent,
The solution reservoir is covered with the polycrystalline Si raw material plate 104, and the temperature inside the electric furnace is kept constant at 950 ° C. (100) single crystal Si substrate 1
07 was placed on the slider 108. The position of the slider is adjusted in advance, so that the Si substrate 107 is connected to the opening 109 of the flat pipe.
Heater block 10
2 so that the temperature of the solvent reservoir 105 is set to be 5 ° C. higher than the temperature in the surrounding electric furnace, and the solvent is stored in the rotor 10
6 was used to circulate.

【0012】充分時間が経ったところで、スライダ10
8を動かして開口部109においてSi基板107をS
n溶媒と接触させ、溶媒を循環させながらそのままの状
態で30分置き、その後スライダ108を再び動かして
Si基板107をSn溶媒から離して成長を終了した。
After a sufficient time has passed, the slider 10
8 to move the Si substrate 107 to S in the opening 109.
The n-solvent was brought into contact with the n-solvent, and the solvent was circulated for 30 minutes. Then, the slider 108 was moved again to separate the Si substrate 107 from the Sn solvent and the growth was completed.

【0013】成長の終了したSi基板の表面を光学顕微
鏡および走査型電子顕微鏡で観察したところ非常に平滑
であり、また成長したSi層の膜厚を段差計および走査
型電子顕微鏡により測定したところ、約25μmであっ
た。また反射電子回折法およびラマン分光法により、得
られたSi層は下地Si基板の方位を受け継いだ(10
0)単結晶Siであることが確認された。
Observation of the surface of the grown Si substrate with an optical microscope and a scanning electron microscope revealed that it was very smooth, and the thickness of the grown Si layer was measured with a step meter and a scanning electron microscope. It was about 25 μm. The Si layer obtained by the backscattered electron diffraction method and the Raman spectroscopy method inherited the orientation of the underlying Si substrate (10
0) It was confirmed to be single crystal Si.

【0014】(実験2)移動基板上への連続成長 実験1の結果を基に移動基板上への連続成長を行った。
図4に示すようにスライダ408の上に細長く切り出し
た(100)Si基板407を置き、実験1と同じ条件
でSnを循環させ成長を行った。予めスライダの位置を
調節してSi基板407が平型パイプの開口部409に
おいて接しないようにしておき、ヒータブロック402
により溶媒溜405の温度がその周りの電気炉内の温度
よりも5℃高くなるように設定して溶媒をロータ406
を用いて循環させた。
(Experiment 2) Continuous Growth on a Moving Substrate Based on the result of Experiment 1, continuous growth on a moving substrate was performed.
As shown in FIG. 4, an elongated (100) Si substrate 407 was placed on a slider 408, and Sn was circulated under the same conditions as in Experiment 1 to grow. The position of the slider is adjusted in advance so that the Si substrate 407 does not come into contact with the opening 409 of the flat pipe, and the heater block 402
Is set so that the temperature of the solvent reservoir 405 is higher by 5 ° C. than the temperature in the electric furnace around the solvent reservoir 405 and the solvent is stored in the rotor 406
Was used to circulate.

【0015】充分時間が経ったところで、スライダ40
8を送り速度5mm/分で送りながら開口部409にお
いてSi基板407をSn溶媒と接触させて結晶成長を
行った。Si基板407が全て開口部409を通過し終
わったところでスライダ408の送りを止め、成長を終
了した。
After a sufficient time has passed, the slider 40
8 was fed at a feed rate of 5 mm / min, and the Si substrate 407 was brought into contact with the Sn solvent in the opening 409 to grow crystals. The feeding of the slider 408 was stopped when the Si substrate 407 had completely passed through the opening 409, and the growth was completed.

【0016】成長の終了したSi基板の表面を光学顕微
鏡および走査型電子顕微鏡で観察したところ基板全面に
わたって平滑であり、また成長したSi層の膜厚を段差
計および走査型電子顕微鏡により測定したところ、約5
μmであった。また反射電子回折法およびラマン分光法
により、得られたSi層は下地Si基板の方位を受け継
いだ(100)単結晶Siであることが確認された。
When the surface of the grown Si substrate was observed with an optical microscope and a scanning electron microscope, the entire surface of the substrate was smooth, and the thickness of the grown Si layer was measured with a step meter and a scanning electron microscope. , About 5
was μm. Further, it was confirmed by reflection electron diffraction method and Raman spectroscopy that the obtained Si layer was (100) single crystal Si inheriting the orientation of the underlying Si substrate.

【0017】このように溶媒溜と成長を行う場所を別々
にして独立に温度制御を行い、その間をパイプにより溶
媒を循環させることで連続で液相成長ができることが示
された。
As described above, it has been shown that the liquid phase growth can be continuously performed by separately controlling the temperature by separately setting the solvent reservoir and the growth place and circulating the solvent through the pipe between them.

【0018】以上述ベた実験結果に基づいて完成に至っ
た本発明は前述した様に、連続成長を行う液相成長法に
係わるものである。本発明の特徴は溶媒溜と成長基板の
場所を別にして独立に温度制御を行い、その間をパイプ
により溶媒を循環させるもので従来の連続液相成長法に
みられるような温度勾配を保つための精密温度制御を必
要としない点である。
The present invention, which has been completed based on the experimental results described above, relates to the liquid phase growth method for performing continuous growth as described above. The feature of the present invention is that the temperature is controlled independently of the location of the solvent reservoir and the growth substrate, and the solvent is circulated through the pipe between them to maintain the temperature gradient as seen in the conventional continuous liquid phase growth method. It does not require precise temperature control.

【0019】本発明に使用される溶媒を収納するための
溶媒溜のおよびスライダの材質としては主に高純度カー
ボンが使用される。
High-purity carbon is mainly used as the material of the solvent reservoir and the slider for storing the solvent used in the present invention.

【0020】本発明に用いられる溶媒、溶質としては従
来の液相成長法に用いられているものであればどのよう
な組み合わせでもよく、例えば、溶質にSiを使用する
場合には溶媒としては、例えばSn,Ga,In,S
b,Bi等が用いられる。ここで溶媒としてSnを用い
ると、得られるSi結晶は電気的に中性であり、成長後
にあるいは成長中に適宜所望の不純物を添加することで
所望のドーピング濃度で伝導型を決定することができ
る。
The solvent and solute used in the present invention may be any combination as long as they are used in the conventional liquid phase growth method. For example, when Si is used as the solute, the solvent is For example, Sn, Ga, In, S
b, Bi, etc. are used. Here, when Sn is used as the solvent, the obtained Si crystal is electrically neutral, and the conductivity type can be determined at a desired doping concentration by appropriately adding a desired impurity after or during the growth. .

【0021】本発明の方法において溶媒および基体がお
かれる雰囲気としてはH2あるいはN2が用いられ、圧力
については概ね10-2Torr〜760Torrが適当
であり、より好ましくは10-1Torr〜760Tor
rの範囲である。
In the method of the present invention, H 2 or N 2 is used as the atmosphere in which the solvent and the substrate are placed, and the pressure is preferably about 10 -2 Torr to 760 Torr, more preferably 10 -1 Torr to 760 Torr.
It is the range of r.

【0022】また本発明の方法における溶媒温度として
は、溶媒の種類によるがSnを用いる場合には800℃
以上1100℃以下に制御されるのが望ましい。
The solvent temperature in the method of the present invention depends on the kind of the solvent, but is 800 ° C. when Sn is used.
It is desirable that the temperature be controlled to 1100 ° C. or lower.

【0023】なお、本発明はホモエピタキシャルのみな
らずヘテロエピタキシャルにも適用可能である。
The present invention can be applied not only to homoepitaxial but also to heteroepitaxial.

【0024】なお、パイプ中における溶媒の速度は1〜
100mm/minが好ましく、スライダの移動速度は
0〜300mm/minが好ましい。また、溶媒溜にお
ける温度と基体温度との温度差ΔTとしてはΔT=3〜
50℃が好ましい。ΔTが小さすぎると基板表面から溶
質がメルトバックする恐れがあり、逆にΔTが高すぎる
と成長速度の低下したり、あるいは基板に到達する前に
パイプ中の溶媒の中で結晶粒が析出したりする場合があ
る。
The speed of the solvent in the pipe is 1 to
100 mm / min is preferable, and the moving speed of the slider is preferably 0 to 300 mm / min. Further, the temperature difference ΔT between the temperature in the solvent reservoir and the substrate temperature is ΔT = 3 to
50 ° C is preferred. If ΔT is too small, the solute may melt back from the surface of the substrate. On the other hand, if ΔT is too high, the growth rate may decrease, or crystal grains may precipitate in the solvent in the pipe before reaching the substrate. It may happen.

【0025】[0025]

【実施例】以下、本発明の方法を実施して所望の結晶を
成長するところをより詳細に説明するが、本発明はこれ
らの実施例により何ら限定されるものではない。
EXAMPLES Hereinafter, the method of the present invention for growing a desired crystal will be described in more detail, but the present invention is not limited to these examples.

【0026】(実施例1)図1に示す装置を用いてSi
のエピタキシャル層を成長した。溶媒にSn、溶質にS
iを用いて成長を行った。原料板104に多結晶Si
を、またスライダ108上には基体として(100)単
結晶Siウエハ107を置き、予めSiウエハがSnに
触れないようにしておき、電気炉内を950℃、ヒータ
ブロック102内を960℃一定に保った。充分時間が
経ったところでスライダ108を移動してSiウエハ1
07を、Siが供給されたSn溶媒に接触させ、このま
まの状態で30分置いた。その後スライダ108を再度
移動してSiウエハ107をSnから離して成長を終了
した。
(Example 1) Si was produced by using the apparatus shown in FIG.
The epitaxial layer was grown. Sn as solvent and S as solute
Growth was performed using i. Polycrystalline Si on the raw material plate 104
Further, a (100) single crystal Si wafer 107 is placed on the slider 108 as a substrate, and the Si wafer is not touched with Sn in advance. The inside of the electric furnace is kept at 950 ° C. and the inside of the heater block 102 is kept constant at 960 ° C. I kept it. When a sufficient time has passed, the slider 108 is moved to move the Si wafer 1
07 was brought into contact with a Sn solvent supplied with Si, and left as it was for 30 minutes. After that, the slider 108 was moved again to separate the Si wafer 107 from Sn and the growth was completed.

【0027】成長したシリコン層の膜厚を段差計および
走査型電子顕微鏡により測定したところ、その膜厚は約
40μmであった。また反射電子回折法およびラマン分
光法により、得られたシリコン層は下地シリコン基板の
方位を受け継いだ(100)単結晶シリコンであること
が確認された。
When the thickness of the grown silicon layer was measured with a step meter and a scanning electron microscope, the thickness was about 40 μm. Further, it was confirmed by reflection electron diffraction method and Raman spectroscopy that the obtained silicon layer was (100) single crystal silicon inheriting the orientation of the underlying silicon substrate.

【0028】(実施例2)実験2と同様にして多結晶S
iの連続成長を行った。キャスト法により形成した多結
晶Siを幅20mm、長さ200mm、厚さ0.6mm
に加工し、表面研磨した後に洗浄したものを基板とし
た。
Example 2 Polycrystalline S was prepared in the same manner as in Experiment 2.
i was continuously grown. Polycrystalline Si formed by casting method is 20 mm wide, 200 mm long, 0.6 mm thick
The substrate was processed into a substrate, surface-polished, and then washed to obtain a substrate.

【0029】図3に示すように、スライダ408の上に
多結晶Si基板407を置き、実施例1と同じ条件でS
n溶媒を循環させ成長を行った。平型パイプに設けられ
た開口部の長さを50mm、Sn溶媒の循環速度を25
mm/分とし、予めスライダの位置を調節してSi基板
407が平型パイプの開口部409においてSn溶媒と
接しないようにしておき、電気炉内を950℃、ヒータ
ブロック内を960℃一定に保った。
As shown in FIG. 3, a polycrystalline Si substrate 407 is placed on a slider 408, and S is formed under the same conditions as in the first embodiment.
Growth was carried out by circulating n solvent. The length of the opening provided in the flat pipe is 50 mm, and the circulation speed of the Sn solvent is 25 mm.
mm / min, the position of the slider was adjusted in advance to prevent the Si substrate 407 from coming into contact with the Sn solvent in the opening 409 of the flat pipe, and the electric furnace was kept at 950 ° C. and the heater block was kept at 960 ° C. I kept it.

【0030】充分時間が経ったところで、スライダ40
8を送り速度10mm/分で送りながら開口部409に
おいて多結晶Si基板407をSn溶媒と接触させて結
晶成長を行った。多結晶Si基板407が全て開口部4
09を通過し終わったところでスライダ408の送りを
止め、成長を終了した。
After a sufficient time has passed, the slider 40
While feeding 8 at a feed rate of 10 mm / min, the polycrystalline Si substrate 407 was brought into contact with the Sn solvent in the opening 409 to perform crystal growth. All the polycrystalline Si substrate 407 has the opening 4
After passing 09, the feeding of the slider 408 was stopped and the growth was completed.

【0031】成長したSi層の膜厚を段差計および走査
型電子顕微鏡により測定したところ、ほぼ全面にわたっ
て一様で約7μmであった。また成長したSi層の方位
についてECP(Electron Channeli
ng Pattern)法により調ベたところ、下地の
多結晶Si基板の各々のグレインの結晶方位を受け継い
でいることが分かった。
When the film thickness of the grown Si layer was measured by a step meter and a scanning electron microscope, it was found to be uniform over almost the entire surface and about 7 μm. In addition, the orientation of the grown Si layer is determined by ECP (Electron Channel
ng Pattern) method, it was found that the crystal orientation of each grain of the underlying polycrystalline Si substrate was inherited.

【0032】(実施例3)実施例2と同様にして多結晶
Siの連続成長を行った。キャスト法により形成した多
結晶Siを幅20mm、長さ200mm、厚さ0.6m
mに加工し、表面研磨した後に洗浄したものを基板とし
た。
(Example 3) In the same manner as in Example 2, polycrystalline Si was continuously grown. Polycrystalline Si formed by casting method is 20 mm wide, 200 mm long, 0.6 m thick
The substrate was processed into m, surface-polished, and then washed.

【0033】図3に示すように、スライダ408の上に
多結晶Si基板407を置き、Snを循環させ成長を行
った。平型パイプに設けられた開口部の長さを100m
m、Sn溶媒の循環速度を40mm/分とし、予めスラ
イダの位置を調節してSi基板407が平型パイプの開
口部409においてSn溶媒と接しないようにしてお
き、電気炉内を950℃、ヒータブロック内を970℃
一定に保った。
As shown in FIG. 3, a polycrystalline Si substrate 407 was placed on a slider 408, and Sn was circulated for growth. The length of the opening provided in the flat pipe is 100 m
m, the circulation rate of the Sn solvent is 40 mm / min, the position of the slider is adjusted in advance so that the Si substrate 407 does not come into contact with the Sn solvent at the opening 409 of the flat pipe, and the inside of the electric furnace is 950 ° C. 970 ℃ in the heater block
Kept constant.

【0034】充分時間が経ったところで、スライダ40
8を送り速度20mm/分で送りながら開口部409に
おいて多結晶Si基板407をSn溶媒と接触させて結
晶成長を行った。多結晶Si基板407が全て開口部4
09を通過し終わったところでスライダ408の送りを
止め、成長を終了した。
After a sufficient time has passed, the slider 40
While feeding 8 at a feed rate of 20 mm / min, the polycrystalline Si substrate 407 was brought into contact with the Sn solvent in the opening 409 to perform crystal growth. All the polycrystalline Si substrate 407 has the opening 4
After passing 09, the feeding of the slider 408 was stopped and the growth was completed.

【0035】成長したSi層の膜厚を段差計および走査
型電子顕微鏡により測定したところ、ほぼ全面にわたっ
て一様で約18μmであった。また成長したSi層の方
位についてECP(Electron Channel
ing Pattern)法により調ベたところ、下地
の多結晶Si基板の各々のグレインの結晶方位を受け継
いでいることが分かった。
The thickness of the grown Si layer was measured by a step meter and a scanning electron microscope, and it was found to be uniform and about 18 μm over almost the entire surface. In addition, the orientation of the grown Si layer is determined by ECP (Electron Channel)
ing Pattern) method, it was found that the crystal orientation of each grain of the underlying polycrystalline Si substrate was inherited.

