JP3069208B2 - Method for manufacturing thin-film polycrystalline Si solar cell - Google Patents
Method for manufacturing thin-film polycrystalline Si solar cellInfo
- Publication number
- JP3069208B2 JP3069208B2 JP4347468A JP34746892A JP3069208B2 JP 3069208 B2 JP3069208 B2 JP 3069208B2 JP 4347468 A JP4347468 A JP 4347468A JP 34746892 A JP34746892 A JP 34746892A JP 3069208 B2 JP3069208 B2 JP 3069208B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- layer
- growth
- solar cell
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Photovoltaic Devices (AREA)
- Recrystallisation Techniques (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は薄膜多結晶Si太陽電池
の製造方法に係り、特にエネルギー変換効率が良好な薄
膜多結晶Si太陽電池の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film polycrystalline Si solar cell, and more particularly to a method of manufacturing a thin film polycrystalline Si solar cell having good energy conversion efficiency.
【0002】[0002]
【従来の技術】従来より、各種機器において、駆動エネ
ルギー源として太陽電池が利用されている。太陽電池は
機器部分にpn接合を用いており、該pn接合を構成す
る半導体としては一般にSiが用いられている。光エネ
ルギーを起電力に変換する効率の点からは、単結晶Si
を用いるのが好ましいが、大面積化および低コスト化の
点からはアモルファスSiが有利とされている。近年に
おいては、アモルファス(非晶質)なみの低コストと単
結晶Siなみの高エネルギー変換効率とを得る目的で多
結晶Siの使用が検討されている。ところが、従来提案
されている方法では塊状の多結晶をスライスして板状体
としこれを用いていたために厚さを0.3mm以下にす
ることは困難であり、従って光量を十分に吸収するのに
必要以上の厚さとなり、この点で材料の有効利用が十分
ではなかった。即ちコストを下げるためには十分な薄型
化が必要である。2. Description of the Related Art Conventionally, a solar cell has been used as a driving energy source in various devices. A solar cell uses a pn junction in a device portion, and Si is generally used as a semiconductor forming the pn junction. In terms of the efficiency of converting light energy to electromotive force, single crystal Si
Is preferred, but amorphous Si is considered to be advantageous from the viewpoint of increasing the area and reducing the cost. In recent years, the use of polycrystalline Si has been studied for the purpose of obtaining low cost comparable to amorphous (amorphous) and high energy conversion efficiency comparable to single crystal Si. However, it has been difficult to reduce the thickness to 0.3 mm or less by using a plate-shaped body obtained by slicing a massive polycrystal in the conventionally proposed method. In this respect, the effective utilization of the material was not sufficient. That is, it is necessary to reduce the thickness sufficiently in order to reduce the cost.
【0003】そこで、化学的気相成長法(CVD)等の
薄膜形成技術を用いて多結晶Siの薄膜を形成する試み
がなされているが、結晶粒径がせいぜい百分の数ミクロ
ン程度にしかならず、塊状多結晶Siスライス法の場合
に比べてもエネルギー変換効率が低い。多結晶Si薄膜
にレーザー光を照射し溶融再結晶化させて結晶粒径を大
きくするという試みもなされているが、低コスト化が十
分でなく、また安定した製造も困難である。Attempts have been made to form a thin film of polycrystalline Si using a thin film forming technique such as chemical vapor deposition (CVD). However, the crystal grain size is only about several hundredths of a micron. Also, the energy conversion efficiency is lower than that of the bulk polycrystalline Si slice method. Attempts have been made to increase the crystal grain size by irradiating a polycrystalline Si thin film with laser light to melt and recrystallize it, but cost reduction is not sufficient, and stable production is difficult.
【0004】このような事情はSiのみならず、化合物
半導体においても共通な問題となっている。そこで液相
法を用いて低コスト基板上に太陽光を吸収するに必要十
分な厚さの結晶Si膜を形成する方法が提案されている
(出口、浜本、板垣、石原、森川、佐々木、佐藤、浪
崎;平成2年秋季第51回応用物理学会学術講演会講演
予稿集29a−G−2p695)。[0004] Such a situation is a common problem not only in Si but also in compound semiconductors. Therefore, there has been proposed a method of forming a crystalline Si film having a thickness sufficient to absorb sunlight on a low-cost substrate using a liquid phase method (exit, Hamamoto, Itagaki, Ishihara, Morikawa, Sasaki, Sato). , Namisaki; Proceedings of the 51st Fall Meeting of the Japan Society of Applied Physics, 29a-G-2p695).
【0005】[0005]
【発明が解決しようとする課題】上述の方法において低
コスト基板に含まれる不純物が成長させるSi結晶中に
取り込まれるのを防ぐために基板表面にSiO2膜が設
けられる。このときSnを溶媒とする液相法ではSnの
漏れ性が悪いためSiO2上には直接Siを成長でき
ず、このため成長の核あるいは種となるSi層がSiO
2上に必要となるが、Si層が薄い場合には凝集を起こ
して均一な膜が得られず、またSi層が厚い場合には独
立した結晶粒が成長して凹凸が激しくなり表面性が悪く
なる。これは液相法は準熱平衡下での成長であるので結
晶の面方位による成長速度の異方性の影響が大きく、S
i層の結晶粒径が小さい程顕著になるためである。その
ため上述の方法ではSi層をランプ加熱して溶融再結晶
化して粒径拡大を行っており、その結果基板選択に制約
が生じるという問題があった。In the above-mentioned method, an SiO 2 film is provided on the substrate surface in order to prevent impurities contained in the low-cost substrate from being taken into the grown Si crystal. At this time, in the liquid phase method using Sn as a solvent, Sn cannot be directly grown on SiO 2 due to poor Sn leaking property.
It is necessary on the two, not uniform film was obtained undergo aggregation when Si layer is thin, and the surface resistance unevenness intensified separate crystal grains grow when the Si layer is thicker become worse. This is because the liquid phase method is a growth under quasi-thermal equilibrium, and therefore the growth rate anisotropy greatly depends on the crystal plane orientation.
This is because the smaller the crystal grain size of the i-layer becomes, the more remarkable it becomes. Therefore, in the above-described method, the Si layer is heated by a lamp and melted and recrystallized to increase the particle size. As a result, there is a problem that the selection of the substrate is restricted.
【0006】本発明は上記従来技術の持つ課題を解決
し、粒径が大きくかつ良質な薄膜多結晶Si太陽電池の
製造方法を提供することを目的とする。本発明の他の目
的は低コスト基体である金属基体上に大粒径の多結晶半
導体層を成長させることにより安価な太陽電池を製造す
ることができる薄膜多結晶Si太陽電池の製造方法を提
供することにある。An object of the present invention is to solve the problems of the prior art and to provide a method of manufacturing a thin-film polycrystalline Si solar cell having a large grain size and good quality. Another object of the present invention is to provide a method of manufacturing a thin-film polycrystalline Si solar cell capable of manufacturing an inexpensive solar cell by growing a large-crystalline polycrystalline semiconductor layer on a metal substrate which is a low-cost substrate. Is to do.
【0007】また、本発明のさらに別の目的は絶縁膜
(例えば、SiO2膜)上に形成した微小Si粒を種結
晶としてその上に大粒径Si結晶層を形成することによ
り、基体からの不純物の混入をなくすことで高品質な太
陽電池を製造することができる薄膜多結晶Si太陽電池
の製造方法を提供することにある。Still another object of the present invention is to form a large grain Si crystal layer on a small Si grain formed on an insulating film (eg, an SiO 2 film) as a seed crystal, thereby forming An object of the present invention is to provide a method for manufacturing a thin-film polycrystalline Si solar cell capable of manufacturing a high-quality solar cell by eliminating contamination of impurities.
【0008】[0008]
【課題を解決するための手段】本発明は、上述の従来技
術における問題を解決し、上記の目的を達成すべく本発
明者による鋭意研究の結果完成に至ったものであり、特
性の良好な薄膜多結晶Si太陽電池の製造方法を提供す
るものである。すなわち、本発明は多結晶Si太陽電池
の製造方法であって。 i)金属基体上に絶縁層を堆積する工程と、ii)該絶
縁層の表面にSi層を堆積する工程と、iii)該Si
層に高濃度の不純物を導入して不活性ガス雰囲気中で加
熱することにより前記Si層中の結晶粒径を拡大させる
工程と、iv)活性ガス雰囲気中で加熱することにより
前記Si結晶粒を前記絶縁層上に形成する工程と、v)
液相法により高過飽和度で前記Si層を凝集させてSi
結晶粒を種結晶として島状単結晶への結晶成長を行う工
程と、vi)活性ガス雰囲気中で加熱することにより前
記Si結晶粒と前記絶縁層との間で固相反応を促進させ
て前記金属基体の表面とSi結晶粒の底面とを接触させ
る工程と、vii)液相法により前記Si結晶粒をさら
に結晶成長させて前記絶縁層表面をSi層で覆う工程と
を含むことを特徴とするものである。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and has been completed as a result of intensive studies by the present inventor to achieve the above object. An object of the present invention is to provide a method for manufacturing a thin-film polycrystalline Si solar cell. That is, the present invention is a method for manufacturing a polycrystalline Si solar cell. i) a step of depositing an insulating layer on a metal substrate; ii) a step of depositing a Si layer on the surface of the insulating layer;
Increasing the crystal grain size in the Si layer by introducing high concentration impurities into the layer and heating in an inert gas atmosphere; and iv) heating the Si crystal grains in an active gas atmosphere to reduce the Si crystal grains. Forming on the insulating layer; v)
Aggregation of the Si layer with a high degree of supersaturation by the liquid phase method
(Vi) heating the crystal in an active gas atmosphere to promote a solid-phase reaction between the Si crystal grains and the insulating layer by using the crystal grains as a seed crystal to grow the island-like single crystal; Contacting the surface of the metal substrate with the bottom surface of the Si crystal grains; and vii) growing the Si crystal grains further by a liquid phase method and covering the surface of the insulating layer with a Si layer. Is what you do.
【0009】[0009]
【作用】本発明の主要な技術は、図1に示されるよう
に、金属基体上に堆積されたSiO2の絶縁層の上にC
VD法等によりSi層を形成し、その表面に熱拡散等に
より不純物を高濃度導入し、窒素等の不活性雰囲気中で
アニールしてSi層の粒径を拡大させ、さらに水素雰囲
気中でアニールすることでSi層を凝集させて微小なS
i粒を基体上に形成し、このSi粒を種結晶として液相
成長法により大粒径の多結晶Si薄膜層を形成するもの
である。Principle techniques DETAILED DESCRIPTION OF THE INVENTION The present invention, as shown in FIG. 1, C on the SiO 2 insulating layer deposited on the metal substrate
A Si layer is formed by a VD method or the like, a high concentration of impurities is introduced into the surface by thermal diffusion or the like, and annealing is performed in an inert atmosphere such as nitrogen to increase the grain size of the Si layer, and then annealing is performed in a hydrogen atmosphere. To aggregate the Si layer,
The i-grain is formed on a substrate, and the Si grain is used as a seed crystal to form a polycrystalline Si thin film layer having a large grain size by a liquid phase growth method.
【0010】このとき、上記液相成長の際、ある程度S
i結晶粒を成長させたところで水素雰囲気中でアニール
してSi結晶とSiO2層との間で固相反応を起こさせ
て金属基体の表面とSi結晶粒の底面とを接触させる。
これによりSi結晶と基体との導通が図られる。そして
この後さらにSi結晶粒の成長を行い、最終的に連続膜
を得る。At this time, during the liquid phase growth, S
When the i crystal grain is grown, annealing is performed in a hydrogen atmosphere to cause a solid phase reaction between the Si crystal and the SiO 2 layer, thereby bringing the surface of the metal substrate into contact with the bottom surface of the Si crystal grain.
Thereby, conduction between the Si crystal and the base is achieved. Thereafter, the Si crystal grains are further grown to finally obtain a continuous film.
【0011】本発明者らは幾多の実験を重ねることによ
り、SiO2膜上に堆積したSi層を凝集させることで
得られる微小のSi粒を種結晶として液相成長法により
Si結晶が成長できることを見い出した。また、本発明
者らはさらに実験を重ねることにより、凝集させるSi
層にあらかじめ不純物を導入して不活性雰囲気中でアニ
ールして粒径拡大しておくことで凝集したSi粒を種結
晶として成長したSi結晶の方位が制御できることを見
い出した。The present inventors have conducted a number of experiments to find that a Si crystal can be grown by a liquid phase growth method using fine Si grains obtained by aggregating a Si layer deposited on a SiO 2 film as a seed crystal. I found In addition, the present inventors have further conducted experiments to obtain the Si
It has been found that the orientation of the Si crystal grown as a seed crystal using the agglomerated Si grains can be controlled by introducing impurities into the layer in advance and annealing in an inert atmosphere to increase the grain size.
【0012】また本発明者らはさらに実験を行い、凝集
させたSi粒を液相成長によりある程度成長させたとこ
ろで一旦成長を中断し、活性ガス雰囲気(例えば、水素
雰囲気)中でアニールしてSi結晶と絶縁層との間で固
相反応を起こさせて金属基体の表面とSi結晶粒の底面
とを接触させることでSi結晶と基体との導通が図られ
ることを、さらにその後成長を続けて大粒径多結晶Si
の連続薄膜が得られることを見い出し、本発明の完成に
至った。Further, the present inventors conducted further experiments, and when the agglomerated Si grains were grown to some extent by liquid phase growth, the growth was suspended once, and the Si grains were annealed in an active gas atmosphere (for example, a hydrogen atmosphere). By causing a solid-phase reaction between the crystal and the insulating layer to bring the surface of the metal substrate into contact with the bottom surface of the Si crystal grains, conduction between the Si crystal and the substrate is achieved. Large grain polycrystalline Si
It was found that a continuous thin film was obtained, and the present invention was completed.
【0013】以下に本発明者の行った実験について詳述
する。 (実験1) Si層の凝集 図2に示すように、0.8mm厚さのMo基板201の
表面に絶縁層202としてSiO2層(絶縁層)を通常
の常圧CVD法で0.1μm形成し、その上に通常のL
PCVD装置によりSiH4を630℃で熱分解してS
i層203を0.1μm堆積させた。Hereinafter, an experiment performed by the present inventors will be described in detail. (Experiment 1) Aggregation of Si layer As shown in FIG. 2, an SiO 2 layer (insulating layer) was formed as a 0.1 μm SiO 2 layer (insulating layer) on the surface of a 0.8 mm thick Mo substrate 201 as an insulating layer 202 by a normal atmospheric pressure CVD method. And then a normal L
The thermal decomposition of SiH 4 at 630 ° C. by PCVD equipment
An i layer 203 was deposited to a thickness of 0.1 μm.
【0014】このときのSi層はX線回析により調べた
ところ結晶粒径が約8nm多結晶Siであった。このよ
うな金属基板上のSi層に対し、そのままのもの、
イオン打ち込みによりPを加速電圧50KV,ドーズ量
8×1015/cm2で打ち込んだもの、および、同様
にPを打ち込んだ後に不活性雰囲気(N2雰囲気)中1
000℃×3時間でアニールを行ったもの、の3種類を
用意した。When the Si layer at this time was examined by X-ray diffraction, it was found to be polycrystalline Si having a crystal grain size of about 8 nm. For the Si layer on such a metal substrate,
P implanted by ion implantation at an acceleration voltage of 50 KV and a dose of 8 × 10 15 / cm 2 , and similarly in an inert atmosphere (N 2 atmosphere) after implanting P
Three types, one that was annealed at 000 ° C. for 3 hours, were prepared.
【0015】結晶粒径の変化について透過型電子顕微鏡
により調べたところ、イオン打ち込み直後のものは非晶
質化していたが、イオン打ち込み後アニールしたものは
結晶粒径は最大で約3μmにまで拡大していた。さらに
上述においてイオン打ち込みの代わりにリンガラスを堆
積させて不純物拡散を行い、リンガラス除去後にN2雰
囲気中で1000℃,3時間のアニール処理することで
も同様結晶粒径を拡大することができた。When the change in crystal grain size was examined by a transmission electron microscope, the one immediately after ion implantation was amorphous, but the one annealed after ion implantation was expanded to a maximum of about 3 μm. Was. Furthermore, in the above, the impurity diameter was diffused by depositing phosphorus glass instead of ion implantation, and annealing at 1000 ° C. for 3 hours in an N 2 atmosphere after removing the phosphorus glass also increased the crystal grain size. .
【0016】次に、この3種類の基板を水素雰囲気中1
050℃,5分間アニールした後、光学顕微鏡および走
査型電子顕微鏡で表面の様子を観察したところ、いずれ
の基板に対してもSi層は凝集を起こしており、0.3
〜1.5μmの微小なSi粒204がSiO2層上に形
成されていた。このときのSi粒の密度は大体1〜3×
107個/cm2であった。Next, these three types of substrates were placed in a hydrogen atmosphere for 1 hour.
After annealing at 050 ° C. for 5 minutes, the state of the surface was observed with an optical microscope and a scanning electron microscope.
Fine Si grains 204 having a size of about 1.5 μm were formed on the SiO 2 layer. The density of the Si grains at this time is approximately 1 to 3 ×
It was 10 7 pieces / cm 2 .
【0017】(実験2) 液相成長法によるSi結晶成
長 実験1で得られた金属基板上の微小Si粒を種結晶とし
て用いて液相成長法によるSi結晶の成長を試みた。上
述の3種類の基板の内、イオン打ち込みをしていないも
のおよびイオン打ち込みのみのものについては、Sn溶
媒に比抵抗2Ω・cmのn型Siを953℃で飽和させ
たものに浸漬して成長開始温度950℃、過冷却度3
℃、降温速度0.5℃/分で徐冷し、イオン打ち込みし
た後N2雰囲気中でアニールしたものは同様に成長開始
温度950℃、過冷却度30℃、降温速度0.5℃/分
で徐冷して結晶成長を行った。成長時間はそれぞれ15
分とした。(Experiment 2) Si crystal growth by liquid phase growth method Using the fine Si grains on the metal substrate obtained in Experiment 1 as a seed crystal, an attempt was made to grow a Si crystal by the liquid phase growth method. Of the above three types of substrates, those not ion-implanted and those only ion-implanted are grown by immersion in 95% ° C. saturated n-type Si having a specific resistance of 2Ω · cm in Sn solvent. Starting temperature 950 ° C, degree of supercooling 3
° C., gradually cooled at a cooling rate 0.5 ° C. / min, which was annealed in an N 2 atmosphere after ion implantation is likewise growth start temperature 950 ° C., supercooling degree 30 ° C., cooling rate 0.5 ° C. / min And the crystal was grown. Growth time is 15 each
Minutes.
【0018】成長終了後表面の様子を光学顕微鏡および
走査型電子顕微鏡で観察したところ、いずれの場合も結
晶成長しているのが確認され、数μmから数十μmの粒
径のSi結晶205が得られた(図2(d))。但し、
成長したSi結晶の密度は2〜5×104個/cm2とな
り、凝集して出来た微小なSi粒が全て結晶成長するわ
けではないことが明かとなった。After completion of the growth, the state of the surface was observed with an optical microscope and a scanning electron microscope. In each case, it was confirmed that crystals had grown, and a Si crystal 205 having a particle size of several μm to several tens μm was obtained. It was obtained (FIG. 2 (d)). However,
The density of the grown Si crystal was 2 to 5 × 10 4 / cm 2 , and it became clear that not all the fine Si grains formed by aggregation were crystal-grown.
【0019】また、成長後のSi結晶の形態に大きな差
が見られ、イオン打ち込みをしていないものおよびイオ
ン打ち込みのみのものについては結晶方位の優先性は見
られなかったが、イオン打ち込みしたN2 雰囲気中でア
ニールしたものは(111)面が基板表面に垂直な方向
に向いた結晶が圧倒的に多く、基板表面のSi結晶によ
る被覆率が最も高かった。Also, there is a large difference in the morphology of the Si crystal after the growth, and no priority was found in the crystal orientation for the non-ion-implanted and the ion-implanted only. The crystal annealed in the atmosphere had overwhelmingly many crystals with the (111) plane oriented in the direction perpendicular to the substrate surface, and the coverage of the substrate surface with Si crystals was the highest.
【0020】(実験3) SiO2層−Si結晶間の固
相反応 実験2で得られた(111)面が基板表面に垂直な方向
に向いたSi結晶が多いものに対して、水素雰囲気中で
1050℃,30分間アニールを施し、SiO 2層−S
i結晶間の固相反応を促進させた。全く同じプロセスを
通した別な基板について基板表面の断面を高解像度の走
査型電子顕微鏡で観察したところ、図3に示すようにS
i結晶の底面がSiO2層を貫通して金属基板の表面と
接触していた。これによりSi結晶と金属基板間の導通
が図れることが分かった。(Experiment 3) SiOTwoSolid between layer and Si crystal
Phase reaction The (111) plane obtained in Experiment 2 is perpendicular to the substrate surface
In a hydrogen atmosphere
Anneal at 1050 ° C. for 30 minutes, TwoLayer-S
The solid-state reaction between i-crystals was promoted. Exactly the same process
Cross-section of the substrate surface with high resolution scanning
When observed with a scanning electron microscope, as shown in FIG.
The bottom of the i-crystal is SiOTwoThrough the layer and the surface of the metal substrate
I was in contact. This allows conduction between the Si crystal and the metal substrate
It turned out that can be achieved.
【0021】(実験4) 連続膜の形成 実験3に引き続いて、さらに液相法により結晶成長を行
った。成長開始温度950℃、過冷却度3℃、降温速度
0.5/分、成長時間を80分として成長を行った。成
長終了後実験2と同様に基板表面を光学顕微鏡および走
査型電子顕微鏡で観察したところ、Si結晶は隣接する
もの同士が完全に接触しており、平均粒径が約50μm
の大粒径Si結晶薄膜(連続膜)が得られていることが
確かめられた。このときの連続膜の高さは平均してSi
O2層の表面上から約40μmであった。(Experiment 4) Formation of Continuous Film Subsequent to Experiment 3, crystal growth was further performed by a liquid phase method. The growth was performed at a growth start temperature of 950 ° C., a degree of supercooling of 3 ° C., a cooling rate of 0.5 / min, and a growth time of 80 minutes. After the growth was completed, the surface of the substrate was observed with an optical microscope and a scanning electron microscope in the same manner as in Experiment 2. As a result, adjacent Si crystals were completely in contact with each other, and the average grain size was about 50 μm.
It was confirmed that a large-diameter Si crystal thin film (continuous film) was obtained. At this time, the height of the continuous film is Si
It was about 40 μm from above the surface of the O 2 layer.
【0022】(実験5) 太陽電池の形成 実験4で得られたMo基板上の大粒径Si結晶薄膜の表
面にイオン打ち込みによりBを20KeV、1×1015
/cm2の条件で打ち込み、800℃,30分でアニー
ルしてp+層を形成した。このようにして作製した大粒
径Si結晶薄膜/SiO2/Mo構造の太陽電池につい
てAM1.5(100mW/cm2)光照射下でのI−
V特性について測定を行ったところ、セル面積0.16
cm2で開放電圧0.52V、短絡電流25mA/c
m2、曲線因子0.72となり、変換効率9.4%を得
た。(Experiment 5) Formation of Solar Cell B was implanted into the surface of the large-diameter Si crystal thin film on the Mo substrate obtained in Experiment 4 by ion implantation at 20 KeV and 1 × 10 15.
/ Cm 2 and annealed at 800 ° C. for 30 minutes to form ap + layer. With respect to the solar cell having the large-diameter Si crystal thin film / SiO 2 / Mo structure manufactured in this manner, the I− under the irradiation of AM1.5 (100 mW / cm 2 ) light.
When the V characteristics were measured, the cell area was 0.16.
Open voltage 0.52 V, short circuit current 25 mA / c in cm 2
m 2 and the fill factor were 0.72, and a conversion efficiency of 9.4% was obtained.
【0023】このように、金属基板上に凝集により得ら
れる微小Si粒を用いて大粒径Si薄膜が形成可能であ
り、これにより良好な特性を有する太陽電池が形成でき
ることが示された。本発明の太陽電池に使用される金属
基板材料としては導電性が良好で、好ましくはSiとシ
リサイド等の化合物を形成する任意の金属が用いられ、
代表的なものとしてW,Mo,Cr,Ni,Ti等が挙
げられるが、もちろんそれ以外であってもかまわない。
絶縁層としてはSiと固相反応を起こす点からSiO2
が用いられ、その厚さについては特に規定はないが、
0.05〜0.5μmの範囲とするのが適当である。As described above, it has been shown that a large-diameter Si thin film can be formed on a metal substrate by using fine Si particles obtained by aggregation, whereby a solar cell having good characteristics can be formed. As the metal substrate material used in the solar cell of the present invention, any metal that has good conductivity and preferably forms a compound such as Si and silicide is used,
Representative examples include W, Mo, Cr, Ni, Ti, and the like, but of course, other values may be used.
As an insulating layer, SiO 2 is used because it causes a solid-phase reaction with Si.
Is used, and its thickness is not particularly specified,
It is appropriate that the thickness be in the range of 0.05 to 0.5 μm.
【0024】また、絶縁層上に堆積されるSi層として
は結晶質であっても非晶質であってもよく、あるいは結
晶質と非結晶質の混合したものであってもよい。Si層
を堆積させる方法としてはLPCVD法、プラズマCV
D法、蒸着法、スパッタ法等何でもよいが一般的にはL
PCVD法が用いられる。Si層の厚さは、概ね0.1
〜0.5μmの範囲が適当である。このようなSi層に
対して粒径拡大を目的として不純物が導入されるが、導
入する方法としてはイオン打ち込み法あるいは熱拡散法
により行われ、不純物としてはn型ではP,As,Sn
等が、またp型ではB,Al等が選ばれる。The Si layer deposited on the insulating layer may be crystalline or amorphous, or may be a mixture of crystalline and non-crystalline. LPCVD, plasma CV
Any method such as D method, vapor deposition method and sputtering method may be used.
The PCVD method is used. The thickness of the Si layer is approximately 0.1
A range of 0.5 μm is appropriate. Impurities are introduced into such a Si layer for the purpose of increasing the particle size. The method for introducing impurities is ion implantation or thermal diffusion, and P, As, and Sn for n-type impurities are used as impurities.
And B, Al and the like are selected for the p-type.
【0025】導入される不純物量としてはSi層の膜厚
およびアニール処理条件によって適宜決められるが概ね
4×1020cm-3以上である。上限としては、5×10
21cm-3が好ましい。4×1020cm-3未満では、顕著
な粒径拡大が期待されず、従って成長させたSi結晶の
方位制御も困難になる。本発明の方法において粒径拡大
を目的として行われるSi層の不活性ガス中でのアニー
ルの温度は処理時間にもよるが900℃以上とするのが
好ましく、不活性ガスとしては、例えば、N2 ,Ar等
が用いられる。The amount of impurities to be introduced is appropriately determined depending on the thickness of the Si layer and the annealing conditions, but is generally 4 × 10 20 cm −3 or more. The upper limit is 5 × 10
21 cm -3 is preferred. If it is less than 4 × 10 20 cm −3 , remarkable enlargement of the grain size is not expected, and it is difficult to control the orientation of the grown Si crystal. In the method of the present invention, the temperature of the annealing of the Si layer in an inert gas for the purpose of increasing the particle size is preferably 900 ° C. or higher, although it depends on the processing time. , Ar, etc. are used.
【0026】また粒径拡大後に行われる活性ガス中のS
i層の凝集における温度としてはだいたい950〜11
00℃の範囲とするのが好ましく、活性ガスとしてはH
2 が用いられる。本発明の方法において使用される液相
成長法における成長温度の範囲については溶媒の種類に
もよるがSnを用いる場合には850℃以上1050℃
以下に制御されるのが望ましい。また過冷却度について
は微小Si粒からSi結晶を成長する場合には高濃度に
ドープされた微小Si粒が溶媒中にメルトバックするの
を抑える目的で数十℃程度にするのが好ましく、固相反
応後に引き続いて成長を行う場合には数℃程度が好まし
い。降温速度については0.1〜5℃/分の範囲に制御
されるのが好ましい。In addition, S in the active gas performed after the particle size is increased
The temperature in the aggregation of the i-layer is approximately 950 to 11
The temperature is preferably in the range of 00 ° C., and the active gas is H
2 is used. The range of the growth temperature in the liquid phase growth method used in the method of the present invention depends on the type of the solvent.
It is desirable to control as follows. Further, the degree of supercooling is preferably set to about several tens of degrees Celsius in order to suppress the high-doped fine Si particles from melting back in the solvent when growing Si crystals from the fine Si particles. In the case where the growth is continued after the phase reaction, the temperature is preferably about several degrees Celsius. It is preferable that the temperature decreasing rate is controlled in the range of 0.1 to 5 ° C./min.
【0027】また、液相成長法により得られるSi結晶
薄膜の最終的な粒径および膜厚については太陽電池の特
性上の要求とプロセスの制約から、それぞれ20〜50
0μmが適当であり、好ましくはそれぞれ30〜500
μmが望ましい。得られたSi結晶の表面にp+または
n+層を設けて接合が形成されるが、その厚さとしては
導入される不純物の量にもよるが0.05〜1μmの範
囲とするのが適当であり、好ましくは0.1〜0.5μ
mとするのが望ましい。The final grain size and film thickness of the Si crystal thin film obtained by the liquid phase growth method are 20 to 50, respectively, due to the requirements on the characteristics of the solar cell and the constraints of the process.
0 μm is appropriate, preferably 30 to 500 μm each.
μm is desirable. A junction is formed by providing a p + or n + layer on the surface of the obtained Si crystal, and its thickness is preferably in the range of 0.05 to 1 μm, depending on the amount of impurities to be introduced. Suitable, preferably 0.1-0.5μ
m is desirable.
【0028】[0028]
【実施例】以下、本発明に係る薄膜多結晶Si太陽電池
の製造方法の実施例により所望の太陽電池を形成する過
程をより詳細に説明するが、本発明はこれらの実施例に
より何ら限定されるものではない。 (実施例1)前述したように、実験1〜5と同様にして
金属基板上の大粒径Si結晶太陽電池を作製した。図1
(a)〜(g)にその作製プロセスを示す。金属基板1
01には厚さ0.8mmのMo板を用いた。この上に常
圧CVD装置によりSiO2層を0.08μm形成した
(図1(a))後、通常のLPCVD装置を用いてSi
H4を630℃で熱分解して0.1μm多結晶Siを堆
積させた(図1(b))。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The process of forming a desired solar cell according to an embodiment of the method of manufacturing a thin-film polycrystalline Si solar cell according to the present invention will be described in more detail below. However, the present invention is not limited by these embodiments. Not something. (Example 1) As described above, a large grain Si crystal solar cell on a metal substrate was manufactured in the same manner as in Experiments 1 to 5. FIG.
(A) to (g) show the manufacturing process. Metal substrate 1
A Mo plate having a thickness of 0.8 mm was used for 01. An SiO 2 layer was formed thereon by 0.08 μm using a normal pressure CVD apparatus (FIG. 1A), and then Si was formed using a normal LPCVD apparatus.
H 4 was thermally decomposed at 630 ° C. to deposit 0.1 μm polycrystalline Si (FIG. 1B).
【0029】次に、この多結晶Siの表面にリンガラス
を堆積させて不純物拡散を行なった。リンガラスの堆積
条件を表1に示す。リンガラス堆積直後に温度を900
℃のままにしてN2 雰囲気中で5分間ドライブした。不
純物拡散が終了した後にHF:H2 O=1:10のHF
水溶液でリンガラスを除去し、次にN2 雰囲気中100
0℃3時間の条件でアニール処理を行い、粒径拡大を行
った。このとき得られた粒径は最大約2.8μmであっ
た。Next, phosphorus glass was deposited on the surface of the polycrystalline Si to diffuse impurities. Table 1 shows the deposition conditions of phosphorus glass. Immediately after phosphorus glass deposition
℃ leave to the drove 5 minutes in N 2 atmosphere. HF: H2 O = 1: 10 HF after impurity diffusion is completed
Remove the phosphorus glass with an aqueous solution and then
Annealing was performed at 0 ° C. for 3 hours to increase the particle size. The maximum particle size obtained at this time was about 2.8 μm.
【0030】[0030]
【表1】 続いてH2雰囲気中で1030℃,10分間の条件でア
ニール処理を行い、Si層を凝集させて微小なSi粒を
SiO2層上に得た(図1(c))。このときのSi粒
104の粒径は0.4〜1.5μm、また密度は3×1
07個/cm2であった。[Table 1] Subsequently, annealing was performed in an H 2 atmosphere at 1030 ° C. for 10 minutes to aggregate the Si layer to obtain fine Si grains on the SiO 2 layer (FIG. 1C). At this time, the grain size of the Si grains 104 is 0.4 to 1.5 μm, and the density is 3 × 1.
0 7 was / cm 2.
【0031】通常のスライド式ボート法による液相成長
装置により溶媒にSnを用い次の連続条件で結晶成長を
行って大粒径Si結晶の連続薄膜を得た。すなわち、
水素雰囲気中、成長開始温度950℃、過冷却度30
℃、降温速度0.5℃/分、成長時間10分の液相成長
後(島状の単結晶成長:図1(d))、溶媒から金属
基板を離して温度を1050℃まで上げ、そのまま水素
雰囲気中で20分保持した後(金属基板と島状単結晶と
の導通:図1(e))、再び温度を950℃まで戻し
て今度は過冷却度3℃、降温速度0.5℃/分、成長時
間80分で液相成長を行った(図1(f))。Crystal growth was carried out using Sn as a solvent under the following continuous conditions by a conventional liquid phase growth apparatus by a slide boat method to obtain a continuous thin film of a large grain Si crystal. That is,
In a hydrogen atmosphere, growth start temperature 950 ° C, degree of supercooling 30
After the liquid phase growth at a temperature of 0.5 ° C., a cooling rate of 0.5 ° C./min, and a growth time of 10 minutes (island-like single crystal growth: FIG. 1D), the metal substrate was separated from the solvent and the temperature was raised to 1050 ° C. After holding for 20 minutes in a hydrogen atmosphere (continuity between the metal substrate and the island-shaped single crystal: FIG. 1 (e)), the temperature was returned to 950 ° C. again, this time with a degree of supercooling of 3 ° C., and a temperature drop rate of 0.5 ° C. Liquid phase growth was performed at a growth rate of 80 minutes / minute (FIG. 1 (f)).
【0032】このようにして得られたSi結晶薄膜10
5の粒径と膜厚はともに約50μmであった。また成長
後のSi結晶の方位については不純物を導入しなかった
場合には優先性は見られなかったが、リンガラスで不純
物導入した後N2雰囲気中でアニールした場合には(1
11)面が基板表面に垂直な方向に向いた結晶が多く、
成長した全Si結晶中に含まれるその割合は約50%で
あった。The Si crystal thin film 10 thus obtained is
The particle size and film thickness of No. 5 were both about 50 μm. No priority was observed for the orientation of the Si crystal after growth when no impurity was introduced, but when annealing was performed in an N 2 atmosphere after introducing the impurity with phosphorus glass, (1
11) Many crystals are oriented in a direction perpendicular to the substrate surface,
The proportion contained in all the grown Si crystals was about 50%.
【0033】Si層の表面にイオン打ち込みによりBを
20KeV,1×1015/cm2の条件で打ち込み、8
00℃30minでアニールしてp+層を形成した。最
後にEB(Electron Beam)蒸着により集
電電極(Ti/Pd/Ag(0.04μm/0.02μ
md/1μm))/ITO透明導電膜をp+層上に形成
した。B was implanted into the surface of the Si layer by ion implantation under the conditions of 20 KeV and 1 × 10 15 / cm 2.
Annealing was performed at 00 ° C. for 30 minutes to form ap + layer. Finally, a current collecting electrode (Ti / Pd / Ag (0.04 μm / 0.02 μm) was deposited by EB (Electron Beam) evaporation.
md / 1 μm)) / An ITO transparent conductive film was formed on the p + layer.
【0034】このようにして得られた大粒径Si結晶太
陽電池についてAM1.5(100mW/cm2)光照
射下でのI−V特性について測定したところ、セル面積
0.25cm2で開放電圧0.54V、短絡光電流28
mA/cm2、曲線因子0.72となり、エネルギー変
換効率10.9%を得た。このように金属基板上に成長
させた大粒径Si結晶層を用いて良好な特性を示す太陽
電池が作製出来た。[0034] were measured for the I-V characteristic at AM1.5 (100mW / cm 2) under light irradiation on this way a large grain size Si crystal solar cell obtained, the open-circuit voltage in the cell area 0.25 cm 2 0.54V, short-circuit photocurrent 28
mA / cm 2 , the fill factor was 0.72, and an energy conversion efficiency of 10.9% was obtained. Thus, a solar cell exhibiting good characteristics was produced using the large grain Si crystal layer grown on the metal substrate.
【0035】(実施例2)実施例1と同様にしてアモル
ファスシリコンカーバイト/多結晶Siヘテロ接型太陽
電池を作製した。金属基板にはCrを用い、その上に常
圧CVD法でSiO2層を0.12μm堆積し、さらに
その上にLPCVD法により550℃でSiH4の分解
により非晶質Si層を0.1μm堆積した。Example 2 An amorphous silicon carbide / polycrystalline Si hetero-contact solar cell was produced in the same manner as in Example 1. The metal substrate with Cr, 0.1 [mu] m the amorphous Si layer of SiO 2 layer was 0.12μm deposited by atmospheric pressure CVD method thereon, further 550 ° C. by LPCVD thereon by the decomposition of SiH 4 Deposited.
【0036】イオン打ち込みによりAsを50KeV、
6×1015/cm2の条件でSi層の表面に打ち込み、
Ar雰囲気中1000℃×3時間のアニールしてSi層
の粒径を拡大させた。続いてH2雰囲気中で1000℃
×20分間の条件でアニール処理を行い、Si層を凝集
させて微小なSi粒をSiO2層上に得た。このときの
Si粒の粒径は0.3〜1.2μm、また密度は5×1
07個/cm2であった。By ion implantation, As is 50 KeV,
Implanted into the surface of the Si layer under the condition of 6 × 10 15 / cm 2 ,
Annealing was performed at 1000 ° C. for 3 hours in an Ar atmosphere to increase the grain size of the Si layer. Subsequently, in an H 2 atmosphere at 1000 ° C.
Annealing was performed under the conditions of × 20 minutes, and the Si layer was aggregated to obtain fine Si particles on the SiO 2 layer. At this time, the grain size of the Si grains was 0.3 to 1.2 μm, and the density was 5 × 1.
0 7 was / cm 2.
【0037】通常のスライド式ボート法による液相成長
装置により溶媒にSnを用い次の連続条件で結晶成長を
行って大粒径Si結晶の連続薄膜を得た。すなわち、水
素雰囲気中、成長開始温度970℃,過冷却度25℃,
降温速度0.3℃/分,成長時間13分の後、溶媒より
基板を離して温度を1030℃まで上げ、そのまま水素
雰囲気中で30分保持し、再び温度を970℃まで戻し
て今度は過冷却度3℃、降温速度0.5℃/分,成長時
間70分で成長を行った。Crystal growth was carried out under the following continuous conditions using Sn as a solvent by a liquid phase growth apparatus based on an ordinary slide boat method to obtain a continuous thin film of large grain Si crystal. That is, in a hydrogen atmosphere, a growth start temperature of 970 ° C., a degree of supercooling of 25 ° C.,
After a cooling rate of 0.3 ° C./minute and a growth time of 13 minutes, the substrate was separated from the solvent, the temperature was increased to 1030 ° C., the temperature was maintained for 30 minutes in a hydrogen atmosphere, and the temperature was returned to 970 ° C. The growth was performed at a cooling degree of 3 ° C., a temperature decreasing rate of 0.5 ° C./min, and a growth time of 70 minutes.
【0038】このようにして得られたSi結晶薄膜の粒
径と膜厚はそれぞれ約60μm,約45μmであった。
また成長後のSi結晶の方位については不純物を導入し
なかった場合には優先性は見られなかったが、イオン打
ち込みでAsを導入した後N2雰囲気中でアニールした
場合には(111)面が基板表面に垂直な方向に向いた
結晶が多く、成長した全Si結晶中に含まれるその割合
は約55%であった。The grain size and thickness of the Si crystal thin film thus obtained were about 60 μm and about 45 μm, respectively.
No priority was observed in the orientation of the Si crystal after growth when no impurity was introduced, but when annealing was performed in an N 2 atmosphere after introducing As by ion implantation, the (111) plane was observed. Many of the crystals were oriented in the direction perpendicular to the substrate surface, and the proportion contained in all grown Si crystals was about 55%.
【0039】図4(a)〜(g)に作製したヘテロ型太
陽電池のプロセスを示す。実施例1で示した図1の場合
とほとんど同じであるが、(g)においてp+層107
の代わりにp型アモルファスシリコンカーバイト407
がSi結晶層上に形成された。p型アモルファスシリコ
ンカーバイト層407は通常のプラズマCVD装置によ
り、表2に示す条件でSi結晶表面上に0.02μm堆
積させた。この時のアモルファスシリコンカーバイト膜
の暗導電率は〜10-2S・cm-1であり、CとSiの膜
中の組成比は2:3であった。FIGS. 4 (a) to 4 (g) show the process of the fabricated hetero solar cell. Is almost same as that of FIG. 1 shown in Example 1, p + layer 107 in (g)
Instead of p-type amorphous silicon carbide 407
Was formed on the Si crystal layer. The p-type amorphous silicon carbide layer 407 was deposited on the Si crystal surface at 0.02 μm under the conditions shown in Table 2 by a normal plasma CVD apparatus. At this time, the dark conductivity of the amorphous silicon carbide film was 10 −2 S · cm −1 , and the composition ratio of C and Si in the film was 2: 3.
【0040】[0040]
【表2】 また、透明導電膜408としてはITOを約0.1μm
電子ビーム蒸着して形成し、さらにその上に集電電極
(Cr(0.02μm)/Ag(1μm)/Cr(0.
004μm))を真空蒸着により形成した。[Table 2] The transparent conductive film 408 is made of ITO of about 0.1 μm.
It is formed by electron beam evaporation, and a current collecting electrode (Cr (0.02 μm) / Ag (1 μm) / Cr (0.
004 μm)) was formed by vacuum evaporation.
【0041】このようにして得られたアモルファスシリ
コンカーバイト/多結晶Siヘテロ接合型太陽電池のA
M1.5光照射下でのI−V特性の測定を行ったところ
(セル面積0.16cm2 )、開放電圧0.60V、短
絡光電流29.5mA/cm 2 、曲線因子0.65とな
り、変換効率11.5%という高い値が得られた。 (実施例3)実施例1と同様にして図1に示すようなプ
ロセスで大粒径Si結晶太陽電池を作製した。前述した
ようにMo基板上にSiO2層を0.1μm形成し、L
PCVD装置でSiO2層表面に多結晶Si層を0.1
μm堆積し、次に表1の条件で表面にリンガラスを析出
させて不純物拡散を行なった。HF水溶液でリンガラス
を除去した後に1050℃×3時間の条件でアニール処
理を行い、粒径拡大を行ったた。The thus obtained amorphous silicon
Concarbite / Polycrystalline Si heterojunction solar cell A
Measurement of IV characteristics under M1.5 light irradiation
(Cell area 0.16cm2), open voltage 0.60V, short
Photocurrent 29.5 mA / cm Two , With a fill factor of 0.65
As a result, a high value of 11.5% was obtained. (Embodiment 3) As shown in FIG.
A large grain Si crystal solar cell was fabricated by the process. I mentioned earlier
On the Mo substrateTwoForming a layer having a thickness of 0.1 μm;
SiO in PCVD equipmentTwo0.1 polycrystalline Si layer on the layer surface
μm deposited, and then phosphorus glass is deposited on the surface under the conditions shown in Table 1.
Then, impurity diffusion was performed. Phosphorus glass with HF aqueous solution
After the removal, annealing was performed at 1050 ° C. for 3 hours.
And the particle size was increased.
【0042】次にH2雰囲気中で1040℃×8分間の
条件でアニール処理を行い、Si層を凝集させて微小な
Si粒をSiO2層上に得た。このときのSi粒の粒径
は0.4〜1.3μm、また密度は4×107個/cm2
であった。通常のスライド式ボート法による液相成長装
置により溶媒にSnを用い次の連続条件で結晶成長を行
って大粒径Si結晶の連続薄膜を得た。すなわち、水素
雰囲気中、成長開始温度970℃,過冷却度33℃、降
温速度0.5℃/分、成長時間15分の後、溶媒より基
板を離して温度を1030℃まで上げ、そのまま水素雰
囲気中で30分保持し、再び温度を970℃まで戻して
今度は過冷却度2℃、降温速度0.7℃/分,成長時間
60分で成長を行った。Next, annealing was performed in an H 2 atmosphere at 1040 ° C. for 8 minutes to aggregate the Si layer to obtain fine Si grains on the SiO 2 layer. At this time, the particle size of the Si particles is 0.4 to 1.3 μm, and the density is 4 × 10 7 / cm 2.
Met. Crystal growth was performed under the following continuous conditions using Sn as a solvent by a liquid phase growth apparatus based on an ordinary slide boat method to obtain a continuous thin film of a large-diameter Si crystal. That is, in a hydrogen atmosphere, a growth start temperature is 970 ° C., a degree of supercooling is 33 ° C., a temperature drop rate is 0.5 ° C./min, and after a growth time of 15 minutes, the substrate is separated from the solvent and the temperature is raised to 1030 ° C. The temperature was returned to 970 ° C. again, and growth was performed at a supercooling degree of 2 ° C., at a temperature lowering rate of 0.7 ° C./min, and for a growth time of 60 minutes.
【0043】このようにして得られたSi結晶薄膜の粒
径と膜厚はともに約50μmであった。また成長後のS
i結晶の方位については不純物を導入しなかった場合に
は優先性は見られなかったが、リンガラスで不純物導入
した後N2雰囲気中でアニールした場合には(111)
面が基板表面に垂直な方向に向いた結晶が多く、成長し
た全Si結晶中に含まれるその割合は約50%であっ
た。The grain size and thickness of the Si crystal thin film thus obtained were both about 50 μm. S after growth
No priority was found for the orientation of the i-crystal when no impurity was introduced, but (111) when annealing was performed in an N 2 atmosphere after introducing the impurity with phosphorus glass.
Many of the crystals were oriented in the direction perpendicular to the substrate surface, and the proportion contained in all grown Si crystals was about 50%.
【0044】p+層を形成するためにBSG(Boro
n Silicate Glass)をSi結晶の表面
に常圧CVD装置で堆積しRTA(Rapid The
rmal Annealing)処理を行った。堆積し
たBSGの膜厚は約0.6μmであり、RTA処理の条
件は1050℃、60秒で行なった。このときの接合深
さは約0.2μmであった。In order to form the p + layer, BSG (Boro
n Silicate Glass is deposited on the surface of the Si crystal by a normal pressure CVD apparatus, and RTA (Rapid Theme) is deposited.
rmal Annealing) treatment. The film thickness of the deposited BSG was about 0.6 μm, and the conditions of the RTA treatment were performed at 1050 ° C. for 60 seconds. At this time, the junction depth was about 0.2 μm.
【0045】BSGをHF水溶液で除去した後に最後に
EB蒸着により集電電極(Ti/Pd/Ag(0.04
μm/0.02μm/1μm))/透明導電膜ITO
(0.082μm)をp+層上に形成した。このように
して作製した薄膜結晶太陽電池のAM1.5光照射下で
のI−V特性を調べたところ、セル面積0.25cm2
で開放電圧0.53V、短絡光電流26mA/cm2、
曲線因子0.74となり、10.2%の変換効率が得ら
れた。After removing BSG with an aqueous HF solution, finally, a current collecting electrode (Ti / Pd / Ag (0.04
μm / 0.02 μm / 1 μm)) / Transparent conductive ITO
(0.082 μm) was formed on the p + layer. When the IV characteristics of the thin-film crystal solar cell thus manufactured under AM1.5 light irradiation were examined, the cell area was 0.25 cm 2.
The open-circuit voltage is 0.53 V, the short-circuit photocurrent is 26 mA / cm 2 ,
The fill factor was 0.74, and a conversion efficiency of 10.2% was obtained.
【0046】(実施例4)実施例1,3と同様にして図
1に示すようなプロセスで薄膜結晶太陽電池を作製し
た。Cr基板上に常圧CVD装置でSiO2 層を0.1
2μm形成し、その上にLPCVD装置を用いてSiH
4を630℃で熱分解して多結晶Siを0.08μm堆
積させた。Example 4 A thin-film crystal solar cell was manufactured in the same manner as in Examples 1 and 3 by the process shown in FIG. On a Cr substrate, an SiO2 layer
2 μm, and SiH is formed thereon using an LPCVD apparatus.
4 was thermally decomposed at 630 ° C. to deposit polycrystalline Si of 0.08 μm.
【0047】多結晶Siの表面にBを打ち込みエネルギ
ー20KeV、ドーズ量7×1015/cm2の条件でイ
オン打ち込みを行い、N2 雰囲気中1000℃、4時間
のアニール条件で多結晶Si層の粒径拡大を行った。次
にH2雰囲気中で1050℃,5分間の条件でアニール
処理を行い、Si層を凝集させて微小なSi粒をSi0
2層上に得た。このときのSi粒の粒径は0.2〜1.
1μm、また密度は3×107個/cm2であった。B is implanted on the surface of the polycrystalline Si under the conditions of an energy of 20 KeV and a dose of 7 × 10 15 / cm 2 , and the particles of the polycrystalline Si layer are annealed at 1000 ° C. for 4 hours in an N 2 atmosphere. The diameter was enlarged. Next, an annealing treatment is performed in an H 2 atmosphere at 1050 ° C. for 5 minutes to aggregate the Si layer to reduce fine Si particles to SiO 2.
Obtained on two layers. At this time, the particle size of the Si particles is 0.2 to 1.
The density was 1 μm and the density was 3 × 10 7 pieces / cm 2 .
【0048】通常のスライド式ボート法による液相成長
装置により溶媒にSnを用い次の連続条件で結晶成長を
行って大粒径Si結晶の連続薄膜を得た。すなわち、水
素雰囲気中、成長開始温度980℃,過冷却度30℃,
降温速度0.2℃/分,成長時間15分の後、溶媒より
基板を離して温度を1040℃まで上げ、そのまま水素
雰囲気中で30分保持し、再び温度を980℃まで戻し
て今度は過冷却度3℃、降温速度0.3℃/分,成長時
間130分で成長を行った。このようにして得られたS
i結晶薄膜の粒径と膜厚はそれぞれ約50μm,約40
μmであった。Crystal growth was carried out under the following continuous conditions using Sn as a solvent by an ordinary liquid phase growth apparatus based on a sliding boat method to obtain a continuous thin film of a large grain Si crystal. That is, in a hydrogen atmosphere, a growth start temperature of 980 ° C., a degree of supercooling of 30 ° C.,
After a cooling rate of 0.2 ° C./minute and a growth time of 15 minutes, the substrate was separated from the solvent, the temperature was increased to 1040 ° C., the temperature was maintained for 30 minutes in a hydrogen atmosphere, and the temperature was returned to 980 ° C. The growth was performed at a cooling degree of 3 ° C., a temperature decreasing rate of 0.3 ° C./min, and a growth time of 130 minutes. S obtained in this way
The grain size and thickness of the i-crystal thin film are about 50 μm and about 40, respectively.
μm.
【0049】また成長後のSi結晶の方位については不
純物を導入しなかった場合には優先性は見られなかった
が、イオン打ち込みでBを導入した後N2雰囲気中でア
ニールした場合には(111)面が基板表面に垂直な方
向に向いた結晶が多く、成長した全Si結晶中に含まれ
るその割合は約45%であった。次に、Si結晶層の表
面にPOCl3を拡散源として900℃の温度でPの熱
拡散を行ってn+層を形成し、0.5μm程度の接合深
さを得た。形成されたn+層表面のデッド層をエッチン
グにより除去し、約0.2μmの適度な表面濃度をもっ
た接合深さを得た。さらにSi結晶層の表面をドライ酸
化により薄く酸化し(〜0.01μm)、フォトリソグ
ラフィ法を用いて微細なグリッド形状に酸化膜をエッチ
ングしその上にメタルマスクにより集電電極(Ti/P
d/Ag(0.04μm/0.02μm/1μm))を
蒸着した。さらに最後にその上に透明導電膜ITO
(0.082μm)を形成して太陽電池の作製を完了し
た。The orientation of the Si crystal after growth had no priority when impurities were not introduced, but when B was introduced by ion implantation and annealing was performed in an N 2 atmosphere, Many of the crystals had the (111) plane oriented in a direction perpendicular to the surface of the substrate, and the ratio contained in all grown Si crystals was about 45%. Next, P was thermally diffused on the surface of the Si crystal layer using POCl 3 as a diffusion source at a temperature of 900 ° C. to form an n + layer, and a junction depth of about 0.5 μm was obtained. The dead layer on the surface of the formed n + layer was removed by etching to obtain a junction depth having an appropriate surface concentration of about 0.2 μm. Furthermore, the surface of the Si crystal layer is thinly oxidized by dry oxidation (up to 0.01 μm), the oxide film is etched into a fine grid shape using a photolithography method, and a current collecting electrode (Ti / P
d / Ag (0.04 μm / 0.02 μm / 1 μm) was deposited. Finally, on top of that, a transparent conductive film ITO
(0.082 μm) to complete the fabrication of the solar cell.
【0050】このようにして作製した薄膜結晶太陽電池
のAM1.5光照射下でのI−V特性を調べたところ、
セル面積0.36cm2 で開放電圧0.57V、短絡光
電流28mA/cm2 、曲線因子0.72となり、変換
効率11.5%を得た。以上述べたように、本発明によ
れば、Si層の凝集により得られる微小Si粒を種結晶
として液相法により大粒径Si層を金属基板上に形成で
き、これを用いて量産性のある安価な太陽電池が製造さ
れることが示された。When the IV characteristics of the thin film crystal solar cell fabricated in this manner were examined under AM1.5 light irradiation,
With a cell area of 0.36 cm 2, the open voltage was 0.57 V, the short-circuit photocurrent was 28 mA / cm 2, the fill factor was 0.72, and a conversion efficiency of 11.5% was obtained. As described above, according to the present invention, a large-diameter Si layer can be formed on a metal substrate by a liquid phase method using fine Si grains obtained by agglomeration of a Si layer as a seed crystal, and mass productivity can be improved by using this. Certain inexpensive solar cells have been shown to be manufactured.
【0051】[0051]
【発明の効果】以上述べてきたように、本発明によれ
ば、特性の良好な薄膜結晶太陽電池を金属基体上に形成
することが可能である。これにより、量産性のある安価
で良質の薄型太陽電池を市場に提供することができる。As described above, according to the present invention, it is possible to form a thin-film crystalline solar cell having good characteristics on a metal substrate. As a result, mass-produced inexpensive and good-quality thin solar cells can be provided to the market.
【図1】本発明に係る薄膜多結晶Si太陽電池の製造方
法の実施例による薄膜太陽電池の製造工程を示す工程図
である。FIG. 1 is a process chart showing a manufacturing process of a thin-film solar cell according to an embodiment of a method of manufacturing a thin-film polycrystalline Si solar cell according to the present invention.
【図2】本発明において、凝集してできた微小Si粒を
用いてSi結晶を成長させる方法について説明した工程
図である。FIG. 2 is a process diagram illustrating a method of growing a Si crystal using fine Si particles formed by aggregation in the present invention.
【図3】本発明においてSi結晶を成長させる途中で固
相反応により結晶の底面と基板の表面とを接触させる様
子を示した図である。FIG. 3 is a diagram showing a state where the bottom surface of the crystal and the surface of the substrate are brought into contact by a solid-phase reaction during the growth of the Si crystal in the present invention.
【図4】本発明の方法により作製したヘテロ接合型太陽
電池の製造工程を示す工程図である。FIG. 4 is a process chart showing a manufacturing process of a heterojunction solar cell manufactured by the method of the present invention.
101,201,301,401 金属基板 102,202,302,402 絶縁層 103,203,403 Si層 104,204,404 微小Si粒 105,205,303,405 Si結晶(成長
層) 107 p+層またはn+層 407 p型アモルファスシリコンカーバイト 106,406 透明導電層 108,408 集電電極101, 201, 301, 401 Metal substrate 102, 202, 302, 402 Insulating layer 103, 203, 403 Si layer 104, 204, 404 Fine Si grain 105, 205, 303, 405 Si crystal (growth layer) 107 p + layer Or n + layer 407 p-type amorphous silicon carbide 106,406 transparent conductive layer 108,408 current collecting electrode
Claims (6)
って、 金属基体上に絶縁層を堆積する工程と、 該絶縁層の表面にSi層を堆積する工程と、 該Si層に不純物を導入して不活性ガス雰囲気中で加熱
することにより前記Si層中の結晶粒径を拡大させる工
程と、 活性ガス雰囲気中で加熱することにより前記Si層を凝
集させてSi結晶粒を前記絶縁層上に形成する工程と、 液相法により高過飽和度で前記Si結晶粒を種結晶とし
て、島状の単結晶Siを成長させる工程と、 活性ガス雰囲気中で加熱することにより前記Si結晶粒
と前記絶縁層との間で固相反応を促進させて前記金属基
体の表面とSi結晶粒の底面とを接触させる工程と、 液相法により前記Si結晶粒をさらに結晶成長させて前
記絶縁層表面をSi層で覆う工程とを含むことを特徴と
する薄膜多結晶Si太陽電池の製造方法。1. A method for manufacturing a thin-film polycrystalline Si solar cell, comprising: a step of depositing an insulating layer on a metal substrate; a step of depositing a Si layer on a surface of the insulating layer; Introducing and heating in an inert gas atmosphere to increase the crystal grain size in the Si layer; and heating in an active gas atmosphere to agglomerate the Si layer to reduce the Si crystal grains to the insulating layer. Forming an Si single crystal in the form of an island using the Si crystal grain as a seed crystal with a high degree of supersaturation by a liquid phase method; and heating the Si crystal grain in an active gas atmosphere. A step of contacting the surface of the metal substrate and the bottom surface of the Si crystal grains by promoting a solid phase reaction with the insulating layer; and further growing the Si crystal grains by a liquid phase method to form a surface of the insulating layer. Covering with a Si layer. Thin film polycrystalline Si solar method for producing a battery, characterized in that.
徴とする請求項1に記載の薄膜多結晶Si太陽電池の製
造方法。2. The method according to claim 1, wherein the insulating layer is made of SiO 2 .
1つであることを特徴とする請求項1に記載の薄膜多結
晶Si太陽電池の製造方法。3. The method according to claim 1, wherein the impurity is any one of P, As, and B.
の何れか1つであることを特徴とする請求項1に記載の
薄膜多結晶Si太陽電池の製造方法。4. The method according to claim 1, wherein the inert gas is any one of N 2 , He, and Ar.
する請求項1に記載の薄膜多結晶Si太陽電池の製造方
法。5. The method according to claim 1, wherein the active gas is H 2 .
れぞれSn,Siであることを特徴とする請求項1に記
載の薄膜多結晶Si太陽電池の製造方法。6. The method according to claim 1, wherein the solvent and the solute used in the liquid phase method are Sn and Si, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4347468A JP3069208B2 (en) | 1992-12-28 | 1992-12-28 | Method for manufacturing thin-film polycrystalline Si solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4347468A JP3069208B2 (en) | 1992-12-28 | 1992-12-28 | Method for manufacturing thin-film polycrystalline Si solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06204538A JPH06204538A (en) | 1994-07-22 |
JP3069208B2 true JP3069208B2 (en) | 2000-07-24 |
Family
ID=18390431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4347468A Expired - Fee Related JP3069208B2 (en) | 1992-12-28 | 1992-12-28 | Method for manufacturing thin-film polycrystalline Si solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3069208B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101798973B1 (en) * | 2016-02-25 | 2017-11-17 | (주)생토 | Method for manufacturing clay coffin using a loess board and this clay coffin |
-
1992
- 1992-12-28 JP JP4347468A patent/JP3069208B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101798973B1 (en) * | 2016-02-25 | 2017-11-17 | (주)생토 | Method for manufacturing clay coffin using a loess board and this clay coffin |
Also Published As
Publication number | Publication date |
---|---|
JPH06204538A (en) | 1994-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6387780B1 (en) | Fabrication process of solar cell | |
KR100224553B1 (en) | Solar cell and its manufacture | |
JP2721271B2 (en) | Solar cell manufacturing method | |
JP3478618B2 (en) | Photoelectric conversion element and method for manufacturing the same | |
JPH0458193B2 (en) | ||
JPH04245683A (en) | Manufacture of solar cell | |
JP2962918B2 (en) | Method of forming silicon thin film and method of manufacturing solar cell | |
JP2943126B2 (en) | Solar cell and method of manufacturing the same | |
JP3069208B2 (en) | Method for manufacturing thin-film polycrystalline Si solar cell | |
JP2624577B2 (en) | Solar cell and method of manufacturing the same | |
JP3067459B2 (en) | Method for manufacturing thin-film polycrystalline Si solar cell | |
JP2002261305A (en) | Thin-film polycrystalline silicon solar cell and manufacturing method therefor | |
JP3102772B2 (en) | Method for producing silicon-based semiconductor thin film | |
JPH05218464A (en) | Semiconductor substrate and solar cell and manufacture thereof | |
JP3067821B2 (en) | Solar cell and method of manufacturing the same | |
JP3245100B2 (en) | Method for manufacturing semiconductor element and method for manufacturing solar cell | |
JP2802180B2 (en) | Solar cell manufacturing method | |
JP2833924B2 (en) | Crystal solar cell and method of manufacturing the same | |
JPH07312439A (en) | Solar cell and its manufacture | |
JPH05235386A (en) | Solar cell and its manufacture | |
JP3229749B2 (en) | Method for manufacturing polycrystalline semiconductor thin film and photovoltaic device | |
JPH11266027A (en) | Silicon thin-film photoelectric conversion device | |
JPH1154775A (en) | Manufacture of thin silicon film solar cell | |
JPH0525186B2 (en) | ||
JPH04261069A (en) | Manufacture of solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |