JPH0634902B2 - Exhaust gas denitration method - Google Patents

Exhaust gas denitration method

Info

Publication number
JPH0634902B2
JPH0634902B2 JP62028200A JP2820087A JPH0634902B2 JP H0634902 B2 JPH0634902 B2 JP H0634902B2 JP 62028200 A JP62028200 A JP 62028200A JP 2820087 A JP2820087 A JP 2820087A JP H0634902 B2 JPH0634902 B2 JP H0634902B2
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia water
flue
catalyst
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62028200A
Other languages
Japanese (ja)
Other versions
JPS6427623A (en
Inventor
三樹 山岸
裕雄 酒井
常晴 宮地
隆 横山
孝男 南
強 仲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP62028200A priority Critical patent/JPH0634902B2/en
Publication of JPS6427623A publication Critical patent/JPS6427623A/en
Publication of JPH0634902B2 publication Critical patent/JPH0634902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) この発明は排ガス中のNOx を除去する触媒脱硝法に関す
るものであって、排ガス中NOx を触媒反応塔における閉
塞や腐食を解消した好ましい反応条件下において効率的
に除去することができ、トラブルの少ない方法を提供し
ようとするものである。
DETAILED DESCRIPTION OF THE INVENTION "Object of the Invention" (Industrial field of application) The present invention relates to a catalytic denitration method for removing NOx in exhaust gas, in which NOx in exhaust gas is blocked or corroded in a catalytic reaction tower. It is intended to provide a method which can be efficiently removed under the preferable reaction conditions which have been eliminated and which has less trouble.

(従来の技術) 排ガス中に含まれるNOx を除去する触媒脱硝法には2つ
の方法があり広く採用されている。1つは液体アンモニ
アもしくはアンモニアガスを原料とし、ガス状のアンモ
ニアを触媒反応塔より上流側の排ガス煙道に吹き込んで
排ガス中のNOx と反応せしめる方法である。この方法は
脱硝上の問題はないが気化し易い液体アンモニア等を扱
うことから高圧ガス取締法等の法規制を受けて取扱いが
簡単でないこと、配管等のガス漏れの際の危険性がある
こと、又は関連機器の補修時等のガスリークの際、作業
環境上の問題を生じ易い等の欠陥がある。もう1つはア
ンモニア水をスプレイして前述の方法と同様に触媒反応
塔の上流側の排ガス煙道に吹き込む方法である。この方
法は臭気もしくは安全性の面では問題は少ないが排ガス
の温度の低い時は、ミストが気化するまでの間に液滴中
のアンモニアと排ガス中のSO2、SO3等が反応し、 2NH4OH +SO3 →(NH4)2SO4 +H2O ,NH4OH +SO3 →NH
4HSO4 ,2NH4OH +SO2 →(NH4)2SO3 +H2O ,NH4OH +
SO2 →NH4HSO3 , 等の化合物を生成し、これ等が触媒反応塔に到達するま
でに完全に分解せず触媒に付着蓄積されて触媒の有効表
面積を減少させ、脱硫効率を低下させ、更に継続すると
触媒層を閉塞せしめる等の欠陥を有している。
(Prior Art) There are two methods widely used as a catalytic denitration method for removing NOx contained in exhaust gas. One is a method in which liquid ammonia or ammonia gas is used as a raw material, and gaseous ammonia is blown into the exhaust gas flue upstream of the catalytic reaction tower to react with NOx in the exhaust gas. This method does not have a denitration problem, but since it handles liquid ammonia that is easily vaporized, it is not easy to handle because it is subject to legal regulations such as the High Pressure Gas Control Law, and there is a risk of gas leaks in pipes, etc. Or, there is a defect that a problem in the work environment is likely to occur when a gas leak occurs when repairing related equipment. The other is a method in which ammonia water is sprayed and blown into the exhaust gas flue on the upstream side of the catalytic reaction column in the same manner as the above method. This method is less problematic in terms of odor or safety, but when the temperature of the exhaust gas is low, ammonia in the droplets reacts with SO 2 , SO 3 etc. in the exhaust gas until the mist vaporizes, and 2NH 4 OH + SO 3 → (NH 4 ) 2 SO 4 + H 2 O, NH 4 OH + SO 3 → NH
4 HSO 4 , 2NH 4 OH + SO 2 → (NH 4 ) 2 SO 3 + H 2 O, NH 4 OH +
Compounds such as SO 2 → NH 4 HSO 3 are produced, and these are not completely decomposed by the time they reach the catalytic reaction tower and are deposited and accumulated on the catalyst to reduce the effective surface area of the catalyst and reduce the desulfurization efficiency. However, if it is continued, it has a defect such as blocking the catalyst layer.

また特開昭53−11162号公報においては上記のよ
うな排ガス中へのアンモニア水のスプレイに当って、使
用するアンモニア水を脱硝後の排ガスが保有する熱量を
利用し加熱気化させることが発表されている。
Further, in Japanese Patent Laid-Open No. 53-11162, it is announced that the ammonia water to be used is heated and vaporized by utilizing the heat amount of the exhaust gas after denitration in the spraying of the ammonia water. ing.

なお、特開昭54−136572号公報においてはNOx
を脱硝触媒の存在下で接触的に還元除去する処理工程に
おいて、還元剤としてのアンモニア水を粒子の大きさが
最大300μ以下の液滴状態で触媒に達する時間が2〜
10秒前の部位で添加することが発表されている。
Incidentally, in JP-A-54-135672, NOx
In the treatment step of catalytically reducing and removing the above in the presence of a denitration catalyst, the time required for the ammonia water as a reducing agent to reach the catalyst in a droplet state with a maximum particle size of 300 μ or less is 2 to
It has been announced that it will be added 10 seconds before.

(発明が解決しようとする問題点) 上記のような従来技術中で好ましいものとしてはアンモ
ニア水を用いる方法であるが、このアンモニア水を用い
る場合において前記したスプレイ法および特開昭53−
11162の何れの方法においても触媒反応塔での排ガ
スに含まれる粉塵などによる閉塞を回避するには集塵処
理することが必要であり、斯うした場合集塵機を適正に
働かせるためには排ガス温度が300℃以下のような低
温で実施せざるを得ないこととなるのが一般的で、この
ように排ガス温度が300℃以下となった場合において
は問題が残っている。
(Problems to be Solved by the Invention) Among the above-mentioned conventional techniques, a method using ammonia water is preferable. When the ammonia water is used, the spray method described above and Japanese Patent Laid-Open No. 53-
In any of the methods of 11162, it is necessary to perform a dust collecting process in order to avoid blockage due to dust or the like contained in the exhaust gas in the catalytic reaction tower, and in such a case, the exhaust gas temperature is required to operate the dust collector properly. It is generally necessary to carry out at a low temperature such as 300 ° C. or lower, and a problem remains when the exhaust gas temperature becomes 300 ° C. or lower.

即ち、排ガスの脱硝方法における反応温度は、一般的に
無触媒の場合には700〜1000℃、触媒法の場合に
は300〜400℃であるが、これが前記のような20
0〜300℃で実施せざるを得ない場合には、アンモニ
ア水スプレイ手法ではそのスプレイの際発生するミスト
の気化に3〜4秒かかるので前述のような化合物生成に
よる問題が生じ易い。尚、アンモニアガスを吹き込んだ
場合でも前述のようなSOx との反応も考えられるが、排
ガス温度が230℃以上であれば反応は起り難く280
℃以上の場合は殆んど反応はしないとされている。
That is, the reaction temperature in the exhaust gas denitration method is generally 700 to 1000 ° C. in the case of no catalyst and 300 to 400 ° C. in the case of the catalytic method.
In the case of having to carry out at 0 to 300 ° C., it takes 3 to 4 seconds to vaporize the mist generated at the time of spraying in the ammonia water spray method, so that the above-mentioned problem due to compound formation easily occurs. Even if ammonia gas is blown in, the reaction with SOx as described above can be considered, but if the exhaust gas temperature is 230 ° C or higher, the reaction is hard to occur.
It is said that almost no reaction occurs at temperatures above ℃.

特開昭53−11162の方法の場合においても、この
技術は排ガス(排煙)の高温を利用してアンモニア水を
気化させるもので、排ガス温度が300〜450℃の高
温であることを前提として成立しており、前記のような
300℃以下の条件下で実施せざるを得ない場合におい
てはその効果が得られない。即ち少なくとも300℃以
下の排ガス温度条件を前提とした場合においては別の脱
硝技術を重複して採用しなければならない不利がある。
また排ガス中に設けられた加熱器などの腐食による安全
性も問題とならざるを得ない。
Also in the case of the method of Japanese Patent Laid-Open No. 53-11162, this technique uses the high temperature of exhaust gas (flue gas) to vaporize ammonia water, and it is premised that the exhaust gas temperature is high at 300 to 450 ° C. If the condition is satisfied, and it is unavoidable to carry out under the condition of 300 ° C. or lower, the effect cannot be obtained. That is, there is a disadvantage in that another denitration technique must be duplicated when assuming an exhaust gas temperature condition of at least 300 ° C. or less.
In addition, safety due to corrosion of a heater provided in the exhaust gas is unavoidable.

前記特開昭54−136572号公報によるものは気相
ではSOx とアンモニアの反応が極めて遅いので、アンモ
ニア水が気化した気相アンモニアの反応以前にSOx をア
ンモニア水に吸収し液中で反応させるためにアンモニア
水粒子の大きさを規定するものであるが、この場合には
アンモニア液滴が周囲の排ガスから熱量供給を受けて温
度上昇するのにそれなりの時間を必要とし、その間に排
ガス中SOx は液滴に吸収されて硫安系化合物を生成し、
そうした溶液が触媒や装置に附着して触媒性能の低下や
腐食を発生する。即ち触媒反応が阻害され、設備の耐用
性が損なわれる。更に触媒に達する2〜10秒前に添加
するということは実際のこの種設備として相当に長大と
ならざるを得ない不利がある。
Since the reaction of SOx and ammonia in the gas phase is extremely slow in JP-A-54-135672, SOx is absorbed in the ammonia water and reacted in the liquid before the reaction of the gas phase ammonia vaporized by the ammonia water. The size of the ammonia water particles is regulated in this case.In this case, it takes a certain amount of time for the ammonia droplets to receive the heat supply from the surrounding exhaust gas and to rise in temperature, during which SOx in the exhaust gas is It is absorbed by the liquid droplets to form ammonium sulfate compounds,
Such a solution adheres to the catalyst and the device and causes deterioration of catalyst performance and corrosion. That is, the catalytic reaction is hindered and the durability of the equipment is impaired. Further, the addition of the catalyst 2 to 10 seconds before reaching the catalyst has a disadvantage in that it is unavoidably long as an actual facility of this kind.

「発明の構成」 (問題点を解決するための手段) 本発明は上述したような現状に鑑み創案されたもので、
比較的取り扱いの簡単なアンモニア水を利用しこれを水
蒸気などにより加熱・加圧して触媒反応塔より上流側の
煙道に吹き込むことにより、300℃以下のような排ガ
スに対し上述したような化合物の生成を抑制した好まし
い反応を図らしめ、従来のアンモニア水のスプレイによ
り生ずるSOx との反応生成物による触媒層の閉塞等の問
題点を解決し、煙道における排ガス温度が低い場合ない
し過程でも触媒反応塔に付着する硫安、亜硫安、酸性硫
安等の反応生成物の生成を阻止し、また排ガス中粉塵な
どによる触媒層の閉塞をもなからしめ、更には有効な腐
食防止と触媒性能低下防止を図ることに成功したもので
あって、以下の如くである。
“Structure of the Invention” (Means for Solving Problems) The present invention was devised in view of the above-mentioned current situation,
By using ammonia water, which is relatively easy to handle, and heating and pressurizing it with steam, etc., and blowing it into the flue upstream of the catalytic reaction tower, it is possible to remove the compound as described above against exhaust gas at temperatures of 300 ° C or lower. The desired reaction with suppressed generation was solved, and problems such as clogging of the catalyst layer due to the reaction product with SOx generated by the spray of conventional ammonia water were solved, and the catalytic reaction was achieved even when the exhaust gas temperature in the flue was low or during the process. Prevents the formation of reaction products such as ammonium sulfate, ammonium sulfite, and acidic ammonium sulfate adhering to the tower, and also prevents clogging of the catalyst layer due to dust in the exhaust gas, as well as effective corrosion prevention and catalyst performance deterioration prevention. It has succeeded in achieving it, and is as follows.

触媒を使用する脱硝方法において、触媒反応塔より上流
側の300℃以下とされた排ガス煙道に、該排ガス煙道
外でアンモニア水を加熱加圧すると共に若干の小液滴が
存在しても一気に気化されるように圧力調整して吹き込
むことを特徴とする排ガスの脱硝方法。
In a denitration method using a catalyst, ammonia water is heated and pressurized outside the exhaust gas flue at a temperature of 300 ° C. or lower on the upstream side of the catalytic reaction tower, and at the same time, some small droplets are vaporized at once. A method for denitrifying exhaust gas, characterized in that the pressure is adjusted and blown in as described above.

(作用) 前述したように、アンモニア水を利用する際の欠点は煙
道排ガスの温度が300℃以下のように低い場合、アン
モニア水のスプレイの際小液滴が存在すると気化に時間
を必要とし、またこの排ガスで加熱しても好ましい気化
が得られないことが硫安等の反応生成物を生じて閉塞や
腐食の原因となるが、本発明においてアンモニア水を水
蒸気により加熱ししかも加圧して吹き込むことにより若
干の小液滴が存在しても一気に気化されると共に反応平
衡常数より高い温度条件を形成して硫安や酸性硫安など
の生成を回避しこれらの不利を有効に解消する。圧力調
整弁で2kg/cm2以上に昇圧したアンモニア水を圧力調
整して吹き込むことにより排ガス煙道のガス中に均等状
に分散して添加し、反応を迅速化すると共に効率的な排
ガス中NOx の除去を図る。またこの圧力上限を20kg/
cm2とすることによって設備および操業的な困難性をな
からしめる。
(Function) As described above, the drawback of using ammonia water is that when the temperature of the flue gas is low, such as 300 ° C. or lower, it takes time to vaporize when small droplets are present when the ammonia water is sprayed. Also, the fact that preferable vaporization cannot be obtained by heating with this exhaust gas causes reaction products such as ammonium sulfate to cause clogging and corrosion, but in the present invention, ammonia water is heated by steam and blown under pressure. As a result, even if some small droplets are present, they are vaporized all at once and a temperature condition higher than the reaction equilibrium constant is formed to avoid the formation of ammonium sulfate or acidic ammonium sulfate and effectively eliminate these disadvantages. Ammonia water, whose pressure is adjusted to 2 kg / cm 2 or more with a pressure control valve, is pressure-adjusted and blown to evenly disperse and add it to the gas in the exhaust gas flue, speeding up the reaction and achieving efficient NOx in the exhaust gas. Try to remove. The upper limit of this pressure is 20 kg /
The cm 2 makes it possible to overcome the difficulty in equipment and operation.

加熱したアンモニア水を吹き込む態様としては、アンモ
ニア水の加熱器と煙道との間に圧力調整弁を設け加圧状
態で加熱するもので、このようにするとノズルから噴出
された瞬間には若干の小液滴が存在しても充分に分散さ
れているので一気に気化され、従来のように液滴の蒸発
に時間を要することがなく、触媒層に亜硫安等が付着し
て閉塞などを生ずることも殆どないし設備の腐食なども
有効に防止することができる。なお加熱用熱源としての
水蒸気はこのような脱硝を必要とする工場設備などにお
いて容易に採用し得るが、場合によっても電熱や高温排
ガスなどを採用してもよい。
As a mode of blowing the heated ammonia water, a pressure control valve is provided between the heater of the ammonia water and the flue to heat in a pressurized state. Even if small droplets are present, they are sufficiently dispersed so that they are vaporized all at once, and it does not take time to evaporate the droplets as in the past, and ammonium sulfite, etc. adheres to the catalyst layer and causes clogging. Almost no corrosion of equipment can be effectively prevented. Although steam as a heat source for heating can be easily adopted in factory equipment or the like that requires such denitration, electric heat or high temperature exhaust gas may be adopted depending on the case.

前記のように煙道排ガス温度が300℃以下であること
から集塵機などを設け適切に集塵するプロセスの排ガス
に対し有効に採用されることとなり、従って排ガス中粉
塵などによる触媒層の閉塞も適切に防止することがで
き、上述のように硫安系化合物等の反応生成物による閉
塞解消、腐食防止と相俟って連続的に安定な排ガス処理
を可能とする。
As described above, since the flue gas temperature is 300 ° C or lower, it can be effectively used for the exhaust gas in the process of appropriately collecting the dust by installing a dust collector, and therefore the clogging of the catalyst layer due to the dust in the exhaust gas is also appropriate. As a result, it is possible to continuously and stably treat exhaust gas in combination with elimination of blockage by reaction products such as ammonium sulfate-based compounds and prevention of corrosion as described above.

(実施例) 第1図に示したような構成からなる廃棄物焼却処理設備
の排ガス煙道に対するアンモニア水添加機構により実施
した。即ち処理量が100トン/day の焼却炉からの煙
道6に濃度30%のアンモニア水はタンク1から供給管
2を通りポンプ3、流量調節弁4を経て煙道6における
ガス流量変化(20000〜40000Nm3/H)に略
比例状態として7〜14/Hに流量調整して加熱器5
へ送った。加熱器5の熱源としては150〜180℃の水蒸気
を使用し、排ガス煙道6の手前に設けられた圧力調節弁
7によって加熱器5の中を2〜20kg/cm2の圧力に調
節し、即ち煙道6における前記のような焼却処理設備の
立上り時からのガス温度および流量変化に即応させて圧
力を調整し、前記のように濃度30%のアンモニア水を
スタート時の40℃から140℃の範囲に加熱して煙道
6に噴射した。
(Example) It was carried out by an ammonia water addition mechanism to the exhaust gas flue of the waste incineration treatment facility having the configuration shown in FIG. That is, the ammonia water having a concentration of 30% is introduced into the flue 6 from the incinerator having a throughput of 100 tons / day, the gas flow rate change (20000) in the flue 6 from the tank 1 through the supply pipe 2, the pump 3 and the flow control valve 4. To 40,000 Nm 3 / H) and the flow rate is adjusted to 7 to 14 / H in a state substantially proportional to the heater 5
Sent to. Steam of 150 to 180 ° C. is used as a heat source of the heater 5, and the pressure inside the heater 5 is adjusted to 2 to 20 kg / cm 2 by a pressure control valve 7 provided in front of the exhaust gas flue 6. That is, the pressure is adjusted in response to changes in gas temperature and flow rate from the start-up of the incinerator in the flue 6 as described above, and ammonia water having a concentration of 30% is started at 40 ° C. to 140 ° C. as described above. It was heated to the range of and was injected into the flue 6.

圧力調節弁7を出たアンモニア水は瞬間的に減圧され、
前記したような焼却設備における操業の全過程を通じて
有効にガス化し排ガス中に混合され、酸化チタンとバナ
ジウムによる触媒を用いた触媒反応塔8から10m手前
に設けられた圧力調節弁7の噴出アンモニアは少なくと
も該反応塔8までには完全にガス化されていた。平均3
0000Nm3/hrの排ガス量に対し10/hのアンモ
ニア水(濃度30%)を使用する上記のような設備の場
合、従来法による加熱を行わないスプレーのときは少な
くとも1ケ月に1回程度の触媒層における亜硫安などの
付着物除去および粉塵などによる閉塞除去が必要であっ
たが、本発明方法の実施によってそれらの付着が大幅に
縮減し、6ケ月に1回程度で済むようになった。また6
ケ月に1回の休炉で20カ月に亘る連続運転操業の結果
によっても、触媒反応塔8以降の設備における腐食は軽
微であり、従来法によるものの12〜18カ月で煙道、
脱硝反応塔などの一部に対する修理交換を必要としたも
のに対し大幅な耐食性向上が図られていることを知っ
た。
The ammonia water exiting the pressure control valve 7 is instantaneously decompressed,
Through the entire process of operation in the incineration facility as described above, the ammonia that is effectively gasified and mixed in the exhaust gas, and ejected from the pressure control valve 7 provided 10 m before the catalytic reaction tower 8 using the catalyst of titanium oxide and vanadium is At least up to the reaction tower 8, it was completely gasified. Average 3
In the case of the above equipment that uses 10 / h ammonia water (concentration 30%) for exhaust gas amount of 0000 Nm 3 / hr, at least once a month when spraying without heating by the conventional method. It was necessary to remove deposits such as ammonium sulfite on the catalyst layer and to remove the clogging by dusts, etc. However, by implementing the method of the present invention, the deposits were greatly reduced, and only once every six months. . Again 6
Even with the result of continuous operation for 20 months with a once-month decommissioning, the corrosion in the equipment after the catalytic reaction tower 8 was slight, and the flue was 12 to 18 months after the conventional method,
We have found that the corrosion resistance of the denitration reaction tower and other parts that required repairs and replacement was greatly improved.

「発明の効果」 以上詳述したような本発明によるときは排ガス中のNOx
を除去する触媒脱硝法において、比較的に取り扱いの簡
単なアンモニア水を加熱加圧し、圧力調整して若干の液
滴が存在しても一気に気化して排ガス煙道に吹出し使用
することによりアンモニアガスと300℃以下のように
低温化した煙道ガスとの最適混合状態を形成せしめ、集
塵機などを充分に作用せしめて従来の排ガス粉塵による
反応塔トラブルおよびアンモニア水スプレイの際生ずる
ミストに起因した硫安系化合物などによる閉塞および腐
食の何れをも有効に解消し、また触媒性能の低下防止を
図ることができ、更に加熱器は排ガス煙道外に設けられ
ているのでその耐用性を高め得るなどの効果を有してお
り、環境管理上極めて大きな発明であると云うことがで
きる。
"Effects of the Invention" In the case of the present invention as described in detail above, NOx in exhaust gas
In the catalytic denitration method that removes ammonia gas, by heating and pressurizing ammonia water, which is relatively easy to handle, and adjusting the pressure to vaporize at a dash even if some liquid droplets are present And a flue gas whose temperature is lowered to 300 ° C or less are formed, and a dust collector or the like is sufficiently operated to cause troubles in the conventional reaction tower due to exhaust gas dust and ammonium sulfate caused by mist generated during ammonia water spraying. Effectively eliminates both clogging and corrosion due to system compounds, etc., and can prevent deterioration of catalyst performance. Furthermore, since the heater is installed outside the exhaust gas flue, its durability can be improved. Therefore, it can be said that this is an extremely large invention in terms of environmental management.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示す概要図であって、第1図は
本発明方法を実施する設備の概要を示した説明図であ
る。 然して、この図面における符号は以下の通りである。 1:アンモニア水タンク 2:アンモニア水供給管 3:ポンプ 4:流量調節弁 5:加熱器 6:排ガス煙道 7:圧力調節弁 8:触媒反応塔 9:水蒸気
The drawings are schematic views showing an embodiment of the present invention, and FIG. 1 is an explanatory view showing an outline of equipment for carrying out the method of the present invention. However, the reference numerals in this drawing are as follows. 1: Ammonia water tank 2: Ammonia water supply pipe 3: Pump 4: Flow control valve 5: Heater 6: Exhaust gas flue 7: Pressure control valve 8: Catalytic reaction tower 9: Steam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 隆 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 南 孝男 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (72)発明者 仲尾 強 東京都千代田区丸の内1丁目1番2号 日 本鋼管株式会社内 (56)参考文献 特開 昭54−136572(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Takashi Yokoyama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Takao Minami 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Inside the Steel Pipe Co., Ltd. (72) Inventor Tsuyoshi Nakao 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside the Nippon Steel Pipe Co., Ltd. (56) Reference JP-A-54-136572 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】触媒を使用する脱硝方法において、触媒反
応塔より上流側の300℃以下とされた排ガス煙道に、
該排ガス煙道外でアンモニア水を加熱加圧すると共に若
干の小液滴が存在しても一気に気化されるように圧力調
整して吹き込むことを特徴とする排ガスの脱硝方法。
1. In a denitration method using a catalyst, an exhaust gas flue at a temperature of 300 ° C. or lower upstream of a catalytic reaction tower,
A method for denitrifying exhaust gas, which comprises heating and pressurizing ammonia water outside the exhaust gas flue and adjusting the pressure so that even a few small droplets are vaporized at once and blowing.
JP62028200A 1986-12-19 1987-02-12 Exhaust gas denitration method Expired - Lifetime JPH0634902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028200A JPH0634902B2 (en) 1986-12-19 1987-02-12 Exhaust gas denitration method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-301441 1986-12-19
JP30144186 1986-12-19
JP62028200A JPH0634902B2 (en) 1986-12-19 1987-02-12 Exhaust gas denitration method

Publications (2)

Publication Number Publication Date
JPS6427623A JPS6427623A (en) 1989-01-30
JPH0634902B2 true JPH0634902B2 (en) 1994-05-11

Family

ID=26366252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028200A Expired - Lifetime JPH0634902B2 (en) 1986-12-19 1987-02-12 Exhaust gas denitration method

Country Status (1)

Country Link
JP (1) JPH0634902B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098680A (en) * 1990-10-15 1992-03-24 Exxon Research & Engineering Company Aqueous ammonia injection scheme

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311162A (en) * 1976-07-18 1978-02-01 Ebara Corp Denitrating method for flue gas
JPS54136572A (en) * 1978-04-17 1979-10-23 Nippon Steel Corp Treating method for combustion exhaust gas

Also Published As

Publication number Publication date
JPS6427623A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
KR100419314B1 (en) Fluid gas scrubbing and waste heat recovery system
KR100514508B1 (en) Methods for the production of ammonia from urea and uses thereof
US6126910A (en) Method for removing acid gases from flue gas
EP0716873A1 (en) Method and apparatus for treating waste gases by exposure to electron beams
US20070166205A1 (en) Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
EP1870155B1 (en) Regeneration of NT-SCR catalysts
WO2000067879A1 (en) Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
EP1308198A1 (en) Mercury removal method and system
JP2000279751A (en) Method and device for denitrating pressure fluidized bed boiler
JPH0791644A (en) Exhaust gas boiler
CN111006226A (en) Incineration treatment system and incineration treatment method for chlorine-containing waste gas and waste liquid
KR0137628B1 (en) Treatment of incinerator exhaust gas
KR100702660B1 (en) Removal method and equipment of nitrogen oxide by wet oxidation/reduction process
KR20010014530A (en) Process for recovering acids from metallic solutions of these acids
RU2457200C2 (en) Method and apparatus for producing aqueous solution containing urea
CN115090091B (en) Device and method for removing escaped ammonia in waste incineration flue gas by using citric acid
JPH0634902B2 (en) Exhaust gas denitration method
JP3513162B2 (en) Nitrogen oxide removal method
PL190432B1 (en) Method of treating combustion gas and apparatus therefor
JP2000325744A (en) Exhaust gas treatment apparatus
JP2566746B2 (en) How to clean a flue gas stream
JPH09225259A (en) Spray nozzle device in refuse disposal equipment
JPH08131764A (en) Wet type exhaust gas treatment method and apparatus
JPH11147024A (en) Flue-gas treatment method
JP2000000434A (en) Denitration apparatus and denitration method