【0036】このように多結晶基板上に結晶Si層が基
板を送りながら連続で成長できることが示された。
As described above, it was shown that the crystalline Si layer can be continuously grown on the polycrystalline substrate while feeding the substrate.

【0037】なお、上述の実施例2、実施例3ではスラ
イダ上に載置された基板を用いた場合を示したが、例え
ば表面にSi層を付着したウエブ状基板をSn溶媒に接
触させてRoll−to−Rollで基板を一方向に送
りながら連続成膜をすることも可能である。
In the above-mentioned Embodiments 2 and 3, the case where the substrate placed on the slider is used is shown. For example, a web-like substrate having a Si layer adhered on its surface is brought into contact with an Sn solvent. It is also possible to perform continuous film formation by feeding the substrate in one direction by roll-to-roll.

【0038】(実施例4)n+p型薄膜結晶太陽電池を
本発明の連続液相成長法を用いて作製した。まず実施例
1と同様にして500μm厚のp型多結晶Siウエハ
(ρ=0.01Ω・cm)上に図1に示す装置を用いて
多結晶Si層を成長した。
Example 4 An n + p-type thin film crystal solar cell was produced by the continuous liquid phase epitaxy method of the present invention. First, in the same manner as in Example 1, a polycrystalline Si layer was grown on a p-type polycrystalline Si wafer (ρ = 0.01 Ω · cm) having a thickness of 500 μm by using the apparatus shown in FIG.

【0039】原料板としてp型多結晶Si(ρ=2Ω・
cm)を用い、予め多結晶SiウエハがSn溶媒に触れ
ないようにしておき、電気炉内を950℃、ヒータブロ
ック内を960℃一定に保った。充分時間が経ったとこ
ろでスライダを移動して多結晶SiウエハをSn溶媒に
接触させ、このままの状態で40分置いた。その後スラ
イダを再度移動して基板をSnから離して成長を終了し
た。
As a raw material plate, p-type polycrystalline Si (ρ = 2Ω ·
cm) was used to keep the polycrystalline Si wafer from coming into contact with the Sn solvent, and the temperature inside the electric furnace was kept constant at 950 ° C. and the temperature inside the heater block was kept constant at 960 ° C. When a sufficient time had passed, the slider was moved to bring the polycrystalline Si wafer into contact with the Sn solvent, and the state was left as it was for 40 minutes. After that, the slider was moved again to separate the substrate from Sn and the growth was completed.

【0040】成長したSi層の膜厚を段差計および走査
型電子顕微鏡により測定したところ、約50μmであっ
た。次に成長したSi層の表面にPOCl3を拡散源と
して900℃の温度でPの熱拡散を行ってn+層を形成
し、0.5μm程度の接合深さを得た。形成されたn+
層表面のデッド層をウェット酸化後、エッチングにより
除去し、約0.2μmの適度な表面濃度をもった接合深
さを得た。
The thickness of the grown Si layer was measured by a step meter and a scanning electron microscope, and it was about 50 μm. Next, thermal diffusion of P was performed on the surface of the grown Si layer using POCl 3 as a diffusion source at a temperature of 900 ° C. to form an n + layer, and a junction depth of about 0.5 μm was obtained. N + formed
The dead layer on the layer surface was wet-oxidized and then removed by etching to obtain a junction depth having an appropriate surface concentration of about 0.2 μm.

【0041】最後にEB(Electron Bea
m)蒸着により集電電極(Ti/Pd/Ag(40nm
/20nm/1μm))/ITO透明導電膜(820n
m)をn+層上に、また裏面電極(Al(1μm))を
基板裏面にそれぞれ形成した。
Finally, EB (Electron Bean)
m) Current collector electrode (Ti / Pd / Ag (40 nm
/ 20 nm / 1 μm)) / ITO transparent conductive film (820n
m) was formed on the n + layer, and a back surface electrode (Al (1 μm)) was formed on the back surface of the substrate.

【0042】このようにして得られた薄膜多結晶Si太
陽電池についてAM1.5(100mW/cm2)光照
射下でのI−V特性について測定したところ、セル面積
4cm2で開放電圧0.57V、短絡光電流33.5m
A/cm2、曲線因子0.72となり、エネルギー変換
効率13.7%を得た。
The thin-film polycrystalline Si solar cell thus obtained was measured for IV characteristics under AM1.5 (100 mW / cm 2 ) light irradiation, and an open circuit voltage of 0.57 V was obtained at a cell area of 4 cm 2. , Short circuit photocurrent 33.5m
A / cm 2 and a fill factor of 0.72 were obtained, and an energy conversion efficiency of 13.7% was obtained.

【0043】以上述べたように、本発明によれば、溶媒
溜と成長基板とを独立に温度制御し、その間をパイプに
より溶媒を循環させることで、従来のように精密制御を
必要とせずに連続して結晶成長が行えることが示され
た。
As described above, according to the present invention, the temperature of the solvent reservoir and the growth substrate are controlled independently, and the solvent is circulated between them by a pipe, thereby eliminating the need for precise control as in the prior art. It was shown that crystal growth can be performed continuously.

【0044】[0044]

【発明の効果】以上述ベてきたように、本発明によれば
液相法において簡便な構成で連続して結晶成長をするこ
とが可能となった。本発明は結晶の厚みを必要とするデ
バイス、特に太陽電池の量産方法として最適である。
As described above, according to the present invention, it is possible to continuously grow crystals in a liquid phase method with a simple structure. INDUSTRIAL APPLICABILITY The present invention is most suitable as a mass production method for devices requiring crystal thickness, particularly solar cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するために用いられた連続
液相成長装置の概略図である。
FIG. 1 is a schematic view of a continuous liquid phase growth apparatus used to carry out the method of the present invention.

【図2】本発明の方法を実施するために用いられた溶媒
溜の概略図である。
FIG. 2 is a schematic diagram of a solvent reservoir used to carry out the method of the present invention.

【図3】本発明の方法を実施するために用いられた連続
液相成長装置の概略図である。
FIG. 3 is a schematic view of a continuous liquid phase growth apparatus used for carrying out the method of the present invention.

【図4】従来の連続液相成長装置の概略図である。FIG. 4 is a schematic view of a conventional continuous liquid phase growth apparatus.

【符号の説明】[Explanation of symbols]

101,401 電気炉、 111,411 熱交換器、 102,402 ヒータブロック、 201 ボート、 103,403 循環パイプ、 104,205,303,404 原料板、 105,301,405 溶媒溜、 106,406 ロータ、 107,203,407 基板、 108,202,204,408 スライダ、 110,206,410 溶媒。 101, 401 electric furnace, 111, 411 heat exchanger, 102, 402 heater block, 201 boat, 103, 403 circulation pipe, 104, 205, 303, 404 raw material plate, 105, 301, 405 solvent reservoir, 106, 406 rotor 107, 203, 407 Substrate, 108, 202, 204, 408 Slider, 110, 206, 410 Solvent.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 溶媒溜において溶媒に溶質を供給し、溶
質が供給された溶媒をパイプを介して循環させるととも
に、該パイプの一部に設けられた開口において基体を、
溶質が供給された溶媒に接触させることにより基体上に
結晶を形成することを特徴とする液相成長法。
1. A solute is supplied to a solvent in a solvent reservoir, the solvent to which the solute is supplied is circulated through a pipe, and a substrate is provided at an opening provided in a part of the pipe,
A liquid phase epitaxy method which comprises forming crystals on a substrate by bringing a solute into contact with a solvent supplied thereto.
【請求項2】 前記溶媒溜の温度を前記循環パイプ及び
それに接する基体のそれよりも高くすることを特徴とす
る請求項1記載の液相成長法。
2. The liquid phase growth method according to claim 1, wherein the temperature of the solvent reservoir is set higher than that of the circulation pipe and the substrate in contact therewith.
【請求項3】 前記パイプの内部の一部分に設けた溶媒
循環用のロータにより溶質が供給された溶媒を循環させ
ることを特徴とする請求項1または2に記載の液相成長
法。
3. The liquid phase growth method according to claim 1, wherein the solvent supplied with the solute is circulated by a solvent circulation rotor provided in a part of the inside of the pipe.
【請求項4】 前記基体をスライダ上に配置し、該スラ
イダを移動しながら前記循環パイプの開口部において前
記溶媒と前記基体とを接触させることにより成長を行う
ことを特徴とする請求項1ないし3のいずれか1項に記
載の液相成長法。
4. The growth is performed by disposing the substrate on a slider and bringing the solvent into contact with the substrate at an opening of the circulation pipe while moving the slider. 4. The liquid phase growth method according to any one of 3 above.
【請求項5】 前記基体がウエブ状の連続基体であり、
該連続基体が移動しながら前記循環パイプの開口部にお
いて前記溶媒と前記連続基体とを接触させることにより
成長を行うことを特徴とする請求項1記載の液相成長
法。
5. The substrate is a web-shaped continuous substrate,
2. The liquid phase growth method according to claim 1, wherein the continuous substrate is grown by bringing the solvent into contact with the continuous substrate at the opening of the circulation pipe while the continuous substrate is moving.
【請求項6】 前記溶媒溜の温度と前記循環パイプ及び
それに接する基体の温度とをそれぞれ一定に保つことを
特徴とする請求項1ないし5のいずれか1項に記載の液
相成長法。
6. The liquid phase epitaxy method according to claim 1, wherein the temperature of the solvent reservoir and the temperature of the circulation pipe and the substrate in contact therewith are kept constant.
【請求項7】 前記溶媒がSnであることを特徴とする
請求項1ないし6のいずれか1項に記載の液相成長法。
7. The liquid phase growth method according to claim 1, wherein the solvent is Sn.
【請求項8】 前記溶質がSiであることを特徴とする
請求項1ないし7のいずれか1項に記載の液相成長法。
8. The liquid phase epitaxy method according to claim 1, wherein the solute is Si.
【請求項9】 溶媒に溶質を溶かし込んで基体上に結晶
を析出させる液相成長装置において、 前記溶媒に前記溶質を供給する溶媒溜と、前記溶質が供
給された溶媒を循環させるパイプとを備え、該パイプの
両端が前記溶媒溜の側壁に繋がっており、前記パイプの
途中には基体と接触させるための開口が設けられている
ことを特徴とする液相成長装置。
9. A liquid phase growth apparatus for dissolving a solute in a solvent to precipitate crystals on a substrate, comprising a solvent reservoir for supplying the solute to the solvent and a pipe for circulating the solvent supplied with the solute. A liquid phase growth apparatus, characterized in that both ends of the pipe are connected to a side wall of the solvent reservoir, and an opening for making contact with a substrate is provided in the middle of the pipe.
【請求項10】 前記溶媒溜の温度と前記循環パイプ及
びそれに接する基体の温度とを独立して温度制御するた
めの手段を設けたことを特徴とする請求項9記載の液相
成長装置。
10. The liquid phase growth apparatus according to claim 9, further comprising means for independently controlling the temperature of the solvent reservoir and the temperature of the circulation pipe and the substrate in contact therewith.
【請求項11】 前記溶媒溜及び前記パイプを電気炉内
に配置するとともに溶媒溜周辺に溶媒溜を独立して加熱
するための手段を設けたことを特徴とする請求項10記
載の液相成長装置。
11. The liquid phase growth according to claim 10, wherein the solvent reservoir and the pipe are arranged in an electric furnace, and means for independently heating the solvent reservoir is provided around the solvent reservoir. apparatus.
【請求項12】 前記パイプの一部分に溶媒循環用のロ
ータが設けられていることを特徴とする請求項9ないし
11のいずれか1項に記載の液相成長装置。
12. The liquid phase growth apparatus according to claim 9, wherein a rotor for solvent circulation is provided in a part of the pipe.
【請求項13】 前記基体を保持するとともに移動しな
がら前記パイプの開口部において前記溶媒と前記基体と
が接するように配置されたスライダが設けられているこ
とを特徴とする請求項9ないし12のいずれか1項に記
載の液相成長装置。
13. The slider according to claim 9, further comprising a slider arranged so that the solvent and the substrate are in contact with each other at the opening of the pipe while holding and moving the substrate. The liquid phase growth apparatus according to claim 1.
【請求項14】 前記基体がウエブ状の連続基体であ
り、前記パイプの開口部において前記溶媒と接触し得る
ように前記連続基体を移動させるための手段を設けたこ
とを特徴とする請求項9ないし12のいずれか1項に記
載の液相成長装置。
14. The substrate is a web-like continuous substrate, and means is provided for moving the continuous substrate so that it can come into contact with the solvent at the opening of the pipe. 13. The liquid phase growth apparatus according to any one of 1 to 12.
【請求項15】 前記溶媒溜の温度と前記循環パイプ及
びそれに接する基体の温度とをそれぞれ一定に保つため
の制御手段を設けたことを特徴とする請求項9ないし1
4のいずれか1項に記載の液相成長装置。
15. A control means is provided to keep the temperature of the solvent reservoir and the temperature of the circulation pipe and the substrate in contact therewith constant.
4. The liquid phase growth apparatus according to any one of 4 above.
【請求項16】 前記溶媒がSnであることを特徴とす
る請求項9ないし15のいずれか1項に記載の液相成長
装置。
16. The liquid phase growth apparatus according to claim 9, wherein the solvent is Sn.
【請求項17】 前記溶質がSiであることを特徴とす
る請求項9ないし16のいずれか1項に記載の液相成長
装置。
17. The liquid phase growth apparatus according to claim 9, wherein the solute is Si.
JP05140277A 1993-06-11 1993-06-11 Liquid phase growth method and apparatus Expired - Fee Related JP3122283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05140277A JP3122283B2 (en) 1993-06-11 1993-06-11 Liquid phase growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05140277A JP3122283B2 (en) 1993-06-11 1993-06-11 Liquid phase growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH06349751A true JPH06349751A (en) 1994-12-22
JP3122283B2 JP3122283B2 (en) 2001-01-09

Family

ID=15265039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05140277A Expired - Fee Related JP3122283B2 (en) 1993-06-11 1993-06-11 Liquid phase growth method and apparatus

Country Status (1)

Country Link
JP (1) JP3122283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083706A (en) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Method and apparatus for producing group iii nitride semiconductor crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083706A (en) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Method and apparatus for producing group iii nitride semiconductor crystal

Also Published As

Publication number Publication date
JP3122283B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3839750B2 (en) Photovoltaic device manufacturing equipment
JP2693032B2 (en) Method for forming semiconductor layer and method for manufacturing solar cell using the same
US6869863B2 (en) Fabrication process of solar cell
US6429035B2 (en) Method of growing silicon crystal in liquid phase and method of producing solar cell
US7572334B2 (en) Apparatus for fabricating large-surface area polycrystalline silicon sheets for solar cell application
US6391108B2 (en) Liquid phase growth method of silicon crystal, method of producing solar cell, and liquid phase growth apparatus
US20080142763A1 (en) Directional crystallization of silicon sheets using rapid thermal processing
US6824609B2 (en) Liquid phase growth method and liquid phase growth apparatus
US7118625B2 (en) Liquid phase growth method for silicon crystal, manufacturing method for solar cell and liquid phase growth apparatus for silicon crystal
JPH09221397A (en) Production of silicon carbide single crystal
JP3122283B2 (en) Liquid phase growth method and apparatus
JP2915434B2 (en) Method and apparatus for forming semiconductor layer and method for manufacturing solar cell using this method
JP3212725B2 (en) Liquid phase growth method and liquid phase growth apparatus
Mauk Liquid-Phase Epitaxy
JP2006216761A (en) Consecutive liquid-phase film forming method and device
JP3069208B2 (en) Method for manufacturing thin-film polycrystalline Si solar cell
JPH11292693A (en) Liquid phase growth of silicon crystal, production of solar cell and liquid phase growth device
JPH09110591A (en) Production of plate-like silicon crystal and solar battery
JP3327851B2 (en) Solar cell manufacturing method
Wang et al. Influence of growth temperature and cooling rate on the growth of Si epitaxial layer by dropping-type liquid phase epitaxy from the pure Si melt
JP2000264618A (en) Production of silicon plate polycrystal
JP2000178095A (en) Crystal growth process
JPH09183696A (en) Liquid phase epitaxy
Moore et al. SOI Structures Formed Using Line-Source Electron Beam Recrystallization
JP2003224081A (en) Liquid growth method, liquid growth equipment and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees