JPH06347225A - Apparatus for measuring distortion distribution of optical fiber - Google Patents

Apparatus for measuring distortion distribution of optical fiber

Info

Publication number
JPH06347225A
JPH06347225A JP14039393A JP14039393A JPH06347225A JP H06347225 A JPH06347225 A JP H06347225A JP 14039393 A JP14039393 A JP 14039393A JP 14039393 A JP14039393 A JP 14039393A JP H06347225 A JPH06347225 A JP H06347225A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
frequency
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14039393A
Other languages
Japanese (ja)
Inventor
Shigehiro Endo
重広 遠藤
Satoru Yamamoto
哲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14039393A priority Critical patent/JPH06347225A/en
Publication of JPH06347225A publication Critical patent/JPH06347225A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To use a single light source and to make it possible to achieve the low cost by using the light source used for generating pulse light and continuous wave light as the single wavelength light source, providing an optical fiber in a loop shape, and switching and using both ends of the optical fiber and the variable wavelength light source with an optical switch. CONSTITUTION:A light source 2 is oscillated at a frequency nucw, and the light is emitted into (a) of an optical switch 9. The light is transmitted through an optical fiber 7. At the time when the light reaches the entire length of the fiber 7, the switch is changed to (b), and the light of the light source 2 is applied. At this time the oscillating frequency is made to be nup at the same time. For the frequency nup at this time, the difference DELTAnu is made to agree with a Brillouin frequency nub of the fiber 7. Thereafter, the light becomes the pulse light with an optical pulse generator 3. The light is transmitted through the fiber 7. At this time, the light of nucw undergoes Brillouin optical amplification in the optical fiber 7 by the light/electric-power conversion step from the light of the frequency nup to the light of the frequency nucw until the time when the pulse light reaches the position that is the half point of the fiber 7. The distortion distribution can be measured by analyzing the light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバの歪分布測
定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber strain distribution measuring apparatus.

【0002】[0002]

【従来の技術】図6には、従来の光ファイバ歪分布測定
装置の構成が示されている。
2. Description of the Related Art FIG. 6 shows the structure of a conventional optical fiber strain distribution measuring apparatus.

【0003】光ファイバ歪分布測定装置1はポンプ用光
源2aとポンプ用光源2aから光パルスを発生させるパ
ルス発生器3と、持続波光(以後CWと称す)を発振す
るプローブ用光源2bと、プローブ用光源2bの光周波
数のみを反射する光分波器4と、光分波器4で反射した
光を受光し光電変換する受光器5と、受光器5からの電
気信号を平均化する平均化処理回路6と、平均化処理回
路6の出力信号に基づいて被測定光ファイバ7の歪分布
を測定する演算回路8とから構成されている。次に、以
上のように構成された光ファイバ歪分布測定装置の動作
について簡単に説明する。
The optical fiber strain distribution measuring apparatus 1 comprises a pump light source 2a, a pulse generator 3 for generating an optical pulse from the pump light source 2a, a probe light source 2b for oscillating continuous wave light (hereinafter referred to as CW), and a probe. Optical demultiplexer 4 that reflects only the optical frequency of the optical source 2b, photodetector 5 that receives the light reflected by the optical demultiplexer 4 and photoelectrically converts it, and averaging that averages the electric signals from the photodetector 5 It is composed of a processing circuit 6 and an arithmetic circuit 8 which measures the strain distribution of the optical fiber 7 to be measured based on the output signal of the averaging processing circuit 6. Next, the operation of the optical fiber strain distribution measuring device configured as described above will be briefly described.

【0004】光ファイバ7の両端に配置されたポンプ用
光源2aとプローブ用光源2bの出射光を光ファイバ中
に対向して入射する。また、ポンプ用光源2aの光周波
数νPとプローブ光源2bの光周波数νcwの差△ν=
νp−νcwを、光ファイバ7のブリルアン周波数シフ
トνpに一致させる。このとき、誘導ブリルアン散乱に
よる、パルス光(ポンプ光源)からCW光(プローブ光
源)への光電力変換過程により、CW光は光ファイバ中
でブリルアン光増幅される。光増幅されたCW光は、光
分波器4を通過後、受光器5により電気信号に変換され
る。光分波器4は、中心周波数がCW光の周波数νcw
に一致したバンドパスフィルタであり、周波数νpのパ
ルス光によるフレネル反射光およびレイリー散乱光は減
衰させる。この時、ポンプ光源2a側で観測されるCW
光の時間波形を模式的に図2に示す。また、観測される
CW光電力Pdは以下のように与えられる。
Lights emitted from the pump light source 2a and the probe light source 2b arranged at both ends of the optical fiber 7 are incident on the optical fiber while facing each other. Further, the difference Δν between the optical frequency νP of the pump light source 2a and the optical frequency νcw of the probe light source 2b is Δν =
νp−νcw is matched with the Brillouin frequency shift νp of the optical fiber 7. At this time, the CW light is amplified by the Brillouin light in the optical fiber by the optical power conversion process from the pulsed light (pump light source) to the CW light (probe light source) due to the stimulated Brillouin scattering. The optically amplified CW light passes through the optical demultiplexer 4 and is converted into an electric signal by the light receiver 5. The center wavelength of the optical demultiplexer 4 is the frequency νcw of the CW light.
And a Fresnel reflected light and Rayleigh scattered light due to pulsed light of frequency νp are attenuated. At this time, CW observed on the pump light source 2a side
FIG. 2 schematically shows the time waveform of light. The observed CW optical power Pd is given as follows.

【0005】 Pd(z,ν) =Pdc +Pd(z,△ν) (1) 『Pdc =Pcw ・exp(−αL) (2) Pb(z,△ν) =〔g(z,△ν)/A 〕〔nW/Z〕Pcw ・exp(−αL)P ・exp(−αz)= D(z,△ν) (3) g(z,△ν) =goQ(νb,△ν) =go/ {1 +〔( △ν−νb)/(△νb/2)〕2 } (4) z=υt/2 (5) ここで、PdcはCW光の直流成分である。またPb
(z,△ν)は、ブリルアン光増幅されたCW光の増分
電力であり、本装置で解析する信号である。Ppおよび
Pcwはそれぞれパルス光およびCW光の光ファイバへ
の入射電力である。Wはパルス光のパルス幅、αは光フ
ァイバの損失係数、Lは光ファイバの長さ、Zは光ファ
イバの位置を示す。
Pd (z, ν) = Pdc + Pd (z, Δν) (1) “Pdc = Pcw · exp (−αL) (2) Pb (z, Δν) = [g (z, Δν) / A] [nW / Z] Pcw ・ exp (−αL) P ・ exp (−αz) = D (z, △ ν) (3) g (z, △ ν) = go Q (νb, △ ν) = go / {1 + [(Δν−νb) / (Δνb / 2)] 2 } (4) z = υt / 2 (5) where Pdc is the DC component of the CW light. Also Pb
(Z, Δν) is the incremental power of the CW light amplified by the Brillouin light, and is the signal analyzed by this device. Pp and Pcw are the incident powers of the pulsed light and the CW light to the optical fiber, respectively. W is the pulse width of the pulsed light, α is the loss coefficient of the optical fiber, L is the length of the optical fiber, and Z is the position of the optical fiber.

【0006】D(z,△ν)はパルス光がCW光を増幅
する過程で自らのエネルギーを失うことにより、パルス
光が減衰することを表す係数である。式(4)における
g(z,△ν)はブリルアン利得スペクトルである。g
oはブリルアン利得係数、Aは光ファイバの有効断面積
である。△νbは実効的なブリルアン利得帯域幅であ
り、ポンプ光源、プローブ光源のスペクトル線幅△ν
p、△νcwと光ファイバ固有のブリルアン利得帯域幅
△νbiの和で与えられる。
D (z, Δν) is a coefficient indicating that the pulsed light is attenuated by losing its own energy in the process of amplifying the CW light. G (z, Δν) in the equation (4) is a Brillouin gain spectrum. g
o is the Brillouin gain coefficient, and A is the effective area of the optical fiber. Δνb is the effective Brillouin gain bandwidth and is the spectral line width Δν of the pump light source and probe light source.
It is given by the sum of p, Δνcw and the Brillouin gain bandwidth Δνbi peculiar to the optical fiber.

【0007】光ファイバ中の歪センシング位置座標を表
すzは、光ファイバにパルスを入射した時刻を基準にし
た時間tと、式(5)に示した関係にある。
Z, which represents the strain sensing position coordinate in the optical fiber, has the relationship shown in equation (5) with the time t based on the time when the pulse is incident on the optical fiber.

【0008】ところで、ブリルアン周波数シフトνb
は、光ファイバに加わる伸び歪に大きく依存し、次式で
与えられる。
Brillouin frequency shift νb
Is greatly dependent on the elongation strain applied to the optical fiber and is given by the following equation.

【0009】 νb =νb(0)(1+C ・ε) (6) νb(0)は歪が無いときのブリルアン周波数シフトで
あり、Cはブリルアン周波数シフトの歪係数である。
Νb = νb (0) (1 + C · ε) (6) νb (0) is the Brillouin frequency shift when there is no distortion, and C is the distortion coefficient of the Brillouin frequency shift.

【0010】この装置の動作は図3に示すように区間
〔z1 ,z2 〕のみに歪εが光ファイバに加わった場
合、光源の光周波数差△νを離散的に変えながら、信号
波形Pbを測定すると、図3に示す波形群が得られる。
区間〔0,z1 〕,〔z2 ,L〕ではν=νb(0)の
とき最大の信号電力が得られ、一方、区間〔z1
2 〕では△ν=νb(ε)のとき最大の信号電力が得
られることがわかる。このようにして、各位置zごと
に、最大の信号電力が得られる光源の光周波数差△ν、
すなわちブリルアン周波数シフトνb(ε(z))を測
定することにより、式(6)を使って、光ファイバの歪
分布ε(z)を求めることができる。(電子情報通信学
会論文誌B−1、Vol.J73−B−1、No2 p
p144−1521990年2月号参照)
As shown in FIG. 3, when the strain ε is applied to the optical fiber only in the section [z 1 , z 2 ] as shown in FIG. 3, the signal waveform is changed while discretely changing the optical frequency difference Δν of the light source. When Pb is measured, the waveform group shown in FIG. 3 is obtained.
In the intervals [0, z 1 ] and [z 2 , L], the maximum signal power is obtained when ν = νb (0), while the intervals [z 1 ,
z 2 ], it can be seen that the maximum signal power is obtained when Δν = νb (ε). In this way, for each position z, the optical frequency difference Δν of the light source that gives the maximum signal power,
That is, by measuring the Brillouin frequency shift νb (ε (z)), the strain distribution ε (z) of the optical fiber can be obtained by using the equation (6). (Journal of the Institute of Electronics, Information and Communication Engineers B-1, Vol. J73-B-1, No2p
(See p. 144-152, February 1990 issue)

【0011】[0011]

【発明が解決しようとする課題】しかしながら、従来の
歪分布測定装置においては、光源を2台必要とするため
高価であるという問題点があった。
However, the conventional strain distribution measuring device has a problem that it is expensive because it requires two light sources.

【0012】本発明の目的は、前記した従来技術の欠点
を解消し、安価な光ファイバ歪分布測定装置を提供する
ことにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and provide an inexpensive optical fiber strain distribution measuring apparatus.

【0013】[0013]

【課題を解決するための手段及び作用】本発明の要旨
は、歪分布測定装置に必要とする光源を1台としたこと
にあり、それによって装置のコストを低減させたもので
ある。
The gist of the present invention resides in that the strain distribution measuring device has only one light source, which reduces the cost of the device.

【0014】即ち、本発明の上記目的は (1) 光ファイバの両端からパルス光と持続波光を光フ
ァイバ中に対向して入射し、パルス光の光周波数と持続
波光の光周波数の差を光ファイバのブリルアン周波数シ
フトに一致させ、持続波光のみを検出する受光回路と、
その受光信号のS/N比を改善するための平均化処理回
路と、この信号から光ファイバの歪分布を測定する演算
回路とを備えた光ファイバ歪分布測定装置おいて、前記
パルス光と持続波光の発生に使用する光源を一つの可変
波長光源とし光ファイバをループ状に設置し、光ファイ
バの両端と前記可変波長光源とを光スイッチにより切換
使用したことを特徴とする光ファイバ歪分布測定装置。
That is, the above objects of the present invention are as follows. A light receiving circuit that matches only the Brillouin frequency shift of the fiber and detects only continuous wave light,
In an optical fiber strain distribution measuring device provided with an averaging processing circuit for improving the S / N ratio of the received light signal and an arithmetic circuit for measuring the strain distribution of the optical fiber from this signal, the pulsed light and the continuous light are maintained. Optical fiber strain distribution measurement, characterized in that the light source used for generating wave light is one variable wavelength light source, the optical fiber is installed in a loop shape, and both ends of the optical fiber and the variable wavelength light source are switched and used by an optical switch. apparatus.

【0015】(2) 前記光スイッチに代わり音響光学効
果を利用した変調子を用いたことを特徴とする請求項1
記載の光ファイバ歪分布測定装置。
(2) A modulator using an acousto-optic effect is used in place of the optical switch.
The optical fiber strain distribution measuring device described.

【0016】によって達成される。Is achieved by

【0017】本発明においてパルス光により発生し、パ
ルス光の入射端に戻ってくる後方散乱光量が、CW光の
透過光量よりも充分小さい場合は、周波数νcwと周波
数νpを分離しなくとも、測定上問題ないので、この場
合、光分波器4の代わりに光分岐器を用いても良い。
In the present invention, when the amount of backscattered light generated by pulsed light and returning to the incident end of the pulsed light is sufficiently smaller than the amount of transmitted CW light, measurement is performed without separating frequency νcw and frequency νp. In this case, an optical branching device may be used instead of the optical demultiplexer 4 because there is no problem.

【0018】本発明の光スイッチに代わり音響光学効果
を利用した変調子を用いれば、変調子への高周波信号の
on/offにより光パルスを発生させることができ、
また、光スイッチ9の役割もかねることができ、部品数
を更に減らすことができる。
If a modulator utilizing the acousto-optic effect is used instead of the optical switch of the present invention, an optical pulse can be generated by turning on / off a high frequency signal to the modulator,
Further, the role of the optical switch 9 can also be served, and the number of parts can be further reduced.

【0019】[0019]

【実施例】本発明の光ファイバ歪分布測定装置の一実施
例を図1に示し、本発明の光ファイバ式歪分布測定装置
について詳しく説明する。歪分布測定装置1には、印加
される信号によって発振光周波数が変わる光源2cと、
光源2cからの光を被測定光ファイバ7の両端に切り替
える光スイッチ9と、光源2cからの光周波数νpで発
振された光を光スイッチ9から射出された一方の光を光
パルスにするパルス発生器3と、光スイッチ9から光周
波数νcwにより射出された他方のCW光の光分波器4
と、光分波器4で導びかれた光を光電交換する受光器5
と、受光器5からの電気信号を平均化する平均化処理回
路6と、平均化処理回路6の出力信号に基づいて被測定
光ファイバ7の歪分布を測定する演算回路8とから構成
されている。
FIG. 1 shows an embodiment of the optical fiber strain distribution measuring apparatus of the present invention, and the optical fiber type strain distribution measuring apparatus of the present invention will be described in detail. The strain distribution measuring apparatus 1 includes a light source 2c whose oscillating light frequency changes according to an applied signal,
An optical switch 9 for switching the light from the light source 2c to both ends of the optical fiber 7 to be measured, and a pulse generation for turning one light emitted from the light switch 2c from the optical switch 9 into an optical pulse. And the optical demultiplexer 4 for the other CW light emitted from the optical switch 9 at the optical frequency νcw.
And a light receiver 5 that photoelectrically exchanges the light guided by the optical demultiplexer 4.
And an averaging processing circuit 6 for averaging the electric signal from the light receiver 5, and an arithmetic circuit 8 for measuring the strain distribution of the optical fiber 7 to be measured based on the output signal of the averaging processing circuit 6. There is.

【0020】次に、以上のように構成された光ファイバ
歪分布測定装置の動作について簡単に説明する。
Next, the operation of the optical fiber strain distribution measuring device configured as described above will be briefly described.

【0021】光源2cをある光周波数νcwで発振させ
て、光スイッチ9の(A)に入射する。入射した光は被
測定光ファイバ7中を透過する。光ファイバ7に入射し
た時刻を基準として光ファイバ7全長に光が到達した時
間に、光スイッチ9を切り替え(B)光源2の光を入射
させる。この時、同時に発振周波数をνpとする。この
時の周波数νpは、△ν=νp−νcwとした場合△ν
が光ファイバ7のブリルアン周波数νbに一致するよう
にする。その後、この光は、光パルス発生器3によって
パルス光となり、光ファイバ7中を透過する。この時、
パルス光が光ファイバ7の半分の位置に到達する時間ま
では、周波数νcwの光との相互作用による、周波数ν
pからνcwの光への光電力変換過程により、νcwの
光は光ファイバ中でブリルアン光増幅される。
The light source 2c is oscillated at a certain optical frequency νcw and is incident on (A) of the optical switch 9. The incident light is transmitted through the measured optical fiber 7. When the light reaches the entire length of the optical fiber 7 with reference to the time of incidence on the optical fiber 7, the optical switch 9 is switched (B), and the light from the light source 2 is made incident. At this time, the oscillation frequency is set to νp at the same time. The frequency νp at this time is Δν when Δν = νp−νcw
Corresponds to the Brillouin frequency νb of the optical fiber 7. Thereafter, this light becomes pulsed light by the optical pulse generator 3 and is transmitted through the optical fiber 7. At this time,
Until the time when the pulsed light reaches the half position of the optical fiber 7, the frequency ν due to the interaction with the light of the frequency νcw
The light of νcw is amplified by Brillouin light in the optical fiber by the process of converting the electric power from p to the light of νcw.

【0022】この光を従来の装置と同様にして解析する
ことによって歪分布の測定が可能となる。
The strain distribution can be measured by analyzing this light in the same manner as the conventional device.

【0023】ところで、上記の方法だけでは、光ファイ
バ7全長の半分しか歪分布を測定していないこととなる
ため、全長を測定するためには、被測定ファイバのコネ
クタ接続を反転させて計測すればよい。
By the way, with the above method alone, the strain distribution is measured only for half the total length of the optical fiber 7. Therefore, in order to measure the total length, it is necessary to invert the connector connection of the fiber to be measured. Good.

【0024】光周波数νpの光パルスが光ファイバ7に
入射する時刻を基準とした場合の光周波数νcwの光と
の相互作用の様子を図4で説明する。時間t=0の時は
νcwの光は、光ファイバ7の全長(1)に存在するた
めνcwとνpの光は相互作用するが光が光ファイバ7
全長の半分の位置に到達する時間t=1/2υ(υ:光
ファイバ中の光速)を超えるとνcwとνpの光は、相
互作用しなくなる。
The manner of interaction with the light having the optical frequency νcw based on the time when the optical pulse having the optical frequency νp enters the optical fiber 7 will be described with reference to FIG. When the time t = 0, the light of νcw exists in the entire length (1) of the optical fiber 7, and therefore the light of νcw and the light of νp interact, but the light is the optical fiber 7.
When the time t = 1 / 2υ (υ: speed of light in the optical fiber) to reach the position of half the total length is exceeded, the lights of νcw and νp do not interact with each other.

【0025】又、本発明の光ファイバ歪分布測定装置の
他の一実施例を示すが、この場合光パルス発生器3aに
音響光学効果を利用した変調子を用いれば、変調子への
高周波信号のon/offにより光パルスを発生させる
ことができ、また光スイッチ9の役割もかねることが出
来る。
Another embodiment of the optical fiber strain distribution measuring apparatus of the present invention will be described. In this case, if a modulator utilizing the acousto-optic effect is used for the optical pulse generator 3a, a high frequency signal to the modulator is used. Can be used to generate an optical pulse, and the optical switch 9 can also serve as the optical pulse.

【0026】[0026]

【発明の効果】本発明の光ファイバ式歪分布測定装置
は、光源を1台としても、歪分布測定を可能としたため
に、装置の製造コストを低減することができる。
The optical fiber type strain distribution measuring apparatus of the present invention can measure the strain distribution even with a single light source, so that the manufacturing cost of the apparatus can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバ歪分布測定装置を示す。FIG. 1 shows an optical fiber strain distribution measuring device of the present invention.

【図2】光ファイバ歪分布測定装置で測定される信号を
示す。
FIG. 2 shows a signal measured by an optical fiber strain distribution measuring device.

【図3】光ファイバ歪分布測定装置で測定される最終結
果を示す。
FIG. 3 shows a final result measured by an optical fiber strain distribution measuring device.

【図4】光の相互作用の時間変化を示す。FIG. 4 shows the time course of light interaction.

【図5】本発明の光ファイバ歪分布測定装置の他の一実
施例を示す。
FIG. 5 shows another embodiment of the optical fiber strain distribution measuring device of the present invention.

【図6】従来の光ファイバ歪分布測定装置を示す。FIG. 6 shows a conventional optical fiber strain distribution measuring device.

【符号の説明】[Explanation of symbols]

1 光ファイバ歪分布測定装置 2 光源 2a ポンプ光源 2b プローブ光源 2c 可変波長光源 3 光パルス発生器 3a 音響光学効果を利用した変調子 4 光分岐器 5 受光器 6 平均化処理回路 7 光ファイバ 8 演算回路 9 光スイッチ 1 Optical fiber strain distribution measuring device