JPH06347231A - Size inspecting system - Google Patents

Size inspecting system

Info

Publication number
JPH06347231A
JPH06347231A JP13369793A JP13369793A JPH06347231A JP H06347231 A JPH06347231 A JP H06347231A JP 13369793 A JP13369793 A JP 13369793A JP 13369793 A JP13369793 A JP 13369793A JP H06347231 A JPH06347231 A JP H06347231A
Authority
JP
Japan
Prior art keywords
dimension
machining
size
measurement
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13369793A
Other languages
Japanese (ja)
Inventor
Haruo Isogawa
治男 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP13369793A priority Critical patent/JPH06347231A/en
Publication of JPH06347231A publication Critical patent/JPH06347231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To inspect the sizes of parts having all kinds of shapes precisely with small man-hours and to control a machining apparatus automatically in response to the result of the inspection. CONSTITUTION:In a processing device, the distance (measured size L') between the intersections of machining surfaces S1' and S2' corresponding to base points P1 and P2 and a straight line SV' passing the base points P1 and P2 is computed from the drawing data read out of a memory device and the measured data outputted from a measuring device. The size error between the measured size L' and a reference size L is computed. Machining errors DELTAX and DELTAY in the machining coordinate system are computed from the relationship between preset size measuring surfaces S2 and S3 and the machining surfaces S2' and S3'. The correcting amounts for offsetting the machining errors are added to the size command. Thus, the size error becomes small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加工された部品の3次元
寸法を検査する寸法検査システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dimension inspection system for inspecting the three-dimensional dimensions of machined parts.

【0002】[0002]

【従来の技術】周知のように、ジェットエンジンのター
ビンに使用される動翼等は、CAD(Computer
Aided Design)システム等により作成さ
れた設計図面に基づいて、複数の加工装置により順次3
次元加工されて完成部品となる。このような加工形態は
複合加工と呼ばれており、部品は設計図面に示す基準寸
法に実際の寸法(以後、測定寸法と称す)が一致するよ
うに加工される。加工が施された完成部品は、各部の寸
法が測定装置により測定され、測定寸法と基準寸法との
誤差が許容範囲(以後、公差と称す)を超過することを
品質管理者が確認した場合、不良品とされる。加工装置
に装着される研削砥石が摩耗して測定寸法と基準寸法と
の誤差が公差を超過する場合、品質管理者は測定寸法の
誤差が小となるように加工装置を制御する。
2. Description of the Related Art As is well known, blades and the like used in turbines of jet engines have CAD (Computer).
Based on the design drawing created by the Aided Design system, etc.
Dimensionally processed into finished parts. This type of processing is called compound processing, and the part is processed so that the actual size (hereinafter referred to as the measured size) matches the reference size shown in the design drawing. When the quality manager confirms that the finished parts that have been processed have the dimensions of each part measured by a measuring device and the error between the measured dimensions and the reference dimensions exceeds the allowable range (hereinafter referred to as tolerance), It is considered defective. When the grinding wheel mounted on the processing device is worn and the error between the measured size and the reference size exceeds the tolerance, the quality manager controls the processing device so that the error in the measured size is small.

【0003】[0003]

【発明が解決しようとする課題】上述したように、従来
の複合加工工程では、測定寸法と基準寸法とを比較して
完成部品の良否を判定していた。この比較(以後、検査
作業と称す)は、完成部品の各部の測定毎に品質管理者
(人間)が、チェックシート等に測定寸法を記入し、当
該測定寸法と対応する基準寸法の寸法誤差が公差以内で
あるか否かを評価することにより行われる。
As described above, in the conventional composite machining process, the quality of the completed part is judged by comparing the measured size with the reference size. In this comparison (hereinafter referred to as inspection work), the quality manager (human) enters the measurement dimension on the check sheet etc. for each measurement of each part of the finished part, and the dimension error of the reference dimension corresponding to the measurement dimension It is done by evaluating whether it is within the tolerance.

【0004】このように、完成部品の検査作業は人手に
より行われるために、手間がかかり、検査作業の工数が
増大するという問題があった。また、チェックシートへ
の誤記等の人為的なミスが発生し易いという問題があっ
た。さらに、検査結果は完成部品の良否判定にしか使用
されておらず、良品と判定される完成部品に対する検査
結果は、次の部品加工に反映されないという問題があっ
た。
As described above, since the inspection work of the completed parts is performed manually, there is a problem that it takes time and labor of the inspection work increases. There is also a problem that human error such as erroneous writing on the check sheet is likely to occur. Furthermore, there is a problem that the inspection result is used only for determining the quality of the finished part, and the inspection result for the finished part which is determined to be a non-defective product is not reflected in the next part processing.

【0005】本発明は、このような背景に鑑みて為され
たもので、あらゆる形状の部品の寸法を少ない工数で精
密に検査するとともに、検査結果に応じて自動的に加工
装置を制御することができる寸法検査システムを提供す
ることを目的とする。
The present invention has been made in view of such a background, and it is possible to precisely inspect the dimensions of parts of any shape with a small number of man-hours, and to automatically control the processing device according to the inspection result. It is an object of the present invention to provide a dimension inspection system capable of

【0006】[0006]

【課題を解決するための手段】本発明による寸法検査シ
ステムは、複数の加工面から構成される部品の寸法を検
査する寸法検査システムであって、対をなす基点の位置
情報と前記部品の第1の基準面に関する情報とを有する
図面データを記憶する記憶手段と、予め設定された第2
の基準面に対応する前記加工面の位置を測定する測定手
段と、前記対をなす基点に対応する前記加工面と前記対
をなす基点を通る直線との交点間の距離を測定寸法と
し、前記基点間の距離である基準寸法と前記測定寸法と
の寸法誤差を算出するとともに、前記第2の基準面と前
記加工面との位置関係から加工座標系におけるズレ量を
算出し、当該ズレ量を打ち消す補正量を図面データに基
づいた寸法指令に加える検査手段と、前記寸法指令に基
づいて前記部品を所定の形状に加工する加工装置とを具
備することを特徴としている。
A dimensional inspection system according to the present invention is a dimensional inspection system for inspecting the dimensions of a component composed of a plurality of machined surfaces, which comprises position information of a pair of base points and the first of the components. Storage means for storing drawing data having information on one reference surface; and a preset second
Measuring means for measuring the position of the processing surface corresponding to the reference surface of, and the measurement dimension the distance between the intersection of the processing surface corresponding to the pair of base points and a straight line passing through the pair of base points, The dimensional error between the reference dimension, which is the distance between the base points, and the measured dimension is calculated, and the deviation amount in the machining coordinate system is calculated from the positional relationship between the second reference surface and the machining surface, and the deviation amount is calculated. It is characterized by comprising an inspection means for adding a correction amount for canceling out to a dimension command based on the drawing data, and a processing device for processing the component into a predetermined shape based on the dimension command.

【0007】[0007]

【作用】上記構成によれば、まず、検査手段において、
記憶手段から読み出された図面データと測定手段により
測定される加工面の位置情報とから、対をなす基点に対
応する前記加工面と前記対をなす基点を通る直線との交
点間の距離(測定寸法)が算出され、この測定寸法と前
記基点間の距離である基準寸法との寸法誤差が算出され
る。また、予め設定された第2の基準面と前記加工面と
の位置関係から加工方向に対応する座標系におけるズレ
量が算出され、当該ズレ量を打ち消す補正量が図面デー
タに基づいた寸法指令に加算される。そして、部品は、
加工装置により前記寸法指令に基づいて所定の形状に加
工される。こうして、あらゆる形状の部品の寸法が少な
い工数で精密に検査されるとともに、検査結果に応じて
自動的に加工装置が制御される。
According to the above construction, first, in the inspection means,
Based on the drawing data read from the storage means and the position information of the machining surface measured by the measuring means, the distance between the intersections of the machining surface corresponding to the pair of base points and the straight line passing through the pair of base points ( The measurement dimension) is calculated, and the dimension error between this measurement dimension and the reference dimension, which is the distance between the base points, is calculated. Further, a deviation amount in a coordinate system corresponding to the machining direction is calculated from a positional relationship between a preset second reference surface and the machining surface, and a correction amount for canceling the deviation amount is converted into a dimension command based on the drawing data. Is added. And the parts are
It is processed into a predetermined shape by the processing device based on the dimension command. Thus, the components of all shapes are precisely inspected with a small number of steps, and the processing apparatus is automatically controlled according to the inspection result.

【0008】[0008]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は本発明の一実施例による寸法検査システ
ムを適用した複合加工ラインの概略構成を示す図であ
る。この図に示す加工ラインでは、複数の部品がコンベ
ヤによって順次搬送され、所定の形状に加工される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a combined machining line to which a dimension inspection system according to an embodiment of the present invention is applied. In the processing line shown in this figure, a plurality of parts are sequentially conveyed by a conveyor and processed into a predetermined shape.

【0009】この図において、1aは所定の形状に加工
される部品、2は後述する処理装置5から送られる寸法
指令に基づいて部品1aを研削加工する加工装置であ
り、図示せぬ研削砥石を有する。3は後述する処理装置
5から送られる制御信号に応じて作動する測定装置であ
り、図示せぬ測定ベンチに載置された部品(完成部品)
1bの3次元形状を測定し、これにより得られた測定デ
ータを処理装置5に送る。
In this figure, 1a is a part machined into a predetermined shape, and 2 is a processing device for grinding the part 1a based on a dimension command sent from a processing device 5 which will be described later. Have. Reference numeral 3 denotes a measuring device that operates in response to a control signal sent from a processing device 5 described later, and is a component (completed component) placed on a measuring bench (not shown).
The three-dimensional shape of 1b is measured, and the measurement data obtained by this is sent to the processor 5.

【0010】測定装置3は、測定手段としてトランスデ
ューサ3aとタッチセンサ3bとを備えている。トラン
スデューサ3aは、図2(a)に示すように、先端部T
1が基準位置から被測定物(部品1b)に接触する位置
までの距離dを測定するものであり、タッチセンサ3b
は、図2(b)に示すように、先端部T2が被測定物に
接触する点pの座標(x,y,z)を測定するものであ
る。この座標(x,y,z)は処理装置5により作成さ
れる座標系における点pの座標である。
The measuring device 3 comprises a transducer 3a and a touch sensor 3b as measuring means. The transducer 3a has a tip portion T as shown in FIG.
1 measures the distance d from the reference position to the position in contact with the object to be measured (component 1b), and the touch sensor 3b
2 is for measuring the coordinates (x, y, z) of the point p at which the tip T2 contacts the object to be measured, as shown in FIG. The coordinates (x, y, z) are the coordinates of the point p in the coordinate system created by the processing device 5.

【0011】また、図1において、4は部品1a,1b
を加工装置2,測定装置3の順で搬送するように敷設さ
れるコンベヤである。処理装置5は各種演算処理および
各構成要素の制御を行うものであり、図示せぬCPU,
ROM,RAMおよび各種I/Oインタフェース等から
構成される。この処理装置5はROMに記憶されたプロ
グラムをCPUにおいて実行することにより各種処理を
行うものであり、その動作については後述する。
Further, in FIG. 1, reference numeral 4 denotes parts 1a and 1b.
Is a conveyor laid so that the processing device 2 and the measuring device 3 are conveyed in this order. The processing unit 5 performs various arithmetic processes and controls each component, and includes a CPU (not shown),
It is composed of ROM, RAM and various I / O interfaces. The processing device 5 performs various processes by executing a program stored in the ROM in the CPU, and its operation will be described later.

【0012】6は処理装置5に接続される記憶装置であ
り、CADシステム等により作成された図面データを記
憶する。7は処理装置5に接続されるディスプレイ等の
表示装置であり、各種処理結果を表示する。8はキーボ
ード等の入力装置であり、入力された指示に応じた指示
信号を処理装置5に送る。この指示信号には、加工すべ
き部品に対応した図面データを指定するための情報が含
まれる。
A storage device 6 is connected to the processing device 5 and stores drawing data created by a CAD system or the like. A display device 7 such as a display connected to the processing device 5 displays various processing results. An input device 8 such as a keyboard sends an instruction signal corresponding to the input instruction to the processing device 5. The instruction signal includes information for designating drawing data corresponding to the part to be processed.

【0013】次に、上述した構成の寸法検査システムの
動作を図3〜5を参照して説明する。図3は処理装置5
が行う処理の流れを示すフローチャートであり、この図
に示すように、処理装置5は加工ラインが作動している
間作動する。なお、ここでは、加工装置2は図4(a)
に示す形状の部品の図面データに応じた寸法指令に基づ
いて作動するものとする。
Next, the operation of the dimension inspection system having the above-mentioned structure will be described with reference to FIGS. FIG. 3 shows the processing device 5.
5 is a flowchart showing the flow of processing performed by the processing device 5. As shown in this figure, the processing device 5 operates while the processing line is operating. In addition, here, the processing apparatus 2 is shown in FIG.
It shall operate based on the dimensional command corresponding to the drawing data of the parts of the shape shown in.

【0014】まず、加工ラインが稼働を開始する前に、
入力装置8を介して所定の指示信号が送られると、処理
装置5は図3に示すステップS1を実行する。ステップ
S1では、図面座標系(X,Y,Z)を作成するととも
に、入力装置8から送られる指示信号により指定される
図面データを記憶装置6から読み出す。そして、図4
(b)に示すように、図面データから面モデル(基準面
モデル)を図面座標系(X,Y,Z)上に作成する。そ
して、基準寸法通りに加工された完成部品を測定装置3
の測定ベンチに載置し、この完成部品の載置面と基準面
モデルの対応する面(第1の基準面)の位置を一致させ
る。
First, before starting the operation of the processing line,
When a predetermined instruction signal is sent via the input device 8, the processing device 5 executes step S1 shown in FIG. In step S1, a drawing coordinate system (X, Y, Z) is created and drawing data designated by an instruction signal sent from the input device 8 is read from the storage device 6. And FIG.
As shown in (b), a surface model (reference surface model) is created on the drawing coordinate system (X, Y, Z) from the drawing data. Then, the measuring device 3 measures the finished part processed to the standard dimensions.
Then, the mounting surface of the finished part and the corresponding surface (first reference surface) of the reference surface model are aligned with each other.

【0015】ここで作成される基準面モデルは、寸法計
測面S1,S2、当該寸法計測面の法線ベクトルである
寸法計測面ベクトルV1,V2、基準寸法の測定方向を
示す寸法線ベクトルSV、基準寸法の基点P1,P2を
有する。また、処理装置5は、上記基点P1,P2に対
応する部品1b上の位置を測定するように、基点P1,
P2の座標に応じた制御信号を測定装置3に送る。
The reference plane model created here is the dimension measurement planes S1 and S2, the dimension measurement plane vectors V1 and V2 which are normal vectors of the dimension measurement planes, the dimension line vector SV indicating the measurement direction of the reference dimension, It has base points P1 and P2 of reference dimensions. Further, the processing device 5 measures the positions of the base points P1 and P2 so as to measure the positions on the component 1b corresponding to the base points P1 and P2.
A control signal corresponding to the coordinates of P2 is sent to the measuring device 3.

【0016】次に、ステップS2に進むと、加工ライン
の稼働状態を判定する。ここで、加工ラインが停止して
いる場合には処理が終了し、作動している場合にはステ
ップS3に進む。ステップS3では、測定装置3から部
品1bに関する測定データが送られると、測定データに
基づいて、寸法計測面ベクトルV1,V2に一致する方
向の偏差量(距離)D1,D2を算出し、この偏差量D
1,D2に基づいて、寸法計測面S1,S2に対応する
加工面S1’,S2’を図面座標系(X,Y,Z)上に
作成する。すなわち、図4(c)に示す加工面モデルが
作成される。なお、上記測定データは、測定手段により
形式が異なる。例えば、図4(c)に示すように、トラ
ンスデューサ3aは寸法計測面ベクトルV2に一致する
方向の距離D2を、タッチセンサ3bは図面座標系
(X,Y,Z)における接触点P1’’の座標(x1,
y1,z1)を測定データとする。
Next, in step S2, the operating state of the processing line is determined. Here, if the processing line is stopped, the process ends, and if it is operating, the process proceeds to step S3. In step S3, when the measurement data about the component 1b is sent from the measurement device 3, the deviation amounts (distances) D1 and D2 in the directions that match the dimension measurement plane vectors V1 and V2 are calculated based on the measurement data, and the deviations are calculated. Amount D
Based on 1 and D2, machined surfaces S1 'and S2' corresponding to the dimension measurement surfaces S1 and S2 are created on the drawing coordinate system (X, Y, Z). That is, the machined surface model shown in FIG. 4C is created. The format of the measurement data differs depending on the measuring means. For example, as shown in FIG. 4C, the transducer 3a has a distance D2 in the direction corresponding to the dimension measurement plane vector V2, and the touch sensor 3b has a contact point P1 ″ in the drawing coordinate system (X, Y, Z). Coordinates (x1,
Let y1, z1) be the measurement data.

【0017】次に、ステップS4に進むと、作成された
加工面モデルから所定の部分の寸法(測定寸法)を算出
する。この算出は、図5(a)に示すように、上述した
2つの基点P1、P2を通り、寸法線ベクトルSVと平
行な直線SV’と、2つの加工面S1’,S2’との交
点P1’,P2’の座標を求め、交点P1’,P2’間
の距離(測定寸法L’)を算出する。
Next, in step S4, a dimension (measurement dimension) of a predetermined portion is calculated from the created machined surface model. This calculation is, as shown in FIG. 5A, an intersection point P1 of a straight line SV ′ passing through the above-described two base points P1 and P2 and parallel to the dimension line vector SV, and two processing surfaces S1 ′ and S2 ′. The coordinates of ', P2' are obtained, and the distance (measurement dimension L ') between the intersection points P1', P2 'is calculated.

【0018】次に、ステップS5に進むと、ステップS
4において算出された測定寸法L’と対応する基準寸法
Lとの寸法誤差を算出する。そして、この寸法誤差が公
差を超過する場合には、表示装置7へ不良品であること
を示す出力信号を送る。なお、当該寸法誤差が公差以下
であれば、出力信号は良品であることを示す信号とな
る。
Next, when the process proceeds to step S5, step S
Dimensional error between the measured dimension L ′ calculated in 4 and the corresponding reference dimension L is calculated. If this dimensional error exceeds the tolerance, an output signal indicating that the product is defective is sent to the display device 7. If the dimensional error is equal to or smaller than the tolerance, the output signal becomes a signal indicating that the product is non-defective.

【0019】次に、ステップS6に進むと、加工誤差を
排除するための加工補正量を加えた寸法指令を加工装置
2に送る。補正量の算出過程を図5(b)を参照して説
明する。この図に示すように、まず、寸法計測面S2,
S3、加工面S2’,S3’を、加工座標系(MX,M
Y,MZ)上に作成する。そして、寸法計測面S2,S
3と加工面S2’,S3’との座標軸方向の誤差からM
X軸方向およびMY軸方向の加工誤差ΔX,ΔYを算出
する。
Next, in step S6, a dimension command including a machining correction amount for eliminating a machining error is sent to the machining apparatus 2. The process of calculating the correction amount will be described with reference to FIG. As shown in this figure, first, the dimension measurement surface S2,
S3 and the machining surfaces S2 'and S3' are defined by machining coordinate systems (MX, M
Y, MZ). Then, the dimension measurement surfaces S2, S
3 from the error in the coordinate axis direction between the machining surface S2 'and S3'
Processing errors ΔX and ΔY in the X-axis direction and the MY-axis direction are calculated.

【0020】なお、加工装置2の動作方向は、MX軸と
MY軸とで特定される平面と平行であるものとする。す
なわち、加工誤差ΔZはゼロになる。補正量は、この加
工誤差ΔX,ΔYを相殺するように設定される。処理装
置5は、加工誤差ΔX,ΔYに対応する補正量を加えた
寸法指令を加工装置2に送る。加工装置2は上記寸法指
令に基づいて部品1aを加工するので、部品1aの測定
寸法は設計寸法に近づく。
The working direction of the processing apparatus 2 is assumed to be parallel to the plane specified by the MX and MY axes. That is, the processing error ΔZ becomes zero. The correction amount is set so as to cancel out the processing errors ΔX and ΔY. The processing device 5 sends to the processing device 2 a dimension command in which a correction amount corresponding to the processing errors ΔX and ΔY is added. Since the processing device 2 processes the component 1a based on the above dimension command, the measured dimension of the component 1a approaches the design dimension.

【0021】以上説明したように、上述した一実施例に
よれば、処理装置5において図面座標系(X,Y,Z)
を作成し、図面データおよび測定データから作成される
各面モデルを比較して測定寸法および寸法誤差を算出す
る。したがって、補正量を精密に算出することができ
る。また、処理装置5において、寸法指令を加工誤差に
応じて自動的に補正するようにしたために、加工装置2
の制御を迅速に行うことができる。
As described above, according to the above-described embodiment, the drawing coordinate system (X, Y, Z) in the processing device 5 is used.
Then, each surface model created from the drawing data and the measurement data is compared to calculate the measurement dimension and the dimension error. Therefore, the correction amount can be calculated accurately. Further, in the processing device 5, since the dimension command is automatically corrected according to the processing error, the processing device 2
Can be quickly controlled.

【0022】なお、上述した一実施例においては、加工
装置2が研削砥石を有する例を示したが、研削加工以外
の処理を行う加工装置を有する加工ラインに適用するこ
ともできる。また、基準面モデルおよび加工面モデルを
ディスプレイに表示し、測定部分をマウス等の入力装置
により指定するようにしてもよい。さらに、トランスデ
ューサ3aやタッチセンサ3b以外の測定機器を使用し
ても良い。また、補正量の算出の際に、加工座標系(M
X,MY,MZ)上で基準面モデルおよび加工面モデル
を作成するようにしたが、寸法測定の際に作成した図面
座標系(X,Y,Z)上の面モデルを座標変換して、各
面モデルを作成しても良い。
In the above-described embodiment, the processing device 2 has the grinding wheel, but the processing device 2 can be applied to a processing line having a processing device for performing processing other than grinding. Alternatively, the reference surface model and the processed surface model may be displayed on the display, and the measurement portion may be designated by an input device such as a mouse. Furthermore, measuring devices other than the transducer 3a and the touch sensor 3b may be used. When calculating the correction amount, the machining coordinate system (M
The reference surface model and the machining surface model are created on (X, MY, MZ), but the surface model on the drawing coordinate system (X, Y, Z) created at the time of dimension measurement is coordinate-converted, Each surface model may be created.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
検査手段が、記憶手段から読み出した図面データと測定
手段により測定された加工面の位置情報とから、対をな
す基点に対応する前記加工面と前記対をなす基点を通る
直線との交点間の距離(測定寸法)を算出するととも
に、測定寸法と前記基点間の距離である基準寸法との寸
法誤差を算出する。また、予め設定された第2の基準面
と前記加工面との位置関係から加工方向に対応する座標
系におけるズレ量を算出し、当該ズレ量を打ち消す補正
量を図面データに基づいた寸法指令に加算する。そし
て、加工装置が、前記寸法指令に基づいて部品を所定の
形状に加工する。これにより、あらゆる形状の部品の寸
法を少ない工数で精密に検査するとともに、検査結果に
応じて自動的に加工装置を制御することができるという
効果がある。
As described above, according to the present invention,
The inspection means, based on the drawing data read from the storage means and the position information of the machining surface measured by the measuring means, between the intersections of the machining surface corresponding to the pair of base points and the straight line passing through the pair of base points. The distance (measured dimension) is calculated, and the dimensional error between the measured dimension and the reference dimension, which is the distance between the base points, is calculated. Further, a deviation amount in the coordinate system corresponding to the machining direction is calculated from the preset positional relationship between the second reference surface and the machining surface, and a correction amount for canceling the deviation amount is converted into a dimension command based on the drawing data. to add. Then, the processing device processes the component into a predetermined shape based on the dimension command. As a result, it is possible to precisely inspect the dimensions of parts of any shape with a small number of man-hours and automatically control the processing apparatus according to the inspection result.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による寸法検査システムを適
用した加工ラインの構成を示す図である。
FIG. 1 is a diagram showing a configuration of a processing line to which a dimension inspection system according to an embodiment of the present invention is applied.

【図2】測定装置3の具体的な構成を示す一部断面図で
ある。
FIG. 2 is a partial cross-sectional view showing a specific configuration of the measuring device 3.

【図3】処理装置5の処理の流れを示すフローチャート
である。
FIG. 3 is a flowchart showing a processing flow of a processing device 5.

【図4】本実施例による寸法検査システムの動作を説明
するための図である。
FIG. 4 is a diagram for explaining the operation of the dimension inspection system according to the present embodiment.

【図5】本実施例による寸法検査システムの動作を説明
するための図である。
FIG. 5 is a diagram for explaining the operation of the dimension inspection system according to the present embodiment.

【符号の説明】[Explanation of symbols]

1a,1b 部品 2 加工装置 3 測定装置(測定手段) 5 処理装置(検査手段) 6 記憶装置(記憶手段) 1a, 1b Parts 2 Processing device 3 Measuring device (measuring means) 5 Processing device (inspecting means) 6 Storage device (storage means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の加工面から構成される部品の寸法
を検査する寸法検査システムであって、 対をなす基点の位置情報と前記部品の第1の基準面に関
する情報とを有する図面データを記憶する記憶手段と、 予め設定された第2の基準面に対応する前記加工面の位
置を測定する測定手段と、 前記対をなす基点に対応する前記加工面と前記対をなす
基点を通る直線との交点間の距離を測定寸法とし、前記
基点間の距離である基準寸法と前記測定寸法との寸法誤
差を算出するとともに、前記第2の基準面と前記加工面
との位置関係から加工座標系におけるズレ量を算出し、
当該ズレ量を打ち消す補正量を図面データに基づいた寸
法指令に加える検査手段と、 前記寸法指令に基づいて前記部品を所定の形状に加工す
る加工装置とを具備することを特徴とする寸法検査シス
テム。
1. A dimension inspection system for inspecting the dimensions of a component composed of a plurality of machined surfaces, the drawing data including position information of a pair of base points and information on a first reference plane of the component. Storage means for storing; measurement means for measuring the position of the machining surface corresponding to a preset second reference surface; straight line passing through the base point forming the pair with the machining surface corresponding to the base point forming the pair The distance between the intersections with and is taken as the measurement dimension, and the dimension error between the reference dimension, which is the distance between the base points, and the measurement dimension is calculated, and the machining coordinates are calculated from the positional relationship between the second reference plane and the machining plane. Calculate the amount of deviation in the system,
A dimension inspection system comprising: an inspection unit that adds a correction amount that cancels the deviation amount to a dimension command based on the drawing data; and a processing device that processes the component into a predetermined shape based on the dimension command. .
JP13369793A 1993-06-03 1993-06-03 Size inspecting system Pending JPH06347231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13369793A JPH06347231A (en) 1993-06-03 1993-06-03 Size inspecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13369793A JPH06347231A (en) 1993-06-03 1993-06-03 Size inspecting system

Publications (1)

Publication Number Publication Date
JPH06347231A true JPH06347231A (en) 1994-12-20

Family

ID=15110773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13369793A Pending JPH06347231A (en) 1993-06-03 1993-06-03 Size inspecting system

Country Status (1)

Country Link
JP (1) JPH06347231A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098279A (en) * 2002-09-10 2004-04-02 Alstom (Switzerland) Ltd Production system for producing product
KR101270646B1 (en) * 2011-09-06 2013-06-03 강구만 A auto error revision method for drawing program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004098279A (en) * 2002-09-10 2004-04-02 Alstom (Switzerland) Ltd Production system for producing product
JP4593893B2 (en) * 2002-09-10 2010-12-08 アルストム テクノロジー リミテッド Manufacturing facilities that produce products
KR101270646B1 (en) * 2011-09-06 2013-06-03 강구만 A auto error revision method for drawing program

Similar Documents

Publication Publication Date Title
Lee et al. Automated inspection planning of free-form shape parts by laser scanning
US7333879B2 (en) Offline programming device
JP4959028B1 (en) Error measuring apparatus and error measuring method
US7724380B2 (en) Method and system for three-dimensional measurement
Busch et al. Calibration of coordinate measuring machines
US20030090483A1 (en) Simulation apparatus for working machine
EP1710533A1 (en) Work installation error measuring apparatus
Duffie et al. CAD directed inspection and error analysis using surface patch databases
JP5201871B2 (en) Shape measuring method and apparatus
JPH07114180B2 (en) Semiconductor exposure pattern data inspection method and inspection apparatus
JP2002267438A (en) Free curved surface shape measuring method
JPH06347231A (en) Size inspecting system
JP4683324B2 (en) Shape measuring system, shape measuring method and shape measuring program
JPH03287343A (en) Base coordinate system correcting device
JP2019197333A (en) Path correction method and control device of multiple spindle processing machine
CN109725595A (en) Compensation method, processing method and the workpiece of the machining path of workpiece
Huang et al. The analysis of feature-based measurement error in coordinate metrology
CN108829905B (en) Benchmark system rationality inspection method based on Boolean algebra and degree of freedom analysis
JPH0829152A (en) Measurement treatment method and device of coordinate measuring instrument
JPH06344121A (en) Teaching method for robot
JPH06137854A (en) Three-dimensional form inspection method
JP2539043B2 (en) Display method of shape measurement result
Pahk et al. Application of microcomputer for assessing the probe lobing error and geometric errors of CMMs using commercial ring gauges
CN114001737A (en) Method for generating operation path of tool
JP3040878B2 (en) Three-dimensional interference check method and device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020618