JP3067459B2 - Method for manufacturing thin-film polycrystalline Si solar cell - Google Patents

Method for manufacturing thin-film polycrystalline Si solar cell

Info

Publication number
JP3067459B2
JP3067459B2 JP5098144A JP9814493A JP3067459B2 JP 3067459 B2 JP3067459 B2 JP 3067459B2 JP 5098144 A JP5098144 A JP 5098144A JP 9814493 A JP9814493 A JP 9814493A JP 3067459 B2 JP3067459 B2 JP 3067459B2
Authority
JP
Japan
Prior art keywords
layer
crystal
solar cell
growth
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5098144A
Other languages
Japanese (ja)
Other versions
JPH06310745A (en
Inventor
彰志 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5098144A priority Critical patent/JP3067459B2/en
Publication of JPH06310745A publication Critical patent/JPH06310745A/en
Application granted granted Critical
Publication of JP3067459B2 publication Critical patent/JP3067459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池の製造方法に
係わり、特にエネルギー変換効率が良好な薄膜多結晶S
i太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solar cell, and more particularly to a thin film polycrystalline S having a good energy conversion efficiency.
i. A method for manufacturing a solar cell.

【0002】[0002]

【従来の技術】各種機器において、駆動エネルギー源と
して太陽電池が利用されている。
2. Description of the Related Art In various devices, a solar cell is used as a driving energy source.

【0003】太陽電池は、機能部分にpn接合を用いて
おり、該pn接合を構成する半導体としては一般にSi
が用いられている。光エネルギーを電力に変換する効率
の点からは、単結晶Siを用いるのが好ましいが、大面
積化及び低コスト化の点からはアモルファス(非晶質)
Siが有利とされている。近年においては、アモルファ
スSiなみの低コストと単結晶Siなみの高エネルギー
変換効率とを得る目的で多結晶Siを用いる検討がなさ
れている。ところが、従来提案されている方法では塊状
の多結晶をスライスして板状体とし、これを用いている
ために厚さを0.3mm以下にすることは困難であり、
従って光量を十分に吸収するのに必要な厚さ以上の厚さ
となり、この点で材料の有効利用が十分ではなかった。
即ち、コストを下げるためには十分な薄型化が必要であ
る。
[0003] A solar cell uses a pn junction for a functional part, and a semiconductor composing the pn junction is generally Si.
Is used. It is preferable to use single crystal Si from the viewpoint of the efficiency of converting light energy into electric power, but from the viewpoint of increasing the area and reducing the cost, use amorphous.
Si is considered advantageous. In recent years, studies have been made to use polycrystalline Si for the purpose of obtaining low cost comparable to amorphous Si and high energy conversion efficiency comparable to single crystal Si. However, in the conventionally proposed method, a lump-shaped polycrystal is sliced into a plate-like body, and it is difficult to reduce the thickness to 0.3 mm or less because of using this.
Therefore, the thickness is greater than the thickness required to sufficiently absorb the light quantity, and in this regard, the effective use of the material is not sufficient.
That is, it is necessary to reduce the thickness sufficiently in order to reduce the cost.

【0004】そこで、化学的気相成長法(CVD)等の
薄膜形成技術を用いて多結晶Siの薄膜を形成する試み
がなされているが、結晶粒径がせいぜい百分の数ミクロ
ン程度にしかならず、塊状多結晶Siスライス法の場合
に比ベてもエネルギー変換効率が低い。多結晶Si薄膜
にレーザ光を照射し、溶融再結晶化させて結晶粒径を大
きくするという試みもなされているが、低コスト化が十
分でなく、また安定した製造も困難である。
Attempts have been made to form a thin film of polycrystalline Si using a thin film forming technique such as chemical vapor deposition (CVD). However, the crystal grain size is only several hundredths of a micron at most. Also, the energy conversion efficiency is lower than that of the bulk polycrystalline Si slice method. Attempts have been made to increase the crystal grain size by irradiating a polycrystalline Si thin film with a laser beam and melting and recrystallizing the film, but cost reduction is not sufficient and stable production is difficult.

【0005】このような事情はSiのみならず、化合物
半導体においても共通な問題となっている。
[0005] Such a situation is a common problem not only in Si but also in compound semiconductors.

【0006】そこで、液相法を用いて低コスト基板上に
太陽光を吸収するのに必要十分な厚さの結晶Si膜を形
成する方法が提案されている(出口、浜本、板垣、石
原、森川、佐々木、佐藤、浪崎;平成2年秋季第51回
応用物理学会学術講演会講演予稿集29a−G−2p6
95)。
Therefore, there has been proposed a method of forming a crystalline Si film having a thickness sufficient to absorb sunlight on a low-cost substrate by using a liquid phase method (exit, Hamamoto, Itagaki, Ishihara, Morikawa, Sasaki, Sato, Namisaki; Proceedings of the 51st Autumn Meeting of the Japan Society of Applied Physics 29a-G-2p6
95).

【0007】[0007]

【発明が解決しようとする課題】上述の方法において
は、低コスト基板に含まれる不純物が成長するSi結晶
中に取り込まれるのを防ぐために基板表面にSiO2
が設けられる。このときSnを溶媒とする液相法ではS
nの濡れ性が悪いため、SiO2上には直接Siを成長
できなくなる。このため成長の核あるいは種となるSi
層がSiO2上に必要となるが、Si層が薄い場合には
凝集を起こして均一な膜が得られず、またSi層が厚い
場合には独立した結晶粒が成長して凹凸が激しくなり表
面性が悪くなる。これは、液相法は準熱平衡下での成長
であるので結晶の面方位による成長速度の異方性の影響
が大きく、Si層の結晶粒径が小さい程顕著になるため
である。そのため上述の方法ではSi層をランプ加熱し
て溶融再結晶化して粒径拡大を行っており、その結果基
板選択に制約が生じるという問題があった。
In the above-mentioned method, an SiO 2 film is provided on the surface of a low-cost substrate in order to prevent impurities contained in the substrate from being taken into the growing Si crystal. At this time, in the liquid phase method using Sn as a solvent, S
Since n has poor wettability, Si cannot be grown directly on SiO 2 . For this reason, Si, which is a growth
Although a layer is required on SiO 2 , if the Si layer is thin, agglomeration occurs and a uniform film cannot be obtained, and if the Si layer is thick, independent crystal grains grow and irregularities become severe. The surface properties deteriorate. This is because the liquid phase method grows under quasi-thermal equilibrium, and the anisotropy of the growth rate depends on the crystal plane orientation, which becomes more pronounced as the crystal grain size of the Si layer becomes smaller. Therefore, in the above-described method, the Si layer is heated by a lamp and melted and recrystallized to increase the particle size. As a result, there is a problem that the selection of the substrate is restricted.

【0008】本発明は、上記従来技術の持つ課題を解決
し、粒径が大きくかつ良質な多結晶Siの太陽電池の製
造方法を提供するものである。
The present invention solves the above-mentioned problems of the prior art and provides a method of manufacturing a polycrystalline Si solar cell having a large grain size and high quality.

【0009】本発明の目的は、低コスト基板である金属
基板上に大粒径の多結晶半導体層を成長させることによ
り安価な太陽電池を提供することにある。
An object of the present invention is to provide an inexpensive solar cell by growing a large grain polycrystalline semiconductor layer on a metal substrate which is a low cost substrate.

【0010】また、本発明の他の目的は、SiO2層上
に形成した微小Si粒を種結晶としてその上に大粒径S
i結晶層を形成することにより、基板からの不純物の混
入をなくすことで高品質な太陽電池を提供することにあ
る。
[0010] Another object of the present invention is to provide a method in which fine Si grains formed on a SiO 2 layer are used as seed crystals and a large grain size S
It is an object of the present invention to provide a high-quality solar cell by forming an i-crystal layer to eliminate impurities from a substrate.

【0011】[0011]

【課題を解決するための手段】本発明は、上述の従来技
術における問題を解決し、上記の目的を達成すべく本発
明者による鋭意研究の結果完成に至ったものであり、特
性の良好な薄型多結晶太陽電池の製造方法に係わるもの
である。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and has been completed as a result of intensive studies by the present inventor to achieve the above object. The present invention relates to a method for manufacturing a thin polycrystalline solar cell.

【0012】即ち、本発明の太陽電池の製造方法は、多
結晶Si太陽電池の製造方法において、1)金属基体上
に絶縁層を堆積する工程と、2)該絶縁層の表面に非晶
質Si層を堆積する工程と、3)該非晶質Si層を不活
性ガス雰囲気中で加熱し、固相成長させて結晶Si層に
する工程と、4)活性ガス雰囲気中で加熱し、前記結晶
Si層を凝集させてSi結晶粒を前記絶縁層上に形成す
る工程と、5)液相法により前記Si結晶粒を種結晶と
して結晶成長を行う工程と、6)活性ガス雰囲気中で加
熱し、前記Si結晶粒と前記絶縁層の間で固相反応を促
進させて前記金属基体の表面とSi結晶粒の底面とを接
触させる工程と、7)液相法により前記Si結晶粒をさ
らに結晶成長させて前記絶縁層表面をSi層で覆う工程
と、を含むことを特微とする薄膜多結晶Si太陽電池の
製造方法である。
That is, in the method for manufacturing a solar cell according to the present invention, in the method for manufacturing a polycrystalline Si solar cell, 1) a step of depositing an insulating layer on a metal substrate, and 2) an amorphous layer on the surface of the insulating layer. Depositing a Si layer, 3) heating the amorphous Si layer in an inert gas atmosphere and performing solid phase growth to form a crystalline Si layer, 4) heating in an active gas atmosphere, Aggregating the Si layer to form Si crystal grains on the insulating layer; 5) performing crystal growth using the Si crystal grains as a seed crystal by a liquid phase method; and 6) heating in an active gas atmosphere. Promoting a solid phase reaction between the Si crystal grains and the insulating layer to bring the surface of the metal substrate into contact with the bottom surface of the Si crystal grains; and 7) further crystallizing the Si crystal grains by a liquid phase method. Growing and covering the insulating layer surface with a Si layer. It is a manufacturing method of a thin film polycrystalline Si solar cell to fine.

【0013】[0013]

【作用及び実施態様例】本発明の主要な技術は、例えば
図1に示されるように、(a)、(b)金属基板上に堆
積されたSiO2の絶緑層の上にCVD法等により非晶
質Si層を形成し、(c)窒素等の不活性雰囲気中でア
ニールして固相成長させて非晶質Si層を結晶Si層に
変化させ、さらに水素雰囲気中でアニールすることで結
晶Si層を凝集させて微小なSi粒を基板上に形成し、
(d)このSi粒を種結晶として液相成長法により大粒
径の多結晶Si薄膜層を形成することである。
Principle techniques [action and example embodiment of the present invention, as shown for example in FIG. 1, (a), CVD method or the like on the insulation green layer of SiO 2 deposited in (b) a metal substrate (C) annealing in an inert atmosphere such as nitrogen to cause solid phase growth to change the amorphous Si layer into a crystalline Si layer, followed by annealing in a hydrogen atmosphere Aggregate the crystalline Si layer with to form fine Si grains on the substrate,
(D) A polycrystalline Si thin film layer having a large grain size is formed by liquid phase growth using the Si grains as seed crystals.

【0014】(e)液相成長の際、ある程度Si結晶粒
を成長させたところで水素雰囲気中でアニールしてSi
結晶とSiO2層との間で固相反応を起こさせて金属基
板の表面とSi結晶粒の底面とを接触させる。これによ
りSi結晶と基板との導通が図られる。(f)そしてこ
の後さらにSi結晶粒の成長を行い、最終的に連続膜を
得ることができる。
(E) At the time of liquid phase growth, annealing is carried out in a hydrogen atmosphere when Si crystal grains have been grown to some extent.
A solid phase reaction is caused between the crystal and the SiO 2 layer to bring the surface of the metal substrate into contact with the bottom surface of the Si crystal grain. Thereby, conduction between the Si crystal and the substrate is achieved. (F) Then, the Si crystal grains are further grown, and finally a continuous film can be obtained.

【0015】本発明者は、幾多の実験を重ねることによ
り、SiO2膜上に堆積したSi層を凝集させることで
得られる微小のSi粒を種結晶として液相成長法により
Si結晶が成長できることを見い出した。
The present inventor has conducted a number of experiments to find that a Si crystal can be grown by a liquid phase growth method using fine Si grains obtained by aggregating a Si layer deposited on an SiO 2 film as a seed crystal. I found

【0016】また、本発明者は、さらに実験を重ねるこ
とにより、凝集させるSi層に予め不純物を導入して、
不活性雰囲気中でアニールして粒径拡大しておくこと
で、凝集したSi粒を種結晶として成長したSi結晶の
方位が制御できることを見い出した。
Further, the present inventor has further conducted experiments to introduce impurities into the Si layer to be aggregated in advance,
It has been found that by annealing in an inert atmosphere and expanding the particle size, the orientation of the Si crystal grown using the agglomerated Si particles as a seed crystal can be controlled.

【0017】また、本発明者は、別の実験により、非晶
質Si層を不活性雰囲気中でアニールして固相成長させ
た結晶Si層を凝集させて得られる微小のSi粒を用い
ることで、成長したSi結晶の方位制御性が上述の不純
物導入の場合に比ベて大幅に改善されることを見い出し
た。
According to another experiment, the present inventor used fine Si grains obtained by annealing an amorphous Si layer in an inert atmosphere and aggregating a crystalline Si layer grown in a solid phase. It has been found that the orientation controllability of the grown Si crystal is greatly improved as compared with the case where the impurity is introduced.

【0018】また、本発明者は、さらに実験を行い、凝
集させたSi粒を液相成長によりある程度成長させたと
ころで一旦成長を中断し、水素雰囲気中でアニールして
Si結晶とSiO2層との間で固相反応を起こさせて、
金属基板の表面とSi結晶粒の底面とを接触させること
でSi結晶と基板との導通が図られることを、さらにそ
の後成長を続けて大粒径多結晶Siの連続薄膜が得られ
ることを見い出し、本発明の完成に至ったものである。
Further, the present inventor further conducted an experiment. When the agglomerated Si grains were grown to some extent by liquid phase growth, the growth was suspended once, and the Si grains and the SiO 2 layer were annealed by annealing in a hydrogen atmosphere. Between the solid phase reaction,
It has been found that by bringing the surface of the metal substrate into contact with the bottom surface of the Si crystal grains, conduction between the Si crystal and the substrate can be achieved, and further growth is continued to obtain a continuous thin film of large grain polycrystalline Si. Thus, the present invention has been completed.

【0019】以下に本発明者の行った実験について詳述
する。
Hereinafter, the experiments performed by the present inventors will be described in detail.

【0020】(実験1)Si層の凝集 図2に示すように、0.8mm厚のMo基板201の表
面に絶縁層202としてSiO2層を通常の常圧CVD
法で0.1μm形成し(図2(a))、その上に通常の
LPCVD装置によりSiH4を630℃で熱分解して
Si層203を0.1μm堆積させた(図2(b))。
このときのSi層はX線回折により調ベたところ、結晶
粒径が約8nmの多結晶Siであった。このような金属
基板上のSi層に対し、(1)そのままのもの、(2)
イオン打ち込みによりPを加速電圧50kV,ドーズ量
8×1015/cm2で打ち込んだもの、及び(3)同様
にPを打ち込んだ後にN2雰囲気中1000℃,3時間
でアニールを行ったものの3種類を用意した。結晶粒径
の変化について透過型電子顕微鏡により調ベたところ、
イオン打ち込み直後のものは非晶質化していたが、イオ
ン打ち込み後アニールしたものは結晶粒径は最大で約3
μmにまで拡大していた。
(Experiment 1) Aggregation of Si Layer As shown in FIG. 2, an SiO 2 layer as an insulating layer 202 is formed on a surface of a 0.8 mm thick Mo substrate 201 by ordinary normal pressure CVD.
The SiH 4 was thermally decomposed at 630 ° C. by an ordinary LPCVD apparatus to deposit a 0.1 μm thick Si layer 203 (FIG. 2B). .
When the Si layer at this time was examined by X-ray diffraction, it was found to be polycrystalline Si having a crystal grain size of about 8 nm. For such a Si layer on a metal substrate, (1) as it is, (2)
P obtained by implanting P at an acceleration voltage of 50 kV and a dose of 8 × 10 15 / cm 2 by ion implantation, and (3) similarly obtained by implanting P and then annealing at 1000 ° C. for 3 hours in an N 2 atmosphere. Available in different types. When the change in crystal grain size was measured by a transmission electron microscope,
The one immediately after ion implantation was amorphized, but the one annealed after ion implantation had a maximum crystal grain size of about 3
It expanded to μm.

【0021】さらに、上述においてイオン打ち込みの代
わりにリンガラスを堆積させて不純物拡散を行い、リン
ガラス除去後にN2雰囲気中1000℃、3時間のアニ
ール処理することでも同様に結晶粒径を拡大することが
できた。
Further, in the above, the impurity diffusion is performed by depositing phosphorus glass instead of ion implantation, and annealing is performed at 1000 ° C. for 3 hours in an N 2 atmosphere after removing the phosphorus glass to similarly increase the crystal grain size. I was able to.

【0022】次に、この3種類の基板を水素雰囲気中1
050℃,5分間アニールした後、光学顕微鏡及び走査
型電子顕微鏡で表面の様子を観察したところ、いずれの
基板に対してもSi層は凝集を起こしており、0.3〜
1.5μmの微小なSi粒204がSiO2層上に形成
されていた(図2(c))。このときのSi粒の密度は
大体1〜3×107個/cm2であった。
Next, these three types of substrates were placed in a hydrogen atmosphere for 1 hour.
After annealing at 050 ° C. for 5 minutes, the state of the surface was observed with an optical microscope and a scanning electron microscope.
Small 1.5 μm Si grains 204 were formed on the SiO 2 layer (FIG. 2C). At this time, the density of the Si grains was approximately 1 to 3 × 10 7 particles / cm 2 .

【0023】(実験2)液相成長法によるSi結晶成長 実験1で得られた金属基板上の微小Si粒を種結晶とし
て用い、液相成長法によるSi結晶の成長を試みた。上
述の3種類の基板の内、イオン打ち込みをしていないも
の及びイオン打ち込みのみのものについては、Sn溶媒
に比抵抗2Ω・cmのn型Siを953℃で飽和させた
ものに浸漬して、成長開始温度950℃,過冷却度3
℃,降温速度0.5℃/分で徐冷した。また、イオン打
ち込みした後N2雰囲気中でアニールしたものは、同様
に成長開始温度940℃,過冷却度13℃,降温速度
0.5℃/分で徐冷して結晶成長を行った。成長時間は
それぞれ15分とした。
(Experiment 2) Si crystal growth by liquid phase growth method Using the small Si grains on the metal substrate obtained in Experiment 1 as a seed crystal, an attempt was made to grow a Si crystal by the liquid phase growth method. Of the above three types of substrates, those not ion-implanted and those only ion-implanted are immersed in a Sn solvent saturated with n-type Si having a specific resistance of 2Ω · cm at 953 ° C. Growth start temperature 950 ℃, degree of supercooling 3
The temperature was gradually cooled at a rate of 0.5 ° C./min. In the same manner, the material which had been annealed in an N 2 atmosphere after the ion implantation was gradually cooled at a growth start temperature of 940 ° C., a supercooling degree of 13 ° C., and a cooling rate of 0.5 ° C./min. The growth time was 15 minutes each.

【0024】成長終了後、表面の様子を光学顕微鏡及び
走査型電子顕微鏡で観察したところ、いずれの場合も結
晶成長しているのが確認され、数μmから数十μmの粒
径のSi結晶205が得られた(図2(d))。但し、
成長したSi結晶の密度は2×104〜4×105個/c
2となり、凝集して出来た微小なSi粒が全て結晶成
長するわけではないことが明かとなった。また、成長後
のSi結晶の形態に大きな差が見られ、イオン打ち込み
をしていないもの及びイオン打ち込みのみのものについ
ては結晶方位の優先性は見られなかったが、イオン打ち
込みした後N2雰囲気中でアニールしたものは、(11
1)面が基板表面に垂直な方向に向いた結晶が多く見ら
れ、基板表面のSi結晶による被覆率が最も高かった。
このとき、成長後の全結晶中で(111)面が基板表面
に垂直な方向に向いた結晶の割合は約50%であった。
After completion of the growth, the state of the surface was observed with an optical microscope and a scanning electron microscope. In each case, it was confirmed that the crystal had grown, and the Si crystal 205 having a particle size of several μm to several tens μm was obtained. Was obtained (FIG. 2D). However,
The density of the grown Si crystal is 2 × 10 4 to 4 × 10 5 / c
m 2 , and it became clear that not all of the fine Si particles formed by aggregation grow crystals. Further, a large difference was observed in the form of Si crystals after growth, for those only implantation and ion shall not the ion implantation is was observed preference of the crystal orientation, the ion implantation was then N 2 atmosphere Annealed in (11)
1) Many crystals whose planes were oriented in the direction perpendicular to the substrate surface were observed, and the coverage of the substrate surface with Si crystals was the highest.
At this time, the ratio of the crystal in which the (111) plane was oriented in a direction perpendicular to the substrate surface in all the crystals after growth was about 50%.

【0025】(実験3)SiO2層−Si結晶間の固相
反応 実験2で得られた(111)面が基板表面に垂直な方向
に向いたSi結晶が多いものに対して、水素雰囲気中で
1050℃,30分間アニールを施し、SiO 2層−S
i結晶間の固相反応を促進させた。全く同じプロセスを
経た別な基板について基板表面の断面を高解像度の走査
型電子顕微鏡で観察したところ、図3に示すように、S
i結晶の底面がSiO2層を貫通して金属基板の表面と
接触していた。これにより、Si結晶と金属基板間の導
通が図れることが分かった。
(Experiment 3) SiOTwoSolid phase between layer and Si crystal
Reaction (111) plane obtained in Experiment 2 is perpendicular to the substrate surface
In a hydrogen atmosphere
Anneal at 1050 ° C. for 30 minutes, TwoLayer-S
The solid-state reaction between i-crystals was promoted. Exactly the same process
High resolution scanning of the cross section of the substrate surface for another substrate that has passed
When observed with a scanning electron microscope, as shown in FIG.
The bottom of the i-crystal is SiOTwoThrough the layer and the surface of the metal substrate
I was in contact. This allows conduction between the Si crystal and the metal substrate.
It turned out that communication was possible.

【0026】(実験4)固相成長Si層の凝集と結晶成
長 実験1と同様にして固相成長させた結晶Si層の凝集と
液相法による結晶成長を行った。
(Experiment 4) Aggregation and Crystal Growth of Solid Phase-Grown Si Layer In the same manner as in Experiment 1, aggregation of the crystal Si layer grown by solid phase and crystal growth by the liquid phase method were performed.

【0027】実験1と同様に、0.8mm厚のMo基板
201の表面に絶縁層202としてSiO2層を通常の
常圧CVD法で0.1μm形成し、その上に通常のLP
CVD装置によりSiH4を550℃で熱分解して非晶
質Si層203を0.1μm堆積させた。次に、非晶質
Si層に対し、イオン打ち込みによりSiを加速電圧8
0kV,ドーズ量7.5×1014/cm2で打ち込ん
だ。この後、N2雰囲気中600℃,50時間でアニー
ルを行い、固相成長させて非晶質Si層を結晶化させ
た。結晶粒径の変化について透過型電子顕微鏡により調
ベたところ、イオン打ち込み直後のものは完全に非晶質
化していたが、アニールした後のものは樹枝状結晶が成
長しており、100%結晶化していた。結晶粒径は最大
で約5μmにまで拡大していた。また、このような樹脂
状結晶はほとんど(111)面が基板表面に垂直な方向
に向いていることが電子線の回折像から分かった。
As in Experiment 1, an SiO 2 layer was formed on the surface of a 0.8 mm thick Mo substrate 201 as an insulating layer 202 to a thickness of 0.1 μm by a normal atmospheric pressure CVD method.
SiH 4 was thermally decomposed at 550 ° C. by a CVD apparatus to deposit an amorphous Si layer 203 having a thickness of 0.1 μm. Next, Si is accelerated to the amorphous Si layer by ion implantation at an accelerating voltage of 8.
The implantation was performed at 0 kV and a dose of 7.5 × 10 14 / cm 2 . Thereafter, annealing was performed in an N 2 atmosphere at 600 ° C. for 50 hours, and the amorphous Si layer was crystallized by solid phase growth. When the change in crystal grain size was examined by a transmission electron microscope, the one immediately after ion implantation was completely amorphous, but the one after annealing showed dendritic crystal growth, and the 100% crystal Had been transformed. The crystal grain size was expanded up to about 5 μm. In addition, it was found from the diffraction image of the electron beam that such a resin-like crystal had almost the (111) plane oriented in a direction perpendicular to the substrate surface.

【0028】次に、この基板を水素雰囲気中1050
℃,5分間アニールした後、光学顕微鏡及び走査型電子
顕微鏡で表面の様子を観察したところ、基板上でSi層
は凝集を起こしており、0.4〜1.2μmの微小なS
i粒204がSiO2層上に形成されていた。このとき
のSi粒の密度は大体3〜4×107個/cm2であっ
た。
Next, the substrate is placed in a hydrogen atmosphere at 1050.
After annealing at 5 [deg.] C. for 5 minutes, the state of the surface was observed with an optical microscope and a scanning electron microscope. As a result, the Si layer was agglomerated on the substrate.
The i-grain 204 was formed on the SiO 2 layer. At this time, the density of the Si grains was approximately 3 to 4 × 10 7 / cm 2 .

【0029】得られた金属基板上の微小Si粒を種結晶
として液相成長法によるSi結晶の成長を行った。Sn
溶媒に比抵抗2Ω・cmのn型Siを953℃で飽和さ
せたものに浸漬して成長開始温度950℃,過冷却度3
℃,降温速度0.5℃/分で徐冷して結晶成長を行っ
た。成長時間は15分とした。
Using the obtained fine Si grains on the metal substrate as seed crystals, Si crystals were grown by a liquid phase growth method. Sn
Immerse in a solvent saturated with n-type Si having a specific resistance of 2 Ω · cm at 953 ° C., and start growing at a temperature of 950 ° C. and a degree of supercooling of 3
The crystal was grown by slowly cooling at a temperature of 0.5 ° C./min. The growth time was 15 minutes.

【0030】成長終了後、表面の様子を光学顕微鏡及び
走査型電子顕微鏡で観察したところ、いずれの場合も結
晶成長しているのが確認され、数μmから数十μmの粒
径のSi結晶205が得られた(図2(d))。成長し
たSi結晶の密度は1.4×105個/cm2であった。
成長後のSi結晶の形態は(111)面が基板表面に垂
直な方向に向いた結晶が多く見られ、成長後の全結晶中
で(111)面が基板表面に垂直な方向に向いた結晶の
割合は約81%であった。このように、非晶質Siの固
相成長膜を用いることで、実験1で述ベたPの打ち込み
によって粒径拡大させた場合に比ベて大幅に成長結晶の
方位制御性が向上することが明かになった。
After completion of the growth, the state of the surface was observed with an optical microscope and a scanning electron microscope. In each case, it was confirmed that crystals had grown, and a Si crystal 205 having a particle size of several μm to several tens μm was obtained. Was obtained (FIG. 2D). The density of the grown Si crystal was 1.4 × 10 5 / cm 2 .
As for the form of the Si crystal after growth, a crystal in which the (111) plane is oriented in a direction perpendicular to the substrate surface is often observed, and the crystal in which the (111) plane is oriented in a direction perpendicular to the substrate surface in all the grown crystals. Was about 81%. As described above, the use of the amorphous Si solid-phase growth film greatly improves the controllability of the orientation of the grown crystal as compared with the case where the grain size is increased by implanting P as described in Experiment 1. Became clear.

【0031】(実験5)連続膜の形成 実験4に引き続いて、さらに液相法により結晶成長を行
った。実験3と同様にして水素雰囲気中で1050℃,
30分間アニールしてSi結晶と基板間の導通を図った
後、成長開始温度950℃,過冷却度3℃,降温速度
0.5℃/分,成長時間を80分として成長を行った。
成長終了後、実験2と同様に基板表面を光学顕微鏡及び
走査型電子顕微鏡で観察したところ、Si結晶は隣接す
るもの同士が完全に接触しており、平均粒径が約50μ
mの大粒径Si結晶薄膜(連続膜)が得られていること
が確かめられた。このときの連続膜の高さは平均してS
iO 2層上から約40μmであった。また、表面の凹凸
の程度は上述のPを導入して粒径拡大させた場合が膜厚
に対して±60%であったのが、固相成長膜を用いた場
合には±30%にまで改善された。
(Experiment 5) Formation of Continuous Film Following Experiment 4, crystal growth was further performed by a liquid phase method.
Was. 1050 ° C. in a hydrogen atmosphere in the same manner as in Experiment 3.
Annealed for 30 minutes to achieve conduction between Si crystal and substrate
After that, the growth start temperature is 950 ° C, the degree of supercooling is 3 ° C, and the cooling rate is
The growth was performed at 0.5 ° C./min for a growth time of 80 minutes.
After the growth was completed, the substrate surface was examined with an optical microscope and the same as in Experiment 2.
When observed with a scanning electron microscope, the Si crystals
Are completely in contact with each other and have an average particle size of about 50μ.
m large-diameter Si crystal thin film (continuous film) must be obtained
Was confirmed. The height of the continuous film at this time is S
iO TwoIt was about 40 μm from above the layer. Also, surface irregularities
The thickness of the film is determined when the particle size is increased by introducing P as described above.
± 60% of the case where the solid-phase grown film was used.
In this case, it was improved to ± 30%.

【0032】(実験6)太陽電池の形成 実験5で得られたMo基板上の大粒径Si結晶薄膜の表
面にイオン打ち込みによりBを20keV,1×1015
/cm2の条件で打ち込み、800℃,30分でアニー
ルしてp+層を形成した。このようにして作製した大粒
径Si結晶薄膜/SiO2/Mo構造の太陽電池につい
て、AM1.5(100mW/cm2)光照射下でのI
−V特性について測定を行ったところ、セル面積0.1
6cm2で開放電圧0.54V,短絡電流27mA/c
2,曲線因子0.73となり、変換効率10.6%を
得た。
(Experiment 6) Formation of solar cell B was 20 keV and 1 × 10 15 by ion implantation on the surface of the large grain Si crystal thin film on the Mo substrate obtained in Experiment 5.
/ Cm 2 and annealed at 800 ° C. for 30 minutes to form ap + layer. The large-diameter Si crystal thin film / SiO 2 / Mo solar cell fabricated in this manner was subjected to AM 1.5 (100 mW / cm 2 ) light irradiation.
The measurement of the -V characteristic showed that the cell area was 0.1
Open voltage 0.54 V, short circuit current 27 mA / c at 6 cm 2
m 2 and the fill factor were 0.73, and a conversion efficiency of 10.6% was obtained.

【0033】このように、金属基板上に凝集により得ら
れる微小Si粒を用いて大粒径Si薄膜が形成可能であ
り、これにより良好な特性を有する太陽電池が形成でき
ることが示された。
As described above, it has been shown that a large-diameter Si thin film can be formed on a metal substrate by using fine Si particles obtained by aggregation, whereby a solar cell having good characteristics can be formed.

【0034】本発明の太陽電池に使用される金属基板材
料としては導電性が良好で、好ましくはSiとシリサイ
ド等の化合物を形成する任意の金属が用いられ、代表的
なものとしてW,Mo,Cr,Ni,Ti等が挙げられ
るが、もちろんそれ以外であってもかまわない。絶縁層
としてはSiと固相反応を起こす点からSiO2が用い
られ、その厚さについては特に規定はないが、0.05
〜0.5μmの範囲とするのが適当である。
As the metal substrate material used in the solar cell of the present invention, any metal which has good conductivity and preferably forms a compound such as silicide with Si is used. Examples thereof include Cr, Ni, and Ti, but of course other values are also possible. As the insulating layer, SiO 2 is used because it causes a solid-phase reaction with Si, and its thickness is not particularly specified.
It is appropriate to set it in the range of 0.5 μm.

【0035】また、非晶質Si層を堆積させる方法とし
てはLPCVD法、プラズマCVD法、蒸着法、スパッ
タ法等、何でもよい。非晶質Si層の厚さは、概ね0.
01〜0.5μmの範囲が適当である。このような非晶
質Si層に対して固相成長させて結晶化する際に成長速
度を増速させる目的で不純物を導入してもよく、導入す
る方法としては予め原料Siに混入させておくかあるい
はイオン打ち込み法により行われ、不純物としてはP,
As,Sn,B等が選ばれる。導入される不純物量とし
ては非晶質Si層の膜厚及び固相成長処理条件によって
適宜決められるが概ね5×1019cm-3以上である。
The method of depositing the amorphous Si layer may be any method such as LPCVD, plasma CVD, vapor deposition, sputtering and the like. The thickness of the amorphous Si layer is approximately 0.
A range of 01 to 0.5 μm is appropriate. Impurities may be introduced for the purpose of increasing the growth rate during crystallization of such an amorphous Si layer by solid-phase growth, and the method of introducing the impurities is to mix them in the raw material Si in advance. Or by ion implantation, and impurities such as P,
As, Sn, B, etc. are selected. The amount of impurities to be introduced is appropriately determined depending on the thickness of the amorphous Si layer and the conditions for the solid phase growth treatment, but is generally 5 × 10 19 cm −3 or more.

【0036】本発明の方法において固相成長後に行われ
る活性ガス中の結晶化Si層の凝集における温度として
は大体950〜1100℃の範囲とするのが好ましく、
活性ガスとしてはH2が好適に用いられる。
In the method of the present invention, the temperature for agglomeration of the crystallized Si layer in the active gas after the solid phase growth is preferably in the range of approximately 950 to 1100 ° C.
H 2 is preferably used as the active gas.

【0037】本発明の方法において使用される液相成長
法における成長温度の範囲については、溶媒の種類にも
よるが、Snを用いる場合には850℃以上1050℃
以下に制御されるのが望ましい。また、過冷却度につい
ては微小Si粒が溶媒中にメルトバックするのを抑える
目的で0〜数十℃程度にするのが好ましく、成長させた
Si結晶と下地SiO2層との固相反応後に引き続いて
成長を行う場合にも0〜数十℃程度が好ましい。降温速
度については0.1〜5℃/分の範囲に制御されるのが
好ましい。
The range of the growth temperature in the liquid phase growth method used in the method of the present invention depends on the type of the solvent.
It is desirable to control as follows. The degree of supercooling is preferably set to about 0 to several tens of degrees Celsius for the purpose of suppressing the melt back of the fine Si particles in the solvent, and after the solid-phase reaction between the grown Si crystal and the underlying SiO 2 layer. In the case where the growth is performed subsequently, the temperature is preferably about 0 to several tens of degrees Celsius. It is preferable that the temperature decreasing rate is controlled in the range of 0.1 to 5 ° C./min.

【0038】また、液相成長法により得られるSi結晶
薄膜の最終的な粒径及び膜厚については太陽電池の特性
上の要求とプロセスの制約から、それぞれ20〜500
μmが適当であり、好ましくはそれぞれ30〜500μ
mが望ましい。得られたSi結晶の表面にp+またはn+
層を設けて接合が形成されるが、その厚さとしては導入
される不純物の量にもよるが、0.01〜1μmの範囲
とするのが適当であり、好ましくは0.1〜0.5μm
とするのが望ましい。
The final grain size and film thickness of the Si crystal thin film obtained by the liquid phase growth method are 20 to 500, respectively, due to the requirements on the characteristics of the solar cell and the constraints of the process.
μm is appropriate, preferably 30 to 500 μm each.
m is desirable. P + or n + is added to the surface of the obtained Si crystal.
The junction is formed by providing a layer, and its thickness is suitably in the range of 0.01 to 1 μm, preferably 0.1 to 0. 5 μm
It is desirable that

【0039】[0039]

【実施例】以下、本発明の方法を実施して所望の太陽電
池を形成するところをより詳細に説明するが、本発明は
これらの実施例により何ら限定されるものではない。
Hereinafter, the formation of a desired solar cell by carrying out the method of the present invention will be described in more detail, but the present invention is not limited to these examples.

【0040】(実施例1)前述したように、実験1〜6
と同様にして金属基板上の大粒径Si結晶太陽電池を作
製した。図1(a)〜(g)にその作製プロセスを示
す。
Example 1 As described above, Experiments 1 to 6
A large grain Si crystal solar cell on a metal substrate was produced in the same manner as in Example 1. 1A to 1G show a manufacturing process thereof.

【0041】金属基板101には厚さ0.8mmのMo
板を用いた。この上に常圧CVD装置によりSiO2
102を0.08μm形成した(図1(a))後、通常
のLPCVD装置を用いてSi26を550℃で熱分解
して0.1μmの非晶質Si層103を堆積させた(図
1(b))。
The metal substrate 101 has a thickness of 0.8 mm of Mo.
A plate was used. After forming an SiO 2 layer 102 thereon by a normal pressure CVD apparatus at 0.08 μm (FIG. 1A), Si 2 H 6 was thermally decomposed at 550 ° C. using an ordinary LPCVD apparatus to form a 0.1 μm layer. An amorphous Si layer 103 was deposited (FIG. 1B).

【0042】次に、この非晶質Si層に対してN2雰囲
気中600℃,45時間の条件でアニール処理を行い、
固相成長を行った。このとき得られた結晶粒径は最大約
4.5μmであった。続いて、H2雰囲気中で1040
℃,8分間の条件でアニール処理を行い、Si層を凝集
させて微小なSi粒104をSiO2層上に得た。この
ときのSi粒の粒径は0.4〜1.2μm,また密度は
3.7×107個/cm2であった(図1(c))。
Next, the amorphous Si layer is annealed in an N 2 atmosphere at 600 ° C. for 45 hours.
Solid phase growth was performed. The crystal grain size obtained at this time was up to about 4.5 μm. Subsequently, 1040 in an H 2 atmosphere.
Annealing was performed at 8 ° C. for 8 minutes to aggregate the Si layer to obtain fine Si grains 104 on the SiO 2 layer. At this time, the particle size of the Si particles was 0.4 to 1.2 μm, and the density was 3.7 × 10 7 / cm 2 (FIG. 1C).

【0043】通常のスライド式ボート法による液相成長
装置により溶媒にSnを用い、次の連続条件で結晶成長
を行って、大粒径Si結晶の連続薄膜105を得た(図
1(d))。
Crystal growth was carried out under the following continuous conditions using Sn as a solvent by a liquid phase growth apparatus based on a conventional slide boat method, to obtain a continuous thin film 105 of large grain Si crystal (FIG. 1 (d)). ).

【0044】水素雰囲気中、成長開始温度950℃,過
冷却度0.5℃,降温速度0.5℃/分,成長時間10
分の後、溶媒より基板を離して温度を1050℃まで上
げ、そのまま水素雰囲気中で20分保持し、再び温度を
950℃まで戻して今度は過冷却度3℃,降温速度0.
5℃/分,成長時間80分で成長を行った。このように
して得られたSi結晶薄膜の粒径と膜厚はともに約50
μmであった(図1(e),(f))。
In a hydrogen atmosphere, a growth start temperature is 950 ° C., a degree of supercooling is 0.5 ° C., a temperature drop rate is 0.5 ° C./min, and a growth time is 10 minutes.
After a minute, the substrate is separated from the solvent, the temperature is raised to 1050 ° C., the temperature is maintained for 20 minutes in a hydrogen atmosphere, and the temperature is returned to 950 ° C. again, this time with a degree of supercooling of 3 ° C. and a cooling rate of 0.
The growth was performed at 5 ° C./min for a growth time of 80 minutes. The grain size and thickness of the Si crystal thin film thus obtained are both about 50.
μm (FIGS. 1 (e) and 1 (f)).

【0045】Si層の表面にイオン打ち込みによりBを
20keV,1×1015/cm2の条件で打ち込み、8
00℃,30minでアニールしてp+層107を形成
した。最後にEB(E1ectron Beam)蒸着
により集電電極(Ti/Pd/Ag(0.04μm/
0.02μm/1μm)108/ITO透明導電膜10
6をp+層上に形成した(図1(g))。
B was implanted on the surface of the Si layer by ion implantation under the conditions of 20 keV and 1 × 10 15 / cm 2.
Annealing was performed at 00 ° C. for 30 minutes to form ap + layer 107. Finally, a current-collecting electrode (Ti / Pd / Ag (0.04 μm /) was deposited by EB (E1 electron Beam) evaporation.
0.02 μm / 1 μm) 108 / ITO transparent conductive film 10
6 was formed on the p + layer (FIG. 1 (g)).

【0046】このようにして得られた大粒径Si結晶太
陽電池について、AM1.5(100mW/cm2)光
照射下でのI−V特性について測定したところ、セル面
積0.25cm2で開放電圧0.55V、短絡光電流2
9mA/cm2、曲線因子0.74となり、エネルギー
変換効率11.8%を得た。
[0046] This way, a large grain size Si crystal solar cell obtained, AM1.5 (100mW / cm 2) was measured for the I-V characteristic under light irradiation, open in cell area 0.25 cm 2 Voltage 0.55V, short-circuit photocurrent 2
9 mA / cm 2 and a fill factor of 0.74 were obtained, and an energy conversion efficiency of 11.8% was obtained.

【0047】このように、金属基板上に成長させた大粒
径Si結晶層を用いて良好な特性を示す太陽電池が作製
出来た。
As described above, a solar cell exhibiting good characteristics was manufactured using the large grain Si crystal layer grown on the metal substrate.

【0048】(実施例2)実施例1と同様にしてp+μ
c−Si/多結晶Siヘテロ接合型太陽電池を作製し
た。金属基板にはCrを用い、その上に常圧CVD法で
SiO2層を0.12μm堆積し、さらにその上にLP
CVD法により550℃でSi26の分解により非晶質
Si層を0.1μm堆積した。このとき予めSi26
ス中にPH3を微量混入させ(PH3/Si26=2.0
×10-3)、非晶質Si層中にPを導入した。Ar雰囲
気中600℃,40時間アニールして固相成長を行い、
非晶質Si層を結晶化させた。
(Example 2) p + μ
A c-Si / polycrystalline Si heterojunction solar cell was produced. The metal substrate with Cr, an SiO 2 layer was 0.12μm deposited by atmospheric pressure CVD method thereon, further LP thereon
An amorphous Si layer was deposited to a thickness of 0.1 μm by decomposition of Si 2 H 6 at 550 ° C. by a CVD method. At this time, a slight amount of PH 3 is previously mixed into Si 2 H 6 gas (PH 3 / Si 2 H 6 = 2.0
× 10 -3 ), P was introduced into the amorphous Si layer. Anneal at 600 ° C for 40 hours in Ar atmosphere to perform solid phase growth,
The amorphous Si layer was crystallized.

【0049】続いて、H2雰囲気中で1030℃,20
分間の条件でアニール処理を行い、Si層を凝集させて
微小なSi粒をSiO2層上に得た。このときのSi粒
の粒径は0.3〜1.2μm、また密度は2.5×10
7個/cm2であった。
Subsequently, in an H 2 atmosphere at 1030 ° C., 20
The annealing treatment was performed under the conditions of minutes, and the Si layer was aggregated to obtain fine Si particles on the SiO 2 layer. At this time, the grain size of the Si grains is 0.3 to 1.2 μm, and the density is 2.5 × 10
It was 7 pieces / cm 2 .

【0050】通常のスライド式ボート法による液相成長
装置により溶媒にSnを用い次の連続条件で結晶成長を
行って大粒径Si結晶の連続薄膜を得た。即ち、水素雰
囲気中、成長開始温度970℃,過冷却度2℃,降温速
度0.3℃/分,成長時間15分の後、溶媒より基板を
離して温度を1030℃まで上げ、そのまま水素雰囲気
中で30分保持し、再び温度を970℃まで戻して今度
は過冷却度3℃,降温速度0.5℃/分,成長時間70
分で成長を行った。このようにして得られたSi結晶薄
膜の粒径と膜厚はそれぞれ約60μm,約45μmであ
った。
Crystal growth was carried out under the following continuous conditions using Sn as a solvent by a liquid phase growth apparatus based on an ordinary slide boat method to obtain a continuous thin film of a large grain Si crystal. That is, in a hydrogen atmosphere, after the growth start temperature is 970 ° C., the degree of supercooling is 2 ° C., the cooling rate is 0.3 ° C./min, and the growth time is 15 minutes, the substrate is separated from the solvent and the temperature is raised to 1030 ° C. The temperature was returned to 970 ° C. again, and then the supercooling degree was 3 ° C., the cooling rate was 0.5 ° C./min, and the growth time was 70 minutes.
Grow in minutes. The grain size and thickness of the Si crystal thin film thus obtained were about 60 μm and about 45 μm, respectively.

【0051】図4(a)〜(g)に作製したへテロ型太
陽電池のプロセスを示す。実施例1で示した図1の場合
とほとんど同じであるが、(g)においてp+層107
の代わりにp型μc−Si407がSi結晶層上に形成
される。p型μc−Si層407は通常のプラズマCV
D装置により、表1に示す条件でSi結晶表面上に0.
02μm堆積させた。この時のμc−Si膜の暗導電率
は〜10S・cm-1であった。
FIGS. 4 (a) to 4 (g) show a process of the fabricated hetero solar cell. Is almost same as that of FIG. 1 shown in Example 1, p + layer 107 in (g)
Instead, a p-type μc-Si 407 is formed on the Si crystal layer. The p-type μc-Si layer 407 is a normal plasma CV
D apparatus was used on the surface of the Si crystal under the conditions shown in Table 1 for 0.1.
Deposited 02 μm. At this time, the dark conductivity of the μc-Si film was S10 S · cm −1 .

【0052】[0052]

【表1】 また、透明導電膜406としてはITOを約0.1μm
電子ビーム蒸着して形成し、さらにその上に集電電極4
08(Ti/Pd/Ag(0.04μm/0.02μm
/1μm))を真空蒸着により形成した。
[Table 1] Further, as the transparent conductive film 406, about 0.1 μm of ITO was used.
It is formed by electron beam evaporation, and a current collecting electrode 4 is further formed thereon.
08 (Ti / Pd / Ag (0.04 μm / 0.02 μm
/ 1 µm)) was formed by vacuum evaporation.

【0053】このようにして得られたp+μc−Si/
多結晶Siヘテロ接合型太陽電池のAM1.5光照射下
でのI−V特性の測定を行ったところ(セル面積0.1
6cm2)、開放電圧0.59V、短絡光電流30.5
mA/cm2、曲線因子0.71となり、変換効率1
2.8%という高い値が得られた。
The p + μc-Si /
When the IV characteristics of a polycrystalline Si heterojunction solar cell under AM1.5 light irradiation were measured (cell area 0.1
6cm 2 ), open voltage 0.59V, short-circuit photocurrent 30.5
mA / cm 2 , fill factor 0.71 and conversion efficiency 1
Values as high as 2.8% were obtained.

【0054】(実施例3)実施例1と同様にして図1に
示すようなプロセスで大粒径Si結晶太陽電池を作製し
た。前述したように、Mo基板上にSiO2層を0.1
μm形成し、通常の真空蒸着装置を用いて高純度Siの
EB蒸着によりSiO2層表面に非晶質Si層を0.1
μm堆積した。次に、N2雰囲気中600℃50時間の
条件でアニール処理を行い、固相成長を行った。
Example 3 A large-grain Si crystal solar cell was manufactured by the process shown in FIG. As described above, the SiO 2 layer is formed on the Mo substrate by 0.1%.
μm, and an amorphous Si layer was formed on the surface of the SiO 2 layer by EB vapor deposition of high-purity Si using a normal vacuum vapor deposition apparatus.
μm was deposited. Next, annealing was performed in an N 2 atmosphere at 600 ° C. for 50 hours to perform solid phase growth.

【0055】H2雰囲気中で1040℃,8分間の条件
でアニール処理を行い、Si層を凝集させて微小なSi
粒をSiO2層上に得た。このときのSi粒の粒径は
0.4〜1.3μm、また密度は3.4×107個/c
2であった。
Annealing is performed in an H 2 atmosphere at 1040 ° C. for 8 minutes to aggregate the Si layer to form fine Si
Grains were obtained on the SiO 2 layer. At this time, the grain size of the Si grains is 0.4 to 1.3 μm, and the density is 3.4 × 10 7 / c.
m 2 .

【0056】通常のスライド式ボート法による液相成長
装置により溶媒にSnを用い、次の連続条件で結晶成長
を行って、大粒径Si結晶の連続薄膜を得た。即ち、水
素雰囲気中、成長開始温度970℃,過冷却度0.5
℃,降温速度0.5℃/分,成長時間15分の後、溶媒
より基板を離して温度を1030℃まで上げ、そのまま
水素雰囲気中で30分保持し、再び温度を970℃まで
戻して、今度は過冷却度2℃,降温速度0.7℃/分,
成長時間60分で成長を行った。このようにして得られ
たSi結晶薄膜の粒径と膜厚はともに約50μmであっ
た。
Crystal growth was carried out under the following continuous conditions using Sn as a solvent by an ordinary liquid phase growth apparatus based on a slide boat method to obtain a continuous thin film of a large grain Si crystal. That is, in a hydrogen atmosphere, a growth start temperature of 970 ° C. and a degree of supercooling of 0.5
After the substrate was separated from the solvent, the temperature was raised to 1030 ° C., the temperature was maintained for 30 minutes in a hydrogen atmosphere, and the temperature was returned to 970 ° C. This time, the supercooling degree is 2 ° C, the cooling rate is 0.7 ° C / min,
The growth was performed for a growth time of 60 minutes. Both the particle size and the film thickness of the Si crystal thin film thus obtained were about 50 μm.

【0057】p+層を形成するためにBSG(Boro
n Si1icate Glass)をSi結晶の表面
に常圧CVD装置で堆積し、RTA(Rapid Th
ermal Annealing)処理を行った。堆積
したBSGの膜厚は約0.6μmであり、RTA処理の
条件は1050℃,60秒で行った。このときの接合深
さは約0.2μmであった。
In order to form the p + layer, BSG (Boro
n Silicate Glass is deposited on the surface of the Si crystal by a normal pressure CVD apparatus, and RTA (Rapid Th) is used.
thermal annealing) treatment. The film thickness of the deposited BSG was about 0.6 μm, and the conditions of the RTA treatment were performed at 1050 ° C. for 60 seconds. At this time, the junction depth was about 0.2 μm.

【0058】BSGをHF水溶液で除去し、最後にEB
蒸着により集電電極(Ti/Pd/Ag(0.04μm
/0.02μm/1μm))/透明導電膜ITO(0.
082μm)をp+層上に形成した。
BSG was removed with an aqueous HF solution, and finally EB was added.
A current collecting electrode (Ti / Pd / Ag (0.04 μm
/0.02 μm / 1 μm)) / Transparent conductive film ITO (0.
082 μm) was formed on the p + layer.

【0059】このようにして作製した薄膜結晶太陽電池
のAM1.5光照射下でのI−V特性を調ベたところ、
セル面積0.25cm2で開放電圧0.55V,短絡光
電流28mA/cm2,曲線因子0.73となり、1
1.2%の変換効率が得られた。
When the IV characteristics of the thin-film crystal solar cell thus manufactured under AM1.5 light irradiation were examined,
When the cell area is 0.25 cm 2 , the open circuit voltage is 0.55 V, the short-circuit photocurrent is 28 mA / cm 2 , and the fill factor is 0.73.
A conversion efficiency of 1.2% was obtained.

【0060】(実施例4)実施例1,3と同様にして図
1に示すようなプロセスで薄膜結晶太陽電池を作製し
た。Cr基板上に常圧CVD装置でSiO2層を0.1
2μm形成し、その上にLPCVD装置を用いてSiH
4を550℃で熱分解して非晶質Siを0.08μm堆
積させた。
Example 4 A thin-film crystal solar cell was manufactured in the same manner as in Examples 1 and 3 by the process shown in FIG. An SiO 2 layer is formed on a Cr substrate with a normal pressure CVD device at 0.1
2 μm, and SiH is formed thereon using an LPCVD apparatus.
4 was thermally decomposed at 550 ° C. to deposit 0.08 μm of amorphous Si.

【0061】非晶質Siの表面にBを打ち込みエネルギ
ー30keV、ドーズ量5×1015/cm2の条件でイ
オン打ち込みを行い、N2雰囲気中600℃,50時間
のアニール条件で非晶質Si層の固相成長を行った。
B is implanted on the surface of the amorphous Si under the conditions of an energy of 30 keV and a dose of 5 × 10 15 / cm 2 , and the amorphous Si is annealed in an N 2 atmosphere at 600 ° C. for 50 hours. Solid phase growth of the layers was performed.

【0062】次に、H2雰囲気中で1050℃,5分間
の条件でアニール処理を行い、Si層を凝集させて微小
なSi粒をSiO2層上に得た。このときのSi粒の粒
径は0.2〜1.1μm,また密度は4×107個/c
2であった。
Next, annealing was performed in an H 2 atmosphere at 1050 ° C. for 5 minutes to coagulate the Si layer to obtain fine Si particles on the SiO 2 layer. At this time, the particle size of the Si particles is 0.2 to 1.1 μm, and the density is 4 × 10 7 / c.
m 2 .

【0063】通常のスライド式ボート法による液相成長
装置により溶媒にSnを用い、次の連続条件で結晶成長
を行って大粒径Si結晶の連続薄膜を得た。即ち、水素
雰囲気中、成長開始温度980℃,過冷却度2℃,降温
速度0.2℃/分,成長時間15分の後、溶媒より基板
を離して温度を1040℃まで上げ、そのまま水素雰囲
気中で30分保持し、再び温度を980℃まで戻して、
今度は過冷却度3℃,降温速度0.3℃/分,成長時間
130分で成長を行った。このようにして得られたSi
結晶薄膜の粒径と膜厚はそれぞれ約50μm,約40μ
mであった。
Crystal growth was carried out under the following continuous conditions using Sn as a solvent by a conventional liquid phase growth apparatus based on a sliding boat method to obtain a continuous thin film of large grain Si crystal. That is, in a hydrogen atmosphere, after the growth start temperature is 980 ° C., the degree of supercooling is 2 ° C., the cooling rate is 0.2 ° C./min, and the growth time is 15 minutes, the substrate is separated from the solvent and the temperature is raised to 1040 ° C. For 30 minutes, and the temperature was returned to 980 ° C again.
This time, the growth was performed at a supercooling degree of 3 ° C., a temperature decreasing rate of 0.3 ° C./min, and a growth time of 130 minutes. The Si thus obtained
The grain size and thickness of the crystalline thin film are about 50 μm and about 40 μm, respectively.
m.

【0064】次に、Si結晶層の表面にPΟCl3を拡
散源として900℃の温度でPの熱拡散を行ってn+
を形成し、0.5μm程度の接合深さを得た。形成され
たn+層表面のデッド層をエッチングにより除去し、約
0.2μmの適度な表面濃度をもった接合深さを得た。
さらに、Si結晶層の表面をドライ酸化により薄く酸化
し(〜0.01μm)、フォトリソグラフィ法を用いて
微細なグリッド形状に酸化膜をエッチングし、その上に
メタルマスクにより集電電極(Ti/Pd/Ag(0.
04μm/0.02μm/1μm))を蒸着した。さら
に、最後にその上に透明導電膜ITO(0.082μ
m)を形成して太陽電池の作製を完了した。
Next, P was thermally diffused on the surface of the Si crystal layer at 900 ° C. using P と し て Cl 3 as a diffusion source to form an n + layer, and a junction depth of about 0.5 μm was obtained. The dead layer on the surface of the formed n + layer was removed by etching to obtain a junction depth having an appropriate surface concentration of about 0.2 μm.
Furthermore, the surface of the Si crystal layer is thinly oxidized by dry oxidation (up to 0.01 μm), the oxide film is etched into a fine grid shape using a photolithography method, and a current collector electrode (Ti / Pd / Ag (0.
04 μm / 0.02 μm / 1 μm)). Further, finally, a transparent conductive film ITO (0.082 μm) is formed thereon.
m) was formed to complete the fabrication of the solar cell.

【0065】このようにして作製した薄膜結晶太陽電池
のAM1.5光照射下でのI−V特性を調ベたところ、
セル面積0.36cm2で開放電圧0.58V,短絡光
電流30mA/cm2,曲線因子0.74となり、変換
効率12.9%を得た。
The IV characteristics of the thin-film crystal solar cell thus manufactured under AM1.5 light irradiation were examined.
When the cell area was 0.36 cm 2 , the open voltage was 0.58 V, the short-circuit photocurrent was 30 mA / cm 2 , and the fill factor was 0.74. Thus, a conversion efficiency of 12.9% was obtained.

【0066】以上述ベたように、本発明によれば、Si
層の凝集により得られる微小Si粒を種結晶として液相
法により大粒径Si層を金属基板上に形成でき、これを
用いて量産性のある安価な太陽電池が製造されることが
示された。
As described above, according to the present invention, Si
It has been shown that a large-diameter Si layer can be formed on a metal substrate by a liquid phase method using fine Si grains obtained by agglomeration of the layers as seed crystals, and a mass-productive and inexpensive solar cell can be manufactured using this. Was.

【0067】[0067]

【発明の効果】以上述べてきたように、本発明によれ
ば、特性の良好な薄膜結晶太陽電池を金属基板上に形成
することが可能となる。これにより、量産性のある安価
で良質の薄型太陽電池を市場に提供することができるよ
うになる。
As described above, according to the present invention, it is possible to form a thin film crystal solar cell having good characteristics on a metal substrate. As a result, mass-produced inexpensive and high-quality thin solar cells can be provided to the market.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜太陽電池の製造工程の一例を説明
する図である。
FIG. 1 is a diagram illustrating an example of a manufacturing process of a thin-film solar cell of the present invention.

【図2】凝集した微小Si粒を用いてSi結晶を成長さ
せる方法について説明した図である。
FIG. 2 is a diagram illustrating a method of growing a Si crystal using aggregated fine Si particles.

【図3】Si結晶を成長させる途中で固相反応によりS
i結晶の底面と基板の表面とを接触させる様子を示す図
である。
FIG. 3 shows S by solid-phase reaction during the growth of a Si crystal.
FIG. 9 is a diagram showing a state in which the bottom surface of an i-crystal is brought into contact with the surface of a substrate.

【図4】本発明のへテロ接合型太陽電池の製造工程の一
例を示説明する図である。
FIG. 4 is a diagram illustrating an example of a manufacturing process of the heterojunction solar cell of the present invention.

【符号の説明】[Explanation of symbols]

101,201,301,401 金属基板、 102,202,302,402 絶縁層、 103,203,403 非晶質Si層、 104,204,404 微小Si粒、 105,205,303,405 Si結晶(成長
層)、 107 p+層またはn+層、 407 p型微結晶化シリコン層、 106,406 透明導電層、 108,408 集電電極。
101, 201, 301, 401 metal substrate, 102, 202, 302, 402 insulating layer, 103, 203, 403 amorphous Si layer, 104, 204, 404 fine Si grain, 105, 205, 303, 405 Si crystal ( Growth layer), 107 p + layer or n + layer, 407 p-type microcrystallized silicon layer, 106,406 transparent conductive layer, 108,408 current collecting electrode.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多結晶Si太陽電池の製造方法におい
て、 1)金属基体上に絶縁層を堆積する工程と、 2)該絶縁層の表面に非晶質Si層を堆積する工程と、 3)該非晶質Si層を不活性ガス雰囲気中で加熱し、固
相成長させて結晶Si層にする工程と、 4)活性ガス雰囲気中で加熱し、前記結晶Si層を凝集
させてSi結晶粒を前記絶縁層上に形成する工程と、 5)液相法により前記Si結晶粒を種結晶として結晶成
長を行う工程と、 6)活性ガス雰囲気中で加熱し、前記Si結晶粒と前記
絶縁層との間で固相反応を促進させて前記金属基体の表
面とSi結晶粒の底面とを接触させる工程と、 7)液相法により前記Si結晶粒をさらに結晶成長させ
て前記絶縁層表面をSi層で覆う工程と、 を含むことを特徴とする薄膜多結晶Si太陽電池の製造
方法。
1. A method for manufacturing a polycrystalline Si solar cell, comprising: 1) depositing an insulating layer on a metal substrate; 2) depositing an amorphous Si layer on the surface of the insulating layer; Heating the amorphous Si layer in an inert gas atmosphere and subjecting it to solid phase growth to form a crystalline Si layer; 4) heating in an active gas atmosphere to agglomerate the crystalline Si layer to form Si crystal grains. Forming a crystal on the insulating layer; 5) performing crystal growth using the Si crystal grain as a seed crystal by a liquid phase method; and 6) heating the Si crystal grain and the insulating layer in an active gas atmosphere. Contacting the surface of the metal substrate with the bottom surface of the Si crystal grains by accelerating the solid phase reaction between them; and 7) further growing the Si crystal grains by a liquid phase method to make the surface of the insulating layer Si. Covering with a layer, comprising: Method of manufacturing a pond.
【請求項2】 前記絶縁層は、SiO2であることを特
徴とする請求項1に記載の薄膜多結晶Si太陽電池の製
造方法。
2. The method according to claim 1, wherein the insulating layer is made of SiO 2 .
【請求項3】 前記非晶質Si層は、不純物を含有する
ことを特徴とする請求項1または2に記載の薄膜多結晶
Si太陽電池の製造方法。
3. The method for manufacturing a thin-film polycrystalline Si solar cell according to claim 1, wherein the amorphous Si layer contains impurities.
【請求項4】 前記不純物は、P,As,Sn,Bの中
の何れか1つであることを特徴とする請求項3に記載の
薄膜多結晶Si太陽電池の製造方法。
4. The method according to claim 3, wherein the impurity is one of P, As, Sn, and B.
【請求項5】 前記不活性ガスは、N2,He,Arの
中の何れか1つであることを特徴とする請求項l〜4の
いずれか1項に記載の薄膜多結晶Si太陽電池の製造方
法。
5. The thin-film polycrystalline Si solar cell according to claim 1, wherein the inert gas is one of N 2 , He, and Ar. Manufacturing method.
【請求項6】 前記活性ガスは、H2であることを特徴
とする請求項1〜5のいずれか1項に記載の薄膜多結晶
Si太陽電池の製造方法。
6. The method for manufacturing a thin-film polycrystalline Si solar cell according to claim 1, wherein the active gas is H 2 .
【請求項7】 前記液相法に用いられる溶媒はSnであ
り、溶質はSiであることを特徴とする請求項1〜6の
いずれか1項に記載の薄膜多結晶Si太陽電池の製造方
法。
7. The method for manufacturing a thin-film polycrystalline Si solar cell according to claim 1, wherein the solvent used in the liquid phase method is Sn, and the solute is Si. .
JP5098144A 1993-04-23 1993-04-23 Method for manufacturing thin-film polycrystalline Si solar cell Expired - Fee Related JP3067459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5098144A JP3067459B2 (en) 1993-04-23 1993-04-23 Method for manufacturing thin-film polycrystalline Si solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5098144A JP3067459B2 (en) 1993-04-23 1993-04-23 Method for manufacturing thin-film polycrystalline Si solar cell

Publications (2)

Publication Number Publication Date
JPH06310745A JPH06310745A (en) 1994-11-04
JP3067459B2 true JP3067459B2 (en) 2000-07-17

Family

ID=14212013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5098144A Expired - Fee Related JP3067459B2 (en) 1993-04-23 1993-04-23 Method for manufacturing thin-film polycrystalline Si solar cell

Country Status (1)

Country Link
JP (1) JP3067459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295751C (en) * 2003-06-16 2007-01-17 友达光电股份有限公司 Method for making polysilicon film

Also Published As

Publication number Publication date
JPH06310745A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
US6387780B1 (en) Fabrication process of solar cell
KR100224553B1 (en) Solar cell and its manufacture
JP2721271B2 (en) Solar cell manufacturing method
JP3478618B2 (en) Photoelectric conversion element and method for manufacturing the same
JPH04245683A (en) Manufacture of solar cell
JP2962918B2 (en) Method of forming silicon thin film and method of manufacturing solar cell
US5279686A (en) Solar cell and method for producing the same
JP3067459B2 (en) Method for manufacturing thin-film polycrystalline Si solar cell
JP2624577B2 (en) Solar cell and method of manufacturing the same
JP3069208B2 (en) Method for manufacturing thin-film polycrystalline Si solar cell
JP2002261305A (en) Thin-film polycrystalline silicon solar cell and manufacturing method therefor
JPH05218464A (en) Semiconductor substrate and solar cell and manufacture thereof
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JP3354282B2 (en) Method for manufacturing photovoltaic element
JP2756320B2 (en) Crystal formation method
JP3067821B2 (en) Solar cell and method of manufacturing the same
JP2802180B2 (en) Solar cell manufacturing method
JPH07312439A (en) Solar cell and its manufacture
JP2675174B2 (en) Solar cell manufacturing method
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same
JPH05235386A (en) Solar cell and its manufacture
JP2001332494A (en) Semiconductor element and method of manufacturing the same
JP3229749B2 (en) Method for manufacturing polycrystalline semiconductor thin film and photovoltaic device
JPH0936403A (en) Production of basic body and solar cell employing it
JPH0525186B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees