JP2006216761A - Consecutive liquid-phase film forming method and device - Google Patents

Consecutive liquid-phase film forming method and device Download PDF

Info

Publication number
JP2006216761A
JP2006216761A JP2005027661A JP2005027661A JP2006216761A JP 2006216761 A JP2006216761 A JP 2006216761A JP 2005027661 A JP2005027661 A JP 2005027661A JP 2005027661 A JP2005027661 A JP 2005027661A JP 2006216761 A JP2006216761 A JP 2006216761A
Authority
JP
Japan
Prior art keywords
film forming
solvent
liquid phase
temperature
solute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005027661A
Other languages
Japanese (ja)
Inventor
Akiyuki Nishida
彰志 西田
Toshihito Yoshino
豪人 吉野
Masaki Mizutani
匡希 水谷
Masaaki Iwane
正晃 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005027661A priority Critical patent/JP2006216761A/en
Publication of JP2006216761A publication Critical patent/JP2006216761A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polycrystalline Si crystal liquid-phase film forming method which is capable of forming a film consecutively with high mass-productivity, and to provide its manufacturing device. <P>SOLUTION: A film forming unit is kept at a prescribed temperature. The temperature of a solute feed unit is made to vary in a prescribed range of temperature to the temperature of the film forming unit, and a melt which varies continuously in degree of supersaturation with time is supplied to the film forming unit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はSi結晶の液相成膜法、および液相成膜装置に関し、特に成膜層の表面性が良好でかつ連続成膜可能な液相成膜法に関する。   The present invention relates to a liquid crystal film forming method of Si crystal and a liquid phase film forming apparatus, and more particularly to a liquid phase film forming method in which the surface property of a film forming layer is good and continuous film forming is possible.

液相成膜法は準平衡状態からの結晶成膜であるため化学量論組成に近い良質の結晶が得られるという利点を有し、GaAs等の化合物半導体ですでに確立した技術としてLED(発光ダイオード)やレーザー・ダイオードなどの生産に用いられている。最近では厚膜を得る目的でSiの液相成膜も試みられ(例えば特許文献1)、太陽電池への応用も検討されている。   Since the liquid phase film formation method is a crystal film formation from a quasi-equilibrium state, it has the advantage that high-quality crystals close to the stoichiometric composition can be obtained, and LED (light emission) has already been established with compound semiconductors such as GaAs. Diodes) and laser diodes. Recently, liquid phase film formation of Si has been attempted for the purpose of obtaining a thick film (for example, Patent Document 1), and application to solar cells is also being studied.

従来の液相成膜法は、一般に成膜用の物質を溶質として含有する溶液を冷却して過飽和状態とし、過剰溶質(成膜用の物質)を基板上に析出させている。代表的な成膜温度プロファイルとして成膜開始温度から一定の降温速度で徐冷しながら成膜終了温度まで落とすというのが挙げられる。このような手法では市販の鏡面仕上げの単結晶ウエハ上へ結晶成膜させる場合には比較的スムースな成膜表面が得られるが、それ以外の場合、例えば充分ポリッシュされていない多結晶基板上へ成膜させるとファセット面による凹凸が生じたり、あるいは結晶粒界付近での起伏が発生して表面性が悪くなり、太陽電池等のデバイスへ応用する際に問題となる(非特許文献1)。このような表面性の劣化を改善する方法として結晶成膜中に周期的に成膜表面のメルトバックを行う手法が提案され(非特許文献2)、凹凸の少ないほぼ平坦な表面を有する成膜層が得られることが示された。この場合成膜時の温度プロファイルは図5に示すように、冷却と昇温を繰り返しながら全体として降温していくものとなる。ここでTh、Tlはそれぞれ成膜開始温度、成膜終了温度を表し、冷却温度幅△Tcは成膜促進のために溶媒内を溶質過飽和状態にするために、また昇温温度幅△Thは成膜で形成された凹凸部のうち凸部を選択的に溶媒中に溶かし出す(メルトバック)ためにそれぞれ設定された値である。   In the conventional liquid phase film-forming method, a solution containing a film-forming substance as a solute is generally cooled to a supersaturated state, and an excess solute (film-forming substance) is deposited on a substrate. As a typical film formation temperature profile, the film formation temperature is lowered from the film formation start temperature to the film formation end temperature while gradually cooling at a constant temperature decrease rate. In such a method, a relatively smooth film-forming surface can be obtained when a crystal film is formed on a commercially available mirror-finished single crystal wafer. In other cases, for example, on a polycrystalline substrate that is not sufficiently polished. When the film is formed, unevenness due to the facet surface occurs, or undulations occur in the vicinity of the crystal grain boundary, resulting in poor surface properties, which becomes a problem when applied to devices such as solar cells (Non-Patent Document 1). As a method of improving such deterioration of surface properties, a method of periodically melting back the film formation surface during crystal film formation has been proposed (Non-Patent Document 2), and film formation having a substantially flat surface with few irregularities. It was shown that a layer was obtained. In this case, as shown in FIG. 5, the temperature profile at the time of film formation decreases as a whole while repeating cooling and temperature increase. Here, Th and Tl represent the film formation start temperature and the film formation end temperature, respectively, the cooling temperature width ΔTc is for solute supersaturation in the solvent to promote film formation, and the temperature rise temperature width ΔTh is It is a value set in order to selectively dissolve out the convex portion in the solvent among the concave and convex portions formed by film formation (melt back).

一般に溶媒に低融点金属(In、Sn、Ga、Bi等)を用いて溶質(Si、GaASinP等)を溶かし込む場合、溶媒中に溶け込む溶質の量(溶解度)は温度の関数であり、その量は温度が下がるにつれて減少する傾向にあるため、一定の溶質過飽和度やメルトバック量を維持するためには上述のΔTcやΔThは成膜温度が下がるにつれて各々増大させる必要がある。そのため上述の方法では成膜が進むにつれて冷却・昇温に多大な時間を要し、生産性に問題があった。また成膜温度が変化することから成膜した結晶の膜質を一定に保つことにも難点があり、成膜終了後に下がった温度を元の成膜開始温度に戻すのにも時間を要する。   In general, when a solute (Si, GaASinP, etc.) is dissolved in a solvent using a low-melting-point metal (In, Sn, Ga, Bi, etc.), the amount of solute (solubility) dissolved in the solvent is a function of temperature. Therefore, in order to maintain a certain degree of solute supersaturation and meltback, it is necessary to increase ΔTc and ΔTh, respectively, as the film formation temperature decreases. For this reason, in the above-described method, as the film formation progresses, much time is required for cooling and raising the temperature, and there is a problem in productivity. In addition, since the film formation temperature changes, there is a difficulty in keeping the film quality of the formed crystal constant, and it takes time to return the temperature lowered after the film formation to the original film formation start temperature.

成膜温度を一定にして連続的に液相成膜を行う方法として、特許文献2乃至4に開示されている方法、すなわち溶媒に溶質を溶かし込む場所と溶質を溶かし込んだ溶媒で成膜を行う場所とを別個にして、溶質を溶かし込む場所の温度を成膜を行う場所の温度よりも高くなるようにそれぞれを独立に温度制御し、両者の間で溶媒を循環させることで連続的に液相成膜を行う方法が提案され、膜質が均一で量産性のある結晶成膜が行えるようになった。しかしながら、これらの方法においても上述した多結晶基板上での成膜時における表面凹凸発生の問題は解決されていなかった。
特開昭58−89874号公報 特開平3−19326号公報 特開平6−349751号公報 特開平11−292693号公報 K.J.Weber and A.W.Blakers:Journal of Crystal Growth 154(1995)p54. G.Ballhorn,K.J.Weber,S.Armand,M.J.Stocks and A.W.Blakers:Solar Energy Materials and Solar Cells 52(1998)p.61
As a method for performing continuous liquid phase film formation at a constant film formation temperature, the methods disclosed in Patent Documents 2 to 4, that is, the film formation is performed with the place where the solute is dissolved in the solvent and the solvent in which the solute is dissolved. Separately from the place to perform, the temperature of the place where the solute is dissolved is controlled independently so that the temperature of the place where the film is formed is higher, and the solvent is continuously circulated between the two. A method of performing liquid phase film formation has been proposed, and crystal film formation with uniform film quality and mass productivity can be performed. However, even in these methods, the above-described problem of surface unevenness during film formation on a polycrystalline substrate has not been solved.
JP 58-89874 A Japanese Patent Laid-Open No. 3-19326 Japanese Patent Laid-Open No. 6-349751 JP 11-292893 A K. J. et al. Weber and A.M. W. Blackers: Journal of Crystal Growth 154 (1995) p54. G. Ballhorn, K.M. J. et al. Weber, S .; Armand, M.M. J. et al. Stocks and A.M. W. Blackers: Solar Energy Materials and Solar Cells 52 (1998) p. 61

本発明は、上述の従来技術における問題を解決すべく本発明者らによる鋭意研究の結果完成に至ったものであり、表面性が良好で量産性の高い液相成膜法を提供することを目的とする。   The present invention has been completed as a result of diligent research by the present inventors in order to solve the above-described problems in the prior art, and provides a liquid phase film forming method with good surface properties and high mass productivity. Objective.

そこで、本発明は、溶質供給部と成膜部とが分離しておりかつ各々の温度が独立に制御され、両者の間を溶質が溶け込んだ溶媒が循環することにより成膜が行われる液相成膜法において、前記成膜部が所定の温度に保たれる一方で溶質供給部の温度が成膜部の温度に対して所定の範囲の温度幅で変化することにより、経時的に連続して過飽和度が変化した溶媒を成膜部に供給することを特徴とする連続液相成膜方法を提供する。   Therefore, the present invention provides a liquid phase in which film formation is performed by separating the solute supply unit and the film forming unit and controlling each temperature independently and circulating a solvent in which the solute is dissolved between the two. In the film forming method, the film forming unit is maintained at a predetermined temperature, while the temperature of the solute supply unit changes with a temperature range within a predetermined range with respect to the temperature of the film forming unit. A continuous liquid phase film forming method is provided, wherein a solvent whose supersaturation degree is changed is supplied to the film forming section.

また、本発明は、溶媒に溶質を供給する原料供給機構と、前記溶質が供給された溶媒を基板に接触させて結晶成膜を行う成膜機構と、前記原料供給機構と成膜機構との間で前記溶媒を循環させるパイプとを備え、前記原料供給機構の温度と前記成膜機構の温度とを独立して温度制御するための手段を設けた連続液相成膜装置において、前記原料供給機構の温度を前記成膜機構の温度に対して所定の範囲の温度幅で制御する手段と、前記原料供給機構から前記成膜機構に連続的に溶媒を供給する手段とを有することを特徴とする連続液相成膜装置を提供する。   The present invention also includes a raw material supply mechanism that supplies a solute to a solvent, a film formation mechanism that forms a crystal film by bringing the solvent supplied with the solute into contact with a substrate, and the raw material supply mechanism and the film formation mechanism. A continuous liquid phase film forming apparatus comprising a pipe for circulating the solvent between them, and provided with means for independently controlling the temperature of the raw material supply mechanism and the temperature of the film formation mechanism. A mechanism for controlling the temperature of the mechanism within a temperature range within a predetermined range with respect to the temperature of the film forming mechanism; and a means for continuously supplying a solvent from the raw material supply mechanism to the film forming mechanism. A continuous liquid phase film forming apparatus is provided.

本発明によれば表面性が良好で量産性の高い連続液相成膜が多結晶基板上で可能となる。本発明は厚みを必要とするデバイス、特に太陽電池の量産方法として好適である。   According to the present invention, continuous liquid phase film formation with good surface properties and high mass productivity is possible on a polycrystalline substrate. The present invention is suitable as a method for mass production of devices requiring thickness, particularly solar cells.

本発明の液相成膜法に用いられる液相成膜装置の一例を図1に示す。図1において101はウエハカセット、102は基板(ウエハ)、103は成膜部、104は溶媒(メルト)、112はゲートバルブでありこれらは成膜機構114を構成している。ウエハカセット101は上下運動をすることにより溶媒104にウエハ102を浸漬したりあるいは溶媒104からウエハ102を引き上げたりして成膜開始処理/成膜終了処理を行う。また、ウエハカセット101には回転機構も備わっており、成膜中にウエハカセット101を回転させることによりウエハ面内およびウエハ間で成膜膜厚を均一化することができる。これら成膜機構114は外側に配置された電気炉108により加熱される。113は原料供給機構であり、105溶質供給部、106加熱手段(ヒータブロック)、107冷却手段(冷却パイプ)からなる。成膜機構と原料供給機構との間は循環パイプ110で連結されており、循環パイプの途中には熱交換器109と溶媒を循環させるためのロータ111が備えられている。溶質供給部105は図6に示すように、カーボンあるいは石英等の材質からなる溶質供給容器601内に数枚の仕切り板602が設置されており、溶質供給容器601の蓋となる原料板(溶質と同一材料)603と組み合わさって同図(b)のように溶媒の流路を形成する。この流路を溶媒が通る間に原料板603から溶媒中に溶質が溶け込んで供給がなされる。また溶質供給部105は熱交換器の作用も兼ねる。さらにこれら一連の部材は電気炉108の内部に収蔵されている。   An example of a liquid phase film forming apparatus used in the liquid phase film forming method of the present invention is shown in FIG. In FIG. 1, 101 is a wafer cassette, 102 is a substrate (wafer), 103 is a film forming unit, 104 is a solvent (melt), 112 is a gate valve, and these constitute a film forming mechanism 114. The wafer cassette 101 moves up and down to immerse the wafer 102 in the solvent 104 or lift the wafer 102 from the solvent 104 to perform film formation start processing / film formation end processing. The wafer cassette 101 is also provided with a rotation mechanism, and the film thickness can be made uniform within the wafer surface and between the wafers by rotating the wafer cassette 101 during film formation. These film forming mechanisms 114 are heated by an electric furnace 108 disposed outside. A raw material supply mechanism 113 includes a 105 solute supply unit, 106 heating means (heater block), and 107 cooling means (cooling pipe). The film forming mechanism and the raw material supply mechanism are connected by a circulation pipe 110, and a heat exchanger 109 and a rotor 111 for circulating the solvent are provided in the middle of the circulation pipe. As shown in FIG. 6, the solute supply unit 105 includes several partition plates 602 installed in a solute supply container 601 made of a material such as carbon or quartz, and a raw material plate (solute) serving as a lid of the solute supply container 601. And the same material) 603 to form a solvent flow path as shown in FIG. While the solvent passes through the flow path, the solute dissolves in the solvent from the raw material plate 603 and is supplied. The solute supply unit 105 also serves as a heat exchanger. Further, these series of members are stored in the electric furnace 108.

次に図1を用いて、本発明の液相成膜法及び液相成膜装置について説明する。図1に示すように、電気炉108によりある一定温度Tに保たれた成膜機構114があり、溶質を含んだ溶媒104がロータ111によって成膜部103内に一定流量で出入りしている。同じく電気炉108内にある原料供給機構113内にはロータ111により送り込まれた溶媒が熱交換器を兼ねた溶質供給部105内に入り、ヒータブロック106と冷却パイプ107からなる温度制御機構により制御された温度に徐々に変化しながら流路を形成している原料板603から溶質が供給されて飽和に達する。このとき、溶質供給部105の温度を成膜機構の温度Tに対して△T1℃だけ高く(T+△T1)設定しておくと、この温度で溶質が飽和した溶媒(このときの飽和濃度をC1とする)が溶質供給部より送り出される。溶質供給部を通過した溶媒は再び原料供給機構の外に出て熱交換器を通して成膜機構114と同じ温度Tまで下がった後、成膜機構内の成膜部103内に送られる。ここで溶媒の温度は元の温度Tにもどるので溶質が過飽和の状態となる。この元の温度Tでの飽和濃度をC0とすると、このときの過飽和度σ1は(C1−C0)/C0で表される。したがって溶質供給部105の温度を成膜機構114のそれより△T1℃だけ高い状態に保てば常に過飽和度σ1の溶媒が成膜部103内に流入するので成膜部103内の溶媒104に基板を浸漬しておけば過飽和度σ1に応じた成膜が常に可能となる。成膜部103を出た溶媒は成膜で溶質を析出した分過飽和度が下がり、再度原料供給機構113内に送られ再び溶質が供給される。このように溶媒が循環することで連続的に液相成膜が行われる。   Next, the liquid phase film forming method and the liquid phase film forming apparatus of the present invention will be described with reference to FIG. As shown in FIG. 1, there is a film forming mechanism 114 that is maintained at a certain constant temperature T by an electric furnace 108, and a solvent 104 containing a solute enters and exits the film forming unit 103 by a rotor 111 at a constant flow rate. Similarly, the solvent fed by the rotor 111 enters the solute supply unit 105 also serving as a heat exchanger in the raw material supply mechanism 113 in the electric furnace 108, and is controlled by a temperature control mechanism including the heater block 106 and the cooling pipe 107. The solute is supplied from the raw material plate 603 forming the flow path while gradually changing to the generated temperature, and reaches saturation. At this time, if the temperature of the solute supply unit 105 is set higher than the temperature T of the film forming mechanism by ΔT1 ° C. (T + ΔT1), the solvent in which the solute is saturated at this temperature (the saturation concentration at this time is set). C1) is sent out from the solute supply unit. The solvent that has passed through the solute supply unit returns to the outside of the raw material supply mechanism, passes through a heat exchanger, drops to the same temperature T as the film formation mechanism 114, and is then sent into the film formation unit 103 in the film formation mechanism. Here, since the temperature of the solvent returns to the original temperature T, the solute becomes supersaturated. When the saturation concentration at the original temperature T is C0, the degree of supersaturation σ1 at this time is represented by (C1−C0) / C0. Therefore, if the temperature of the solute supply unit 105 is maintained at a temperature higher than that of the film forming mechanism 114 by ΔT1 ° C., a solvent having a supersaturation level σ1 always flows into the film forming unit 103. If the substrate is immersed, film formation corresponding to the degree of supersaturation σ1 is always possible. The degree of supersaturation of the solvent exiting the film forming unit 103 decreases as much as the solute is deposited in the film formation, and is sent again into the raw material supply mechanism 113 to be supplied with the solute again. Thus, liquid phase film-forming is performed continuously by circulating a solvent.

上述の成膜工程において、溶質供給部105をt1なる時間T+△T1保持した後にt2の時間T−△T2に変化させるとそれに応じて溶媒中への溶質の溶かし込み量が変化し、場合によっては溶媒中の過剰な溶質が溶質供給部内の原料板603の表面上に析出するなどして溶媒の溶質濃度が調整される。このようにして成膜部103内に送られる溶媒の過飽和度σ2はT−△T2の温度での飽和濃度をC2とするとσ2=(C2−C0)/C0となり、C2<C0であるので結果的に未飽和の状態となる。すなわち、溶質供給部105の温度を成膜部103の温度Tに対して所定の幅で変化させてやることで過飽和から未飽和の状態の溶媒を経時的に連続して成膜部に送り出すことが可能となる。△T1、△T2の大きさは0〜数十℃の程度の範囲に設定できるので、これによりほぼ一定の成膜温度で成膜およびメルトバックを繰り返すことができるので、連続して平坦性の良く膜質の均一な多結晶基板上の結晶成膜層が得られる。実際には図7に示すように、溶質供給部の温度はT+△T1からT−△T2まで変化するのに遷移時間△t1、△t2かかるので成膜部に流入する過飽和度の変化もそれに呼応したものとなる。なお、溶質供給部での温度変化と成膜部に流入する溶媒の過飽和度の変化とには部的な隔たりがあるため時間差(位相差)が生じることになる。   In the above-described film forming process, if the solute supply unit 105 is held at the time T + ΔT1 for t1 and then changed to the time T−ΔT2 at t2, the amount of the solute dissolved in the solvent changes accordingly. The excess solute in the solvent is deposited on the surface of the raw material plate 603 in the solute supply unit, and the solute concentration of the solvent is adjusted. Thus, the degree of supersaturation σ2 of the solvent sent into the film forming unit 103 is σ2 = (C2−C0) / C0 when the saturation concentration at the temperature of T−ΔT2 is C2, and C2 <C0. It will be in an unsaturated state. That is, by changing the temperature of the solute supply unit 105 within a predetermined range with respect to the temperature T of the film forming unit 103, a solvent in a supersaturated to unsaturated state is continuously sent to the film forming unit over time. Is possible. Since the sizes of ΔT1 and ΔT2 can be set in a range of about 0 to several tens of degrees Celsius, the film formation and the meltback can be repeated at a substantially constant film formation temperature, so that the flatness can be continuously obtained. A crystal film-forming layer on a polycrystalline substrate having a good and uniform film quality can be obtained. Actually, as shown in FIG. 7, since the temperature of the solute supply portion changes from T + ΔT1 to T−ΔT2, it takes transition times Δt1 and Δt2. It will be responsive. Since there is a partial difference between the temperature change in the solute supply unit and the change in the degree of supersaturation of the solvent flowing into the film forming unit, a time difference (phase difference) occurs.

本発明に使用される金属溶媒を収容するための成膜部の材料およびウエハを支持するウエハカセットの材料、さらに溶媒循環用のパイプの材料としては主に高純度カーボンあるいは高純度石英等が好適に用いられる。また成膜機構は上述の成膜部にウエハカセットを出し入れする構成に替えて、循環パイプの途中に基板と接触させるための開口を設け、基板を保持したスライダがパイプの開口部において溶媒と基板が接するように移動可能なように配置された構造とすることもでき、この場合スライダの材質としては主に高純度カーボンが使用される。   High purity carbon or high purity quartz is mainly suitable as the material of the film forming unit for containing the metal solvent used in the present invention, the material of the wafer cassette that supports the wafer, and the material of the pipe for solvent circulation. Used for. In addition, the film forming mechanism is replaced with the structure in which the wafer cassette is taken in and out of the film forming unit described above, and an opening for contacting the substrate is provided in the middle of the circulation pipe. In this case, high-purity carbon is mainly used as the material of the slider.

本発明に用いられる溶媒、溶質としては従来の液相成膜法に用いられているものであればどのような組み合わせでもよく、例えば、溶質にSiを使用する場合には溶媒としては、例えばIn、Sn、Bi、Ga、Sb等の金属が用いられる。ここで溶媒としてIn、Snを用いると、得られるSi結晶は電気的に中性であり、成膜後にあるいは成膜中に適宜所望の不純物を添加することで所望のドーピング濃度で伝導型を決定することができる。例えば、In中に微量のGaをドーパントとして添加して結晶成膜することでp型のSi結晶が得られる。 The solvent and solute used in the present invention may be any combination as long as they are used in the conventional liquid phase film forming method. For example, when Si is used as the solute, , Sn, Bi, Ga, Sb and other metals are used. Here, when In or Sn is used as a solvent, the Si crystal obtained is electrically neutral, and the conductivity type is determined at a desired doping concentration by appropriately adding desired impurities after or during film formation. can do. For example, a p type Si crystal can be obtained by adding a small amount of Ga as a dopant in In and forming a crystal film.

本発明の方法において溶媒および基板がおかれる雰囲気としてはH2あるいはN2が用いられ、圧力については概ね10−2Torr〜760Torrが適当であり、より好ましくは10−1Torr〜760Torrの範囲である。   In the method of the present invention, H2 or N2 is used as an atmosphere in which the solvent and the substrate are placed, and the pressure is generally about 10-2 Torr to 760 Torr, more preferably 10-1 Torr to 760 Torr.

また本発明の方法における溶媒温度としては、溶媒の種類によるがIn,Snを用いる場合には800℃以上1100℃以下に制御されるのが望ましい。   In addition, the solvent temperature in the method of the present invention is preferably controlled to be 800 ° C. or higher and 1100 ° C. or lower when In or Sn is used, depending on the type of solvent.

なお、本発明はホモエピタキシャルのみならずヘテロエピタキシャルにも適用可能である。   The present invention can be applied not only to homoepitaxial but also to heteroepitaxial.

また成膜機構が循環パイプの開口部において溶媒と基板が接するように移動可能なスライダ構造をとるときには、パイプ中における溶媒の速度は1〜100mm/minが好ましく、スライダの移動速度は0〜300mm/minが好ましい。   When the film forming mechanism has a slider structure that can move so that the solvent and the substrate are in contact with each other at the opening of the circulation pipe, the speed of the solvent in the pipe is preferably 1 to 100 mm / min, and the moving speed of the slider is 0 to 300 mm. / Min is preferred.

原料供給機構と成膜機構における温度差△T1、△T2としてはそれぞれ0〜50℃の範囲とすることが好ましい。また保持時間t1、t2についてはそれぞれ0〜100分の範囲とすることが好ましい。△T1とt1の積に対して△T2とt2の積が小さすぎると基板表面の平坦性が充分でなかったり、逆に△T1とt1の積よりも△T2とt2の積が高すぎると成膜速度が大幅に低下したり、あるいはメルトバックのみ進行する場合もあるので所望の表面状態や成膜速度に合わせて適宜決める必要がある。また過大に△T1を大きくすると基板に到達する前にパイプ中の溶媒の中で結晶粒が析出したりする場合があり、注意を要する。   The temperature differences ΔT1 and ΔT2 between the raw material supply mechanism and the film forming mechanism are preferably in the range of 0 to 50 ° C., respectively. The holding times t1 and t2 are preferably in the range of 0 to 100 minutes. If the product of ΔT2 and t2 is too small compared to the product of ΔT1 and t1, the flatness of the substrate surface is not sufficient, or conversely if the product of ΔT2 and t2 is too high than the product of ΔT1 and t1. Since the film formation rate may be significantly reduced or only meltback may proceed, it is necessary to determine appropriately according to the desired surface condition and film formation rate. Also, if ΔT1 is excessively increased, crystal grains may be precipitated in the solvent in the pipe before reaching the substrate, so care must be taken.

さらに溶媒に溶質を供給するのが上述の原料板以外に、原料供給機構内に保持された原料ガス導入管により溶媒中に原料ガスを送り込むことにより行うことも可能である。すなわち、溶質供給部として上述の成膜機構の成膜部と同様なカーボン製あるいは石英製の成膜部内に溶媒が満たされており、成膜部の側壁および底面に沿って原料ガス導入用の供給管が備えられており、このガス導入管より成膜部の外部から原料ガスを吹き込むことで連続的に原料供給が行われる(詳細については特開平11‐292693参照)。原料ガス導入管の材料としても成膜部と同様に高純度カーボンあるいは高純度石英等が好適に用いられる。使用される原料ガスとしては例えばSiの成膜用にはSiH4、Si2H6、…SinH2n+2(n:自然数)等のシラン類およびSiH2Cl2、SiHCl3、SiCl4、SiH2F2、Si2F6等のハロゲン化シラン類が好適なものとして挙げられる。また原料ガスに添加されるドーピングガスとしてはPH3、PF3、AsH3、SbH3、B2H6、BF3、BCl3、Ga(CH3)3、Ga(C2H5)3等が好適に用いられる。また導入管の前段には原料ガス及び/又はドーパントガスを分解するためのエネルギー付与手段を設置してもよい。   Further, in addition to the above-mentioned raw material plate, the solute can be supplied to the solvent by feeding the raw material gas into the solvent by the raw material gas introduction pipe held in the raw material supply mechanism. That is, the solvent is filled in the carbon or quartz film forming unit similar to the film forming unit of the film forming mechanism described above as the solute supply unit, and the source gas is introduced along the side wall and the bottom surface of the film forming unit. A supply pipe is provided, and the raw material is continuously supplied by blowing the raw material gas from the outside of the film forming section through this gas introduction pipe (for details, refer to Japanese Patent Laid-Open No. 11-292893). As the material for the source gas introduction pipe, high-purity carbon or high-purity quartz is preferably used as in the film forming section. For example, SiH4, Si2H6,... SinH2n + 2 (n: natural number) and other halogenated silanes such as SiH2Cl2, SiHCl3, SiCl4, SiH2F2, and Si2F6 are suitable as source gases to be used. As mentioned. Further, as the doping gas added to the source gas, PH3, PF3, AsH3, SbH3, B2H6, BF3, BCl3, Ga (CH3) 3, Ga (C2H5) 3, or the like is preferably used. Moreover, you may install the energy provision means for decomposing | disassembling source gas and / or dopant gas in the front | former stage of an inlet tube.

またキャリアガスとしてあるいは結晶成膜を促進させる還元雰囲気を得る目的で前記の原料ガスに水素(H2)を添加することが好ましい。前記原料ガスと水素との量の割合は形成方法および原料ガスの種類さらに形成条件により適宜決められるが、1:1000以上100:1以下(導入流量比)とすることが好ましく、1:100以上10:1以下とすることがさらに好ましい。   In addition, it is preferable to add hydrogen (H2) to the source gas as a carrier gas or for the purpose of obtaining a reducing atmosphere that promotes crystal film formation. The ratio of the amount of the source gas and hydrogen is appropriately determined depending on the formation method, the type of the source gas, and the formation conditions, but is preferably 1: 1000 or more and 100: 1 or less (introduction flow ratio), and is 1: 100 or more. More preferably, it is 10: 1 or less.

以下、実施例を用いて本発明の方法により所望の結晶を成膜させるところをより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   Hereinafter, although the place which forms a desired crystal | crystallization by the method of this invention using an Example is demonstrated in detail, this invention is not limited at all by these Examples.

(実施例1)
本例では図1に示す構成の液相成膜装置を用いて多結晶Si基板上にSi層を成膜させた。溶媒にIn、原料板に多結晶Si(溶質にSi)を用いた。キャスト法により形成した125mm角多結晶Siウエハ(厚さ0.6mm)102を5枚載置したウエハカセット101を予備室(図示せず)に待機させた状態で、In溶媒104を収容した成膜部103(るつぼ)を電気炉108により加熱し溶媒の温度を950℃一定に保った。次に予備室に待機させていたウエハカセット101をゲートバルブ112を開いて成膜部103の直上で保持した。ゲートバルブは以後開いたままにした。ヒータブロック106により溶質供給部105の温度を957℃に調節し(△T1=7℃)、Inの溶媒を循環パイプ110を通して原料供給機構と成膜機構との間を循環させた。このとき溶媒の温度は熱交換器109、105により原料供給機構の温度から成膜機構への温度へ、成膜機構から原料供給機構の温度へそれぞれ変換される。充分時間が経ったところでウエハカセット101を10rpmの回転速度で回転させながら下降させて成膜部103内のIn溶媒104中に入れ、完全にウエハカセット101がIn溶媒104中に浸漬したところで下降を止め、その位置を保持して回転させながら液相成膜を30分間行った。その後、冷却パイプ107中に窒素等の冷却ガスを流しつつヒータブロック106の出力を調整して溶質供給部105の温度を947℃に調節し(△T2=3℃)直して10分間保持(=t2)した。このとき溶質供給部における温度の957℃から947℃までの遷移時間(△t2)は15分であった。この後さらに溶質供給部105の温度を957℃に調節し(△T1=7℃、遷移時間△t1=10分)、以後同じ工程を繰り返し全部で3サイクルの成膜/メルトバックを行った。全てのサイクルが終了した後ウエハカセット101をIn溶媒104中から引き上げ、成膜部103の直上で一旦停止して回転数を120rpmまで上げてウエハカセットに一部残留したInを振り切って液相成膜を終了した。
Example 1
In this example, a Si layer was formed on a polycrystalline Si substrate using the liquid phase film forming apparatus having the configuration shown in FIG. In was used as a solvent, and polycrystalline Si (Si as a solute) was used as a raw material plate. A wafer cassette 101 in which five 125 mm square polycrystalline Si wafers (thickness 0.6 mm) 102 formed by the casting method are placed in a standby chamber (not shown) is placed in a standby chamber (not shown), and an In solvent 104 is accommodated. The film part 103 (crucible) was heated by the electric furnace 108 to keep the temperature of the solvent constant at 950 ° C. Next, the wafer cassette 101 kept in the standby chamber was held immediately above the film forming unit 103 by opening the gate valve 112. The gate valve was left open thereafter. The temperature of the solute supply unit 105 was adjusted to 957 ° C. by the heater block 106 (ΔT1 = 7 ° C.), and the In solvent was circulated between the raw material supply mechanism and the film formation mechanism through the circulation pipe 110. At this time, the temperature of the solvent is converted by the heat exchangers 109 and 105 from the temperature of the raw material supply mechanism to the temperature of the film forming mechanism, and from the film forming mechanism to the temperature of the raw material supply mechanism. When a sufficient time has passed, the wafer cassette 101 is lowered while rotating at a rotational speed of 10 rpm, and is put into the In solvent 104 in the film forming unit 103. When the wafer cassette 101 is completely immersed in the In solvent 104, the wafer cassette 101 is lowered. The liquid phase film formation was performed for 30 minutes while holding and rotating the position. Thereafter, the output of the heater block 106 is adjusted while flowing a cooling gas such as nitrogen through the cooling pipe 107 to adjust the temperature of the solute supply unit 105 to 947 ° C. (ΔT2 = 3 ° C.), and held for 10 minutes (= t2). At this time, the transition time (Δt2) from 957 ° C. to 947 ° C. of the temperature in the solute supply unit was 15 minutes. Thereafter, the temperature of the solute supply unit 105 was further adjusted to 957 ° C. (ΔT1 = 7 ° C., transition time Δt1 = 10 minutes), and thereafter the same process was repeated to perform film formation / meltback for a total of 3 cycles. After all the cycles are completed, the wafer cassette 101 is lifted out of the In solvent 104, temporarily stopped immediately above the film forming unit 103, and the rotation speed is increased to 120 rpm. The membrane was terminated.

成膜したSi層の膜厚や表面状態を段差計および走査型電子顕微鏡により調べた結果、成膜したSi層の厚さは平均約35μmであり、ほぼ平坦な表面(凹凸高さで1〜3μm程度)が得られていた。また成膜したSi層の方位についてECP(Electron Channeling Pattern)法により測定したところ、下地の多結晶Si基板の各々のグレインの結晶方位を受け継いでいることが分かった。   As a result of investigating the film thickness and surface state of the deposited Si layer using a step gauge and a scanning electron microscope, the average thickness of the deposited Si layer was about 35 μm, and the surface was almost flat (the height of irregularities was 1 to 1). About 3 μm) was obtained. Further, when the orientation of the deposited Si layer was measured by an ECP (Electron Channeling Pattern) method, it was found that the crystal orientation of each grain of the underlying polycrystalline Si substrate was inherited.

比較のためメルトバック工程が無い場合、すなわち上述において△T2を設定しないで△T1のみの設定で成膜のみ行った場合には、得られたSi層は厚さは平均約45μmと厚かったものの、その表面性は悪く、10〜30μm程度の高さの凹凸が生じていた。   For comparison, when there is no meltback process, that is, when only ΔT1 is set without setting ΔT2 in the above, the obtained Si layer has an average thickness of about 45 μm. The surface property was poor, and irregularities with a height of about 10 to 30 μm were generated.

(実施例2)
本例では図2に示す構成の液相成膜装置を用いて多結晶GaAs上へのGaAs結晶成膜を行った。溶媒にGa、原料板に多結晶GaAs(溶質にGaAs)を用いた。幅40mm、長さ60mm、厚さ0.5mmの多結晶GaAs基板202をスライダ201の上に置き、循環パイプ(平型パイプ)210に設けられた開口部203の幅および長さをそれぞれ35mm、55mmとして、予めスライダの位置を調節してGaAs基板202が平型パイプの開口部203においてGa溶媒と接しないようにした。循環パイプ210内のGa溶媒204を電気炉208により加熱し溶媒の温度を750℃一定に保った。
(Example 2)
In this example, a GaAs crystal film was formed on polycrystalline GaAs using the liquid phase film forming apparatus having the configuration shown in FIG. Ga was used as the solvent, and polycrystalline GaAs (GaAs as the solute) was used as the raw material plate. A polycrystalline GaAs substrate 202 having a width of 40 mm, a length of 60 mm, and a thickness of 0.5 mm is placed on the slider 201, and the width and length of the opening 203 provided in the circulation pipe (flat pipe) 210 are set to 35 mm, The position of the slider was adjusted in advance so that the GaAs substrate 202 was not in contact with the Ga solvent at the opening 203 of the flat pipe. The Ga solvent 204 in the circulation pipe 210 was heated by the electric furnace 208 to keep the temperature of the solvent constant at 750 ° C.

ヒータブロック206により溶質供給部205の温度を754℃に調節し(△T1=4℃)、Gaの溶媒を循環パイプ210を通して原料供給機構と成膜機構との間を循環させた。このとき溶媒の温度は熱交換器209、205により原料供給機構の温度から成膜機構への温度へ、成膜機構から原料供給機構の温度へそれぞれ変換される。充分時間が経ったところでスライダ201を移動して開口部203において多結晶GaAs基板202をGa溶媒と接触させ、このままの状態で液相成膜を30分間行った。その後、冷却パイプ207中に窒素等の冷却ガスを流しつつヒータブロック206の出力を調整して溶質供給部205の温度を748℃に調節し(△T2=2℃)直して10分間保持(=t2)した。このとき溶質供給部における温度の754℃から748℃までの遷移時間(△t2)は12分であった。この後さらに溶質供給部205の温度を754℃に調節し(△T1=4℃、遷移時間△t1=8分)、以後同じ工程を繰り返し全部で4サイクルの成膜/メルトバックを行った。全てのサイクルが終了した後スライダ201を再度移動してGaAs基板202をGa溶媒から離して結晶成膜を終了した。   The temperature of the solute supply unit 205 was adjusted to 754 ° C. by the heater block 206 (ΔT1 = 4 ° C.), and Ga solvent was circulated between the raw material supply mechanism and the film formation mechanism through the circulation pipe 210. At this time, the temperature of the solvent is converted by the heat exchangers 209 and 205 from the temperature of the raw material supply mechanism to the temperature of the film forming mechanism, and from the film forming mechanism to the temperature of the raw material supply mechanism. When sufficient time had elapsed, the slider 201 was moved to bring the polycrystalline GaAs substrate 202 into contact with the Ga solvent at the opening 203, and in this state, liquid phase film formation was performed for 30 minutes. Thereafter, the temperature of the solute supply unit 205 is adjusted to 748 ° C. by adjusting the output of the heater block 206 while flowing a cooling gas such as nitrogen through the cooling pipe 207 (ΔT2 = 2 ° C.) and held for 10 minutes (= t2). At this time, the transition time (Δt2) from 754 ° C. to 748 ° C. of the temperature in the solute supply unit was 12 minutes. Thereafter, the temperature of the solute supply unit 205 was further adjusted to 754 ° C. (ΔT1 = 4 ° C., transition time Δt1 = 8 minutes), and thereafter the same process was repeated for a total of four cycles of film formation / meltback. After all the cycles were completed, the slider 201 was moved again to separate the GaAs substrate 202 from the Ga solvent, and the crystal film formation was completed.

成膜したSi層の膜厚や表面状態を段差計および走査型電子顕微鏡により調べた結果、成膜したGaAs層の厚さは平均約10μmであり、平坦な表面(凹凸高さで0.2〜0.3μm程度)が得られていた。また成膜したGaAs層の方位についてECP(Electron Channeling Pattern)法により測定したところ、下地の多結晶GaAs基板の各々のグレインの結晶方位を受け継いでいることが分かった。   As a result of examining the film thickness and surface state of the deposited Si layer with a step meter and a scanning electron microscope, the average thickness of the deposited GaAs layer was about 10 μm, and the surface was flat (with an uneven height of 0.2 μm). ˜0.3 μm) was obtained. Further, when the orientation of the deposited GaAs layer was measured by an ECP (Electron Channeling Pattern) method, it was found that the grain orientation of each grain of the underlying polycrystalline GaAs substrate was inherited.

比較のためメルトバック工程が無い場合、すなわち上述において△T2を設定しないで△T1のみの設定で成膜のみ行った場合には、得られたエピタキシャルGaAs層は厚さは平均約15μmと厚かったものの、その表面性は悪く、1〜3μm程度の高さの凹凸が生じていた。   For comparison, when there is no meltback step, that is, when only ΔT1 is set without setting ΔT2 in the above, the obtained epitaxial GaAs layer has an average thickness of about 15 μm. However, the surface property was poor, and irregularities with a height of about 1 to 3 μm were produced.

また、上述の実施例において最初に△T2に設定してから始める、すなわち溶媒を未飽和にしてから基板に接触させることで成膜に先立って基板表面をメルトバックして清浄化を行うことができ、より高品質のGaAsエピタキシャル層が得られる。   Further, in the above-described embodiment, the process is started after first setting ΔT2, that is, the substrate surface is melted back and cleaned prior to film formation by making the solvent unsaturated and then contacting the substrate. And a higher quality GaAs epitaxial layer can be obtained.

(実施例3)
本例では図3に示す構成の液相成膜装置を用いて多結晶Si基板上にSi層を成膜させた。溶媒にIn、原料ガスにSiH4(溶質にSi)を用いた。キャスト法により形成した125mm角多結晶Siウエハ(厚さ0.6mm)302を5枚載置したウエハカセット301を予備室(図示せず)に待機させた状態で、In溶媒304を収容した成膜部303を電気炉308により加熱し溶媒の温度を960℃一定に保った。次に予備室に待機させていたウエハカセット301をゲートバルブ312を開いて成膜部303の直上で保持した。ゲートバルブは以後開いたままにした。原料ガスSiH4をH2ガスとともに(ガス流量比SiH4:H2=1:20)原料ガス導入管316に流し、原料ガス導入管の先端部に設けられた吹き出し口から成膜部315のIn溶媒内に噴出させた。この場合、噴出した原料ガスは溶媒と接触して分解し、溶媒中に溶質(Si)が速やかに溶け込んで供給されるとともに分解して発生するガス(反応生成ガス:H2等)305により溶媒が攪拌されて溶質の濃度が均一化される。ヒータブロック306により成膜部315の温度を970℃に調節し(△T1=10℃)、Inの溶媒を循環パイプ310を通して原料供給機構と成膜機構との間を循環させた。このとき溶媒の温度は熱交換器309a、309bにより原料供給機構の温度から成膜機構への温度へ、成膜機構から原料供給機構の温度へそれぞれ変換される。この状態で20分経ったところで、ウエハカセット301を10rpmの回転速度で回転させながら下降させてIn溶媒304中に入れ、完全にウエハカセット301がIn溶媒304中に浸漬したところで下降を止め、その位置を保持して回転させながら液相成膜を20分間行った。その後、冷却パイプ307中に窒素等の冷却ガスを流しつつヒータブロック306の出力を調整して成膜部315の温度を955℃に調節し(△T2=5℃)直して7分間保持(=t2)した。このとき溶質供給部における温度の970℃から955℃までの遷移時間(△t2)は15分であった。また熱交換器309bの内壁材は溶質と同じSiを使用し、溶媒中の過剰な溶質がこの熱交換器の内壁の表面上に析出するなどして溶媒の溶質濃度が調整される。この後さらに成膜部315の温度を970℃に調節し(△T1=10℃、遷移時間△t1=10分)、以後同じ工程を繰り返し全部で5サイクルの成膜/メルトバックを行った。全てのサイクルが終了した後ウエハカセット301をIn溶媒304中から引き上げ、成膜部303の直上で一旦停止して回転数を120rpmまで上げてウエハカセットに一部残留したInを振り切って液相成膜を終了した。
(Example 3)
In this example, a Si layer was formed on a polycrystalline Si substrate using the liquid phase film forming apparatus having the configuration shown in FIG. In was used as the solvent, and SiH4 (Si as the solute) was used as the source gas. A wafer cassette 301 on which five 125 mm square polycrystalline Si wafers (thickness: 0.6 mm) 302 formed by the casting method are placed in a standby chamber (not shown), and the In solvent 304 is accommodated. The film part 303 was heated by an electric furnace 308 to keep the temperature of the solvent constant at 960 ° C. Next, the wafer cassette 301 that was waiting in the preliminary chamber was held just above the film forming unit 303 by opening the gate valve 312. The gate valve was left open thereafter. The source gas SiH4 is flowed into the source gas introduction pipe 316 together with the H2 gas (gas flow ratio SiH4: H2 = 1: 20), and into the In solvent of the film forming unit 315 from the outlet provided at the tip of the source gas introduction pipe Erupted. In this case, the ejected raw material gas is decomposed in contact with the solvent, and the solute (Si) is rapidly dissolved and supplied to the solvent, and the solvent is generated by the gas 305 (reaction product gas: H 2 or the like) generated by decomposition. The solute concentration is made uniform by stirring. The temperature of the film forming unit 315 was adjusted to 970 ° C. by the heater block 306 (ΔT1 = 10 ° C.), and the In solvent was circulated between the raw material supply mechanism and the film forming mechanism through the circulation pipe 310. At this time, the temperature of the solvent is converted by the heat exchangers 309a and 309b from the temperature of the raw material supply mechanism to the temperature of the film forming mechanism and from the film forming mechanism to the temperature of the raw material supply mechanism. After 20 minutes in this state, the wafer cassette 301 is lowered while being rotated at a rotation speed of 10 rpm and is put into the In solvent 304. When the wafer cassette 301 is completely immersed in the In solvent 304, the descent is stopped. Liquid phase film formation was performed for 20 minutes while rotating while maintaining the position. Thereafter, the output of the heater block 306 is adjusted while flowing a cooling gas such as nitrogen through the cooling pipe 307 to adjust the temperature of the film forming unit 315 to 955 ° C. (ΔT2 = 5 ° C.) and held for 7 minutes (= t2). At this time, the transition time (Δt2) from 970 ° C. to 955 ° C. of the temperature in the solute supply unit was 15 minutes. The inner wall material of the heat exchanger 309b uses the same Si as the solute, and the solute concentration of the solvent is adjusted by, for example, depositing excess solute in the solvent on the surface of the inner wall of the heat exchanger. Thereafter, the temperature of the film forming unit 315 was further adjusted to 970 ° C. (ΔT1 = 10 ° C., transition time Δt1 = 10 minutes), and thereafter the same process was repeated to perform film formation / meltback for a total of 5 cycles. After all the cycles are completed, the wafer cassette 301 is lifted out of the In solvent 304, temporarily stopped immediately above the film forming unit 303, and the number of rotations is increased to 120 rpm. The membrane was terminated.

成膜したSi層の膜厚や表面状態を段差計および走査型電子顕微鏡により調べた結果、成膜したSi層の厚さは平均約50μmであり、ほぼ平坦な表面(凹凸高さで1〜2μm程度)が得られていた。また成膜したSi層の方位についてECP(Electron Channeling Pattern)法により測定したところ、下地の多結晶Si基板の各々のグレインの結晶方位を受け継いでいることが分かった。   As a result of investigating the film thickness and surface state of the deposited Si layer using a step gauge and a scanning electron microscope, the average thickness of the deposited Si layer was about 50 μm, and the surface was almost flat (1 to About 2 μm). Further, when the orientation of the deposited Si layer was measured by an ECP (Electron Channeling Pattern) method, it was found that the crystal orientation of each grain of the underlying polycrystalline Si substrate was inherited.

比較のためメルトバック工程が無い場合、すなわち上述において△T2を設定しないで△T1のみの設定で成膜のみ行った場合には、得られたSi層は厚さは平均約70μmと厚かったものの、その表面性は悪く、20〜50μm程度の高さの凹凸が生じていた。   For comparison, when there is no meltback process, that is, when only ΔT1 is set without setting ΔT2 in the above, the obtained Si layer has an average thickness of about 70 μm. The surface property was poor, and irregularities with a height of about 20 to 50 μm were generated.

(実施例4)
本例では図4に示す構成の液相成膜装置を用いて多結晶Si基板上にSi層を成膜させると同時に不純物ドープを行った。溶媒にSn、原料ガスにSi2H6(溶質にSi)、不純物ドーピングガスにB2H6を用いた。キャスト法により形成した幅40mm、長さ60mm、厚さ0.5mmの多結晶Si基板402をスライダ401の上に置き、循環パイプ(平型パイプ)410に設けられた開口部403の幅および長さをそれぞれ35mm、55mmとして、予めスライダの位置を調節して多結晶Si基板402が平型パイプの開口部403においてSn溶媒と接しないようにした。循環パイプ410内のSn溶媒404を電気炉408により加熱し溶媒の温度を930℃一定に保った。原料ガスSi2H6およびドーピングガスB2H6をH2ガスとともに(ガス流量比Si2H6:H2=1:20、B2H6/Si2H6=0.03)原料ガス導入管416に流し、原料ガス導入管の先端部に設けられた吹き出し口から成膜部415のIn溶媒内に噴出させた。この場合、噴出した原料ガスおよびドーピングガスは溶媒と接触して分解し、溶媒中に溶質(Si)およびドーパント(B)が速やかに溶け込んで供給されるとともに分解して発生するガス(反応生成ガス:H2等)405により溶媒が攪拌されて溶質およびドーパントの濃度が均一化される。ヒータブロック406により成膜部415の温度を935℃に調節し(△T1=5℃)、Snの溶媒を循環パイプ410を通して原料供給機構と成膜機構との間を循環させた。このとき溶媒の温度は熱交換器409a、409bにより原料供給機構の温度から成膜機構への温度へ、成膜機構から原料供給機構の温度へそれぞれ変換される。充分時間が経ったところでスライダ401を移動して開口部403において多結晶Si基板402をSn溶媒と接触させ、このままの状態で液相成膜を30分間行った。その後、冷却パイプ407中に窒素等の冷却ガスを流しつつヒータブロック406の出力を調整して成膜部415の温度を920℃に調節し(△T2=10℃)直して3分間保持(=t2)した。このとき溶質供給部における温度の935℃から920℃までの遷移時間(△t2)は15分であった。また熱交換器409bの内壁材は溶質と同じSiを使用し、溶媒中の過剰な溶質がこの熱交換器の内壁の表面上に析出するなどして溶媒の溶質濃度が調整される。この後さらに成膜部415の温度を935℃に調節し(△T1=5℃、遷移時間Δt1=10分)、以後同じ工程を繰り返し全部で4サイクルの成膜/メルトバックを行った。全てのサイクルが終了した後スライダ401を再度移動してSi基板402をSn溶媒から離して液相成膜を終了した。
Example 4
In this example, an Si layer was formed on a polycrystalline Si substrate using the liquid phase film forming apparatus having the configuration shown in FIG. Sn was used as the solvent, Si2H6 (Si as the solute) as the source gas, and B2H6 as the impurity doping gas. A polycrystalline Si substrate 402 having a width of 40 mm, a length of 60 mm, and a thickness of 0.5 mm formed by the casting method is placed on the slider 401, and the width and length of the opening 403 provided in the circulation pipe (flat pipe) 410 are arranged. The thickness was set to 35 mm and 55 mm, respectively, so that the position of the slider was adjusted in advance so that the polycrystalline Si substrate 402 did not come into contact with the Sn solvent at the opening 403 of the flat pipe. The Sn solvent 404 in the circulation pipe 410 was heated by the electric furnace 408 to keep the temperature of the solvent constant at 930 ° C. Source gas Si2H6 and doping gas B2H6 were flowed to source gas introduction pipe 416 together with H2 gas (gas flow ratio Si2H6: H2 = 1: 20, B2H6 / Si2H6 = 0.03) and provided at the tip of the source gas introduction pipe The film was ejected from the outlet into the In solvent of the film forming unit 415. In this case, the ejected source gas and doping gas are decomposed in contact with the solvent, and the solute (Si) and the dopant (B) are rapidly dissolved in the solvent and supplied and decomposed and generated (reaction product gas) : H2 etc.) The solvent is stirred by 405, and the concentration of the solute and the dopant is made uniform. The temperature of the film formation unit 415 was adjusted to 935 ° C. by the heater block 406 (ΔT1 = 5 ° C.), and the Sn solvent was circulated between the raw material supply mechanism and the film formation mechanism through the circulation pipe 410. At this time, the temperature of the solvent is converted by the heat exchangers 409a and 409b from the temperature of the raw material supply mechanism to the temperature of the film forming mechanism and from the film forming mechanism to the temperature of the raw material supply mechanism. When sufficient time had elapsed, the slider 401 was moved to bring the polycrystalline Si substrate 402 into contact with the Sn solvent at the opening 403, and in this state, liquid phase film formation was performed for 30 minutes. Thereafter, the output of the heater block 406 is adjusted while flowing a cooling gas such as nitrogen through the cooling pipe 407 to adjust the temperature of the film forming unit 415 to 920 ° C. (ΔT2 = 10 ° C.), and held for 3 minutes (= t2). At this time, the transition time (Δt2) from 935 ° C. to 920 ° C. of the temperature in the solute supply unit was 15 minutes. The inner wall material of the heat exchanger 409b uses the same Si as the solute, and the solute concentration in the solvent is adjusted by, for example, depositing excess solute in the solvent on the surface of the inner wall of the heat exchanger. Thereafter, the temperature of the film forming unit 415 was further adjusted to 935 ° C. (ΔT1 = 5 ° C., transition time Δt1 = 10 minutes), and thereafter the same process was repeated for a total of four cycles of film formation / meltback. After all the cycles were completed, the slider 401 was moved again to separate the Si substrate 402 from the Sn solvent, and the liquid phase film formation was completed.

成膜したSi層の膜厚や表面状態を段差計および走査型電子顕微鏡により調べた結果、成膜したSi層の厚さは平均約40μmであり、ほぼ平坦な表面(凹凸高さで1〜2μm程度)が得られていた。また成膜したSi層の方位についてECP(Electron Channeling Pattern)法により測定したところ、下地の多結晶Si基板の各々のグレインの結晶方位を受け継いでいることが分かった。   As a result of investigating the film thickness and surface state of the deposited Si layer using a step gauge and a scanning electron microscope, the average thickness of the deposited Si layer was about 40 μm, and the surface was almost flat (1 to About 2 μm). Further, when the orientation of the deposited Si layer was measured by an ECP (Electron Channeling Pattern) method, it was found that the crystal orientation of each grain of the underlying polycrystalline Si substrate was inherited.

比較のため図8の構成の液相成膜装置を用いて従来のメルトバック法、すなわち図5の温度プロファイルにより成膜を行った。溶媒にIn、原料ガスにSi2H6、不純物ドーピングガスにB2H6を用いた。キャスト法により形成した125mm角多結晶Siウエハ(厚さ0.6mm)802を5枚載置したウエハカセット801を予備室(図示せず)に待機させた状態で、Sn溶媒804を収容した成膜部803をヒータ(電気炉)808により加熱し溶媒の温度を935℃一定に保った。次に予備室に待機させていたウエハカセット801をゲートバルブ812を開いて反応管807内に導入し、成膜部803の直上で保持した。ゲートバルブは以後開いたままにした。原料ガスSi2H6およびドーピングガスB2H6をH2ガスとともに(ガス流量比Si2H6:H2=1:20、B2H6/Si2H6=0.03)原料ガス導入管816に流し、原料ガス導入管の先端部に設けられた吹き出し口809から成膜部803のSn溶媒内に噴出させた。この場合、噴出した原料ガスおよびドーピングガスは溶媒と接触して分解し、溶媒中に溶質(Si)およびドーパント(B)が速やかに溶け込んで供給されるとともに分解して発生するガス(反応生成ガス:H2等)805により溶媒が攪拌されて溶質の濃度が均一化される。20分間経ってガスを流し終えた後、ヒータ808を制御して反応管807内の溶媒を−1℃/minの速度で徐冷し始め、Sn溶媒804の温度が930℃になったところでウエハカセット801を10rpmの回転速度で回転させながら下降させてSn溶媒804中に入れ、完全にウエハカセット801がSn溶媒804中に浸漬したところで下降を止め、その位置を保持して回転させながら液相成膜を30分間行った。その後、ヒータ808を再び制御して反応管807内の溶媒を2℃/minの速度で昇温し、5分経ったところでまたヒータ808を制御して反応管807内の溶媒を‐1℃/minの速度で徐冷し、50分間液相成膜した。その後さらに反応管807内の溶媒を2℃/minの速度で昇温し、10分経ったところでまたヒータ808を制御して反応管807内の溶媒を‐1℃/minの速度で徐冷し、80分間液相成膜した。この後ウエハカセット801をSn溶媒804中から引き上げ、成膜部803の直上で一旦停止して回転数を120rpmまで上げてウエハカセットに一部残留したSnを振り切って液相成膜を終了した。   For comparison, film formation was performed by the conventional meltback method, that is, the temperature profile of FIG. In was used as the solvent, Si2H6 as the source gas, and B2H6 as the impurity doping gas. A wafer cassette 801 on which five 125 mm square polycrystalline Si wafers (thickness 0.6 mm) 802 formed by the casting method are placed in a standby chamber (not shown) and a Sn solvent 804 is accommodated. The film part 803 was heated by a heater (electric furnace) 808 to keep the temperature of the solvent constant at 935 ° C. Next, the wafer cassette 801 that was waiting in the preliminary chamber was introduced into the reaction tube 807 by opening the gate valve 812, and held immediately above the film forming unit 803. The gate valve was left open thereafter. Source gas Si2H6 and doping gas B2H6 were flowed to source gas introduction pipe 816 together with H2 gas (gas flow ratio Si2H6: H2 = 1: 20, B2H6 / Si2H6 = 0.03) and provided at the tip of the source gas introduction pipe The film was ejected from the outlet 809 into the Sn solvent of the film forming unit 803. In this case, the ejected source gas and doping gas are decomposed in contact with the solvent, and the solute (Si) and the dopant (B) are rapidly dissolved in the solvent and supplied and decomposed and generated (reaction product gas) : H2 etc.) 805 stirs the solvent to make the solute concentration uniform. After the gas flow was completed after 20 minutes, the heater 808 was controlled to gradually cool the solvent in the reaction tube 807 at a rate of −1 ° C./min, and when the temperature of the Sn solvent 804 reached 930 ° C. The cassette 801 is lowered while being rotated at a rotational speed of 10 rpm and is put into the Sn solvent 804. When the wafer cassette 801 is completely immersed in the Sn solvent 804, the descent is stopped and the liquid phase is maintained while rotating and rotating. Film formation was performed for 30 minutes. Thereafter, the heater 808 is controlled again to raise the temperature of the solvent in the reaction tube 807 at a rate of 2 ° C./min. After 5 minutes, the heater 808 is controlled again to change the solvent in the reaction tube 807 to −1 ° C./min. The solution was gradually cooled at a rate of min and a liquid phase film was formed for 50 minutes. Thereafter, the temperature of the solvent in the reaction tube 807 is further increased at a rate of 2 ° C./min. After 10 minutes, the heater 808 is controlled again and the solvent in the reaction tube 807 is gradually cooled at a rate of −1 ° C./min. For 80 minutes. Thereafter, the wafer cassette 801 was lifted out of the Sn solvent 804, temporarily stopped immediately above the film forming unit 803, the number of rotations was increased to 120 rpm, and Sn partially remaining on the wafer cassette was shaken off to complete the liquid phase film formation.

成膜したSi層の膜厚や表面状態を段差計および走査型電子顕微鏡により調べた結果、成膜したSi層の厚さは平均約40μmであり、ほぼ平坦な表面(凹凸高さで1〜2μm程度)が得られていた。また成膜したSi層の方位についてECP(Electron Channeling Pattern)法により測定したところ、下地の多結晶Si基板の各々のグレインの結晶方位を受け継いでいることが分かった。このように外観上は上述の実施例と同様なSi層が得られた。Si層中に含まれる不純物(ドーパント)Bの分布について2次イオン質量分析法により比較したところ、本実施例により成膜したSi層中のBの濃度分布はほぼ一定(変化幅5%以内)であった。これに対し比較例によるSi層中のB濃度は成膜開始時の濃度に比べて成膜終了時の濃度は約40%程度に減少していた。このことから、本発明の方法により従来よりも成膜Si層への均一なドーピングが可能であることが明らかとなった。   As a result of investigating the film thickness and surface state of the deposited Si layer using a step gauge and a scanning electron microscope, the average thickness of the deposited Si layer was about 40 μm, and the surface was almost flat (1 to About 2 μm). Further, when the orientation of the deposited Si layer was measured by an ECP (Electron Channeling Pattern) method, it was found that the crystal orientation of each grain of the underlying polycrystalline Si substrate was inherited. Thus, an Si layer similar in appearance to the above-described example was obtained. When the distribution of impurities (dopant) B contained in the Si layer is compared by secondary ion mass spectrometry, the concentration distribution of B in the Si layer formed by this example is almost constant (within 5% of variation). Met. On the other hand, the B concentration in the Si layer according to the comparative example was reduced to about 40% at the end of film formation compared to the concentration at the start of film formation. From this, it has been clarified that the method of the present invention enables more uniform doping to the deposited Si layer than before.

(実施例5)
本例ではn+/p型薄膜多結晶Si太陽電池を本発明の液相成膜法を用いて作製した。まず図1に示す装置を用いて実施例1と同一条件で0.6mm厚のp+多結晶Siウエハ(ρ=0.02Ω・cm)上にSi層を成膜した。比較のためにメルトバック工程無しで成膜したものも用意した。
(Example 5)
In this example, an n + / p-type thin film polycrystalline Si solar cell was produced using the liquid phase film formation method of the present invention. First, using the apparatus shown in FIG. 1, a Si layer was formed on a 0.6 mm thick p + polycrystalline Si wafer (ρ = 0.02 Ω · cm) under the same conditions as in Example 1. For comparison, a film formed without a meltback step was also prepared.

次に成膜した各々のSi層の表面にPOCl3を拡散源として900℃の温度でPの熱拡散を行ってn+層を形成し、0.5μm程度の接合深さを得た。形成されたn+層表面のデッド層(表面濃度が高すぎて短波長感度を悪くする部分)をウェット酸化後エッチングにより除去し、約0.2μmの適度な表面濃度をもった接合深さを得た。   Next, thermal diffusion of P was performed on the surface of each deposited Si layer at a temperature of 900 ° C. using POCl 3 as a diffusion source to form an n + layer, and a junction depth of about 0.5 μm was obtained. The formed dead layer on the surface of the n + layer (the portion where the surface concentration is too high and the short wavelength sensitivity is deteriorated) is removed by etching after wet oxidation to obtain a junction depth having an appropriate surface concentration of about 0.2 μm. It was.

最後にEB(Electron Beam)蒸着により集電電極(Ti/Pd/Ag(40nm/20nm/2μm))/SiN反射防止膜(82nm)をn+層上に、また裏面電極(Al(1μm))を基板裏面にそれぞれ形成して太陽電池とした。   Finally, a collector electrode (Ti / Pd / Ag (40 nm / 20 nm / 2 μm)) / SiN antireflection film (82 nm) is deposited on the n + layer and a back electrode (Al (1 μm)) by EB (Electron Beam) deposition. Each was formed on the back side of the substrate to obtain a solar cell.

このようにして得られた薄膜多結晶Si太陽電池についてAM1.5(100mW/cm2)光照射下でのI―V特性について測定したところ、本発明の方法により形成したSi層を用いた場合にはセル面積4cm2で開放電圧0.62V、短絡光電流31mA/cm2、曲線因子0.76となり、エネルギー変換効率14.6%を得た。また比較としてメルトバック工程無しで形成したSi層を用いた場合ではセル面積4cm2で開放電圧0.58V、短絡光電流32mA/cm2、曲線因子0.71、エネルギー変換効率は13.2%となり、このことから本発明の方法により形成したSi層は表面性が優れており、その結果良好な太陽電池が形成可能であることが示された。   The thin-film polycrystalline Si solar cell thus obtained was measured for IV characteristics under AM1.5 (100 mW / cm 2) light irradiation. When the Si layer formed by the method of the present invention was used, The cell area was 4 cm2, the open circuit voltage was 0.62 V, the short-circuit photocurrent was 31 mA / cm2, the fill factor was 0.76, and an energy conversion efficiency of 14.6% was obtained. For comparison, when a Si layer formed without a meltback step was used, the cell area was 4 cm2, the open-circuit voltage was 0.58 V, the short-circuit photocurrent was 32 mA / cm2, the fill factor was 0.71, and the energy conversion efficiency was 13.2%. This indicates that the Si layer formed by the method of the present invention has excellent surface properties, and as a result, a good solar cell can be formed.

本発明にかかる液相成膜装置の一例を示す模式的な断面図。1 is a schematic cross-sectional view showing an example of a liquid phase film forming apparatus according to the present invention. 本発明にかかる液相成膜装置の一例である基板と溶媒とが開口部で接する装置の一例を示す模式的な断面図。The typical sectional view showing an example of the device which the substrate and solvent which are an example of the liquid phase film-forming device concerning the present invention touch at the opening. 本発明にかかる液相成膜装置の一例である溶質の供給がガスで行われる装置の一例を示す模式的な断面図。The typical sectional view showing an example of the device with which supply of the solute which is an example of the liquid phase film formation device concerning the present invention is performed with gas. 本発明にかかる液相成膜装置の一例である溶質の供給がガスで行われると同時に基板と溶媒とが開口部で接する装置の一例を示す模式的な断面図。1 is a schematic cross-sectional view showing an example of an apparatus in which a substrate and a solvent are in contact with each other through an opening while supplying a solute as an example of a liquid phase film forming apparatus according to the present invention. 従来の方法による液相成膜の温度プロファイルを示す図。The figure which shows the temperature profile of the liquid phase film-forming by the conventional method. 図1の装置の溶質供給部の構造を示す図。The figure which shows the structure of the solute supply part of the apparatus of FIG. 図1の装置の溶質供給部の温度変化と成膜部に流入する溶媒の過飽和度の変化との関係について説明した図。The figure explaining the relationship between the temperature change of the solute supply part of the apparatus of FIG. 1, and the change of the supersaturation degree of the solvent which flows into a film-forming part. 従来の方法による液相成膜装置の一例を示す模式的な断面図。Schematic sectional view showing an example of a liquid phase film forming apparatus according to a conventional method.

符号の説明Explanation of symbols

102、202、302、402、802 基板(ウエハ)
101、301、801 ウエハカセット
201、401 スライダ
103、303、315、415、803 成膜部
203、403 開口部
104、204、304、404、804 溶媒(メルト)
105、205 溶質供給部
305、405、805 反応生成ガス
106、206、306、406 ヒータブロック
107、207、307、407 冷却パイプ
807 反応管
108、208、308、408、808 電気炉(ヒータ)
109、209、309a、309b、409a、409b 熱交換器
809 ガス吹き出し孔
110、210、310、410 循環パイプ
111、211、311、411 ロータ
112、312、812 ゲートバルブ
113、213、313、413 原料供給機構
114、214、314、414 成膜機構
316、416、816 ガス導入管
317、417、817 排気管
118、218、318、418 冷却ガス
319、419、819 原料ガスおよびドーパントガス
320、420、820 排ガス
102, 202, 302, 402, 802 Substrate (wafer)
101, 301, 801 Wafer cassette 201, 401 Slider 103, 303, 315, 415, 803 Deposition unit 203, 403 Opening 104, 204, 304, 404, 804 Solvent (melt)
105, 205 Solute supply unit 305, 405, 805 Reaction product gas 106, 206, 306, 406 Heater block 107, 207, 307, 407 Cooling pipe 807 Reaction tube 108, 208, 308, 408, 808 Electric furnace (heater)
109, 209, 309a, 309b, 409a, 409b Heat exchanger 809 Gas outlet 110, 210, 310, 410 Circulation pipe 111, 211, 311, 411 Rotor 112, 312, 812 Gate valve 113, 213, 313, 413 Raw material Supply mechanism 114, 214, 314, 414 Film formation mechanism 316, 416, 816 Gas introduction pipe 317, 417, 817 Exhaust pipe 118, 218, 318, 418 Cooling gas 319, 419, 819 Source gas and dopant gas 320, 420, 820 exhaust gas

Claims (23)

溶質供給部と成膜部の温度を独立に制御し、かつ前記溶質供給部と成膜部の間で溶質が溶け込んだ溶媒を循環させることにより基板上に成膜を行う液相成膜方法であって、前記成膜部を所定の温度に保持し、溶質供給部の温度を成膜部の温度に対して所定の範囲の温度幅で変化させることにより、経時的に連続して過飽和度が変化した溶媒を前記成膜部に供給することを特徴とする連続液相成膜方法。   A liquid phase film forming method in which the temperature of the solute supply unit and the film forming unit is controlled independently, and the solvent in which the solute is dissolved is circulated between the solute supply unit and the film forming unit to form a film on the substrate. Then, by maintaining the film forming unit at a predetermined temperature and changing the temperature of the solute supply unit in a temperature range within a predetermined range with respect to the temperature of the film forming unit, the degree of supersaturation is continuously increased over time. A continuous liquid phase film forming method, wherein the changed solvent is supplied to the film forming section. 前記溶質供給部と成膜部とが熱交換器を介して連結されていることを特徴とする請求項1に記載の連続液相成膜方法。   The continuous liquid phase film forming method according to claim 1, wherein the solute supply unit and the film forming unit are connected via a heat exchanger. 前記溶質供給部の温度が加熱手段と冷却手段とを備えた温度制御機構により制御されることを特徴とする請求項1および2に記載の連続液相成膜方法。   3. The continuous liquid phase film forming method according to claim 1, wherein the temperature of the solute supply unit is controlled by a temperature control mechanism including a heating unit and a cooling unit. 前記溶媒の循環が前記溶質供給部と成膜部とを繋ぐパイプの内部の一部分に設けた溶媒循環用のロータにより行われることを特徴とする請求項1乃至3に記載の連続液相成膜方法。   4. The continuous liquid phase film formation according to claim 1, wherein the solvent circulation is performed by a solvent circulation rotor provided in a part of a pipe connecting the solute supply unit and the film formation unit. Method. 前記溶媒として金属からなる溶媒を用いることを特徴とする請求項1乃至4に記載の連続液相成膜方法。   5. The continuous liquid phase film forming method according to claim 1, wherein a solvent made of a metal is used as the solvent. 前記金属がIn、Sn、Bi、Ga、Sbから選ばれる少なくとも1種であることを特徴とする請求項5記載の連続液相成膜方法。   6. The continuous liquid phase film forming method according to claim 5, wherein the metal is at least one selected from In, Sn, Bi, Ga, and Sb. 前記溶質がSiであることを特徴とする請求項1乃至6に記載の連続液相成膜方法。   The continuous liquid phase film forming method according to claim 1, wherein the solute is Si. 前記溶質供給部において変化する温度の幅が成膜部の温度に対して+方向および‐方向ともに0〜50℃の範囲の中にあることを特徴とする請求項1乃至7に記載の連続液相成膜方法。   The continuous liquid according to any one of claims 1 to 7, wherein a temperature range changing in the solute supply unit is in a range of 0 to 50 ° C in both the + direction and the-direction with respect to the temperature of the film forming unit. Phase deposition method. 前記溶媒に溶質を供給するのが前記溶質供給部内に保持された原料ガス導入管により前記溶媒中に原料ガスを送り込むことにより行われることを特徴とする請求項1乃至8に記載の連続液相成膜方法。   The continuous liquid phase according to any one of claims 1 to 8, wherein the solute is supplied to the solvent by feeding a raw material gas into the solvent by a raw material gas introduction pipe held in the solute supply unit. Film forming method. 前記原料ガスがSiH4からなることを特徴とする請求項9に記載の連続液相成膜方法。   The continuous liquid phase film forming method according to claim 9, wherein the source gas is made of SiH 4. 前記原料ガスがSinH2n+2(nは2以上の整数)からなることを特徴とする請求項9に記載の連続液相成膜方法。   The continuous liquid phase film-forming method according to claim 9, wherein the source gas is made of SinH2n + 2 (n is an integer of 2 or more). 前記原料ガスがハロゲン化シランからなることを特徴とする請求項9に記載の連続液相成膜方法。   The continuous liquid phase film forming method according to claim 9, wherein the source gas is made of a halogenated silane. 前記原料ガスはPH3、PF3、AsH3、B2H6、BF3、BCl3、Ga(CH3)3、Ga(C2H5)3のドーパントを含むガスの中から選ばれる少なくとも1種とともに前記溶媒中に送り込まれることを特徴とする請求項9乃至12に記載の連続液相成膜方法。   The source gas is fed into the solvent together with at least one selected from gases containing dopants of PH3, PF3, AsH3, B2H6, BF3, BCl3, Ga (CH3) 3, and Ga (C2H5) 3. The continuous liquid phase film forming method according to claim 9. 溶媒に溶質を供給する原料供給機構と、前記溶質が供給された溶媒を基板に接触させて結晶成膜を行う成膜機構と、前記原料供給機構と成膜機構との間で前記溶媒を循環させるパイプとを備え、前記原料供給機構の温度と前記成膜機構の温度とを独立して温度制御するための手段を設けた連続液相成膜装置において、前記原料供給機構の温度を前記成膜機構の温度に対して所定の範囲の温度幅で制御する手段と、前記原料供給機構から前記成膜機構に連続的に溶媒を供給する手段とを有することを特徴とする連続液相成膜装置。   A raw material supply mechanism for supplying a solute to the solvent, a film forming mechanism for forming a crystal film by bringing the solvent supplied with the solute into contact with a substrate, and circulating the solvent between the raw material supply mechanism and the film forming mechanism A continuous liquid phase film forming apparatus provided with means for independently controlling the temperature of the raw material supply mechanism and the temperature of the film forming mechanism. Continuous liquid phase film formation comprising: means for controlling the temperature of the film mechanism within a temperature range within a predetermined range; and means for continuously supplying a solvent from the raw material supply mechanism to the film formation mechanism apparatus. 前記パイプの少なくとも一部が熱交換器となっていることを特徴とする請求項14に記載の連続液相成膜装置。   The continuous liquid phase film forming apparatus according to claim 14, wherein at least a part of the pipe is a heat exchanger. 前記溶媒の循環が前記原料供給機構と成膜機構とを繋ぐパイプの内部の一部分に設けた溶媒循環用のロータにより行われることを特徴とする請求項14および15に記載の連続液相成膜装置。   16. The continuous liquid phase film formation according to claim 14 or 15, wherein the circulation of the solvent is performed by a solvent circulation rotor provided in a part of a pipe connecting the raw material supply mechanism and the film formation mechanism. apparatus. 前記溶媒として金属からなる溶媒を用いることを特徴とする請求項14乃至16に記載の連続液相成膜装置。   The continuous liquid phase film forming apparatus according to claim 14, wherein a solvent made of a metal is used as the solvent. 前記金属がIn、Sn、Bi、Ga、Sbから選ばれる少なくとも1種であることを特徴とする請求項14乃至17記載の連続液相成膜装置。   18. The continuous liquid phase film forming apparatus according to claim 14, wherein the metal is at least one selected from In, Sn, Bi, Ga, and Sb. 前記溶質がSiであることを特徴とする請求項14乃至18に記載の連続液相成膜装置。   The continuous liquid phase film forming apparatus according to claim 14, wherein the solute is Si. 前記原料供給機構の温度が加熱手段と冷却手段とを備えた温度制御機構により制御されることを特徴とする請求項14乃至19に記載の連続液相成膜装置。   20. The continuous liquid phase film forming apparatus according to claim 14, wherein a temperature of the raw material supply mechanism is controlled by a temperature control mechanism including a heating unit and a cooling unit. 前記成膜機構は該成膜機構内に保持された成膜部に出し入れ自在のウエハカセットを有することを特徴とする請求項14乃至20に記載の連続液相成膜装置。   21. The continuous liquid phase film forming apparatus according to claim 14, wherein the film forming mechanism includes a wafer cassette that can be inserted into and removed from a film forming unit held in the film forming mechanism. 前記成膜機構は、前記循環パイプの途中に基板と接触させるための開口があり、前記基板を保持するとともに移動しながら前記パイプの開口部において前記溶媒と前記基板とが接するように配置されたスライダが設けられている構造を有することを特徴とする請求項14乃至20に記載の連続液相成膜装置。   The film forming mechanism has an opening in contact with the substrate in the middle of the circulation pipe, and is arranged so that the solvent and the substrate are in contact with each other at the opening of the pipe while holding and moving the substrate. 21. The continuous liquid phase film forming apparatus according to claim 14, wherein the apparatus is provided with a slider. 前記溶媒に溶質を供給するのが前記原料供給機構内に保持された原料ガス導入管により前記溶媒中に原料ガスを送り込むことにより行われることを特徴とする請求項14乃至22に記載の連続液相成膜装置。   23. The continuous liquid according to claim 14, wherein the solute is supplied to the solvent by feeding a raw material gas into the solvent through a raw material gas introduction pipe held in the raw material supply mechanism. Phase deposition system.
JP2005027661A 2005-02-03 2005-02-03 Consecutive liquid-phase film forming method and device Withdrawn JP2006216761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027661A JP2006216761A (en) 2005-02-03 2005-02-03 Consecutive liquid-phase film forming method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027661A JP2006216761A (en) 2005-02-03 2005-02-03 Consecutive liquid-phase film forming method and device

Publications (1)

Publication Number Publication Date
JP2006216761A true JP2006216761A (en) 2006-08-17

Family

ID=36979717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027661A Withdrawn JP2006216761A (en) 2005-02-03 2005-02-03 Consecutive liquid-phase film forming method and device

Country Status (1)

Country Link
JP (1) JP2006216761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086225A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Process for producing nanoparticle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086225A1 (en) * 2006-01-27 2007-08-02 Konica Minolta Medical & Graphic, Inc. Process for producing nanoparticle
US7658899B2 (en) 2006-01-27 2010-02-09 Konica Minolta Medical & Graphic, Inc. Production method of nanoparticle
JP5125516B2 (en) * 2006-01-27 2013-01-23 コニカミノルタエムジー株式会社 Method for producing nanoparticles

Similar Documents

Publication Publication Date Title
JP5330349B2 (en) Method for producing single crystal thin film
JP2693032B2 (en) Method for forming semiconductor layer and method for manufacturing solar cell using the same
CN102277618B (en) Polysilicon ingot, manufacturing method and growing furnace thereof, as well as bottom plate and solar cell of growing furnace
US7572334B2 (en) Apparatus for fabricating large-surface area polycrystalline silicon sheets for solar cell application
CN103748791B (en) The method of epitaxial deposition silicon wafer on silicon substrate in epitaxial reactor
KR101522480B1 (en) Method of manufacturing silicon single crystal, silicon single crystal, and wafer
US7022181B2 (en) Liquid phase growth process, liquid phase growth system and substrate member production method
US20090288591A1 (en) Crystal Growth Apparatus for Solar Cell Manufacturing
US20090090295A1 (en) Method for growing silicon ingot
US6391108B2 (en) Liquid phase growth method of silicon crystal, method of producing solar cell, and liquid phase growth apparatus
US20060225775A1 (en) Solar cell
US7118625B2 (en) Liquid phase growth method for silicon crystal, manufacturing method for solar cell and liquid phase growth apparatus for silicon crystal
US6824609B2 (en) Liquid phase growth method and liquid phase growth apparatus
JP2006216761A (en) Consecutive liquid-phase film forming method and device
Serra et al. The silicon on dust substrate path to make solar cells directly from a gaseous feedstock
JP3122283B2 (en) Liquid phase growth method and apparatus
JP2915434B2 (en) Method and apparatus for forming semiconductor layer and method for manufacturing solar cell using this method
JPH11292693A (en) Liquid phase growth of silicon crystal, production of solar cell and liquid phase growth device
Kardauskas et al. The coming of age of a new PV wafer technology-some aspects of EFG polycrystalline silicon sheet manufacture
JP5213037B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
US10392725B2 (en) Method for depositing silicon feedstock material, silicon wafer, solar cell and PV module
JP2003224081A (en) Liquid growth method, liquid growth equipment and semiconductor device
JP2004161583A (en) Method for manufacturing thin sheet, and solar battery
JPS6077118A (en) Method for producing thin silicon film and apparatus therefor
Augusto et al. Progress on the continuous optical fast CVD system to grow silicon ribbons for solar cells via SDS process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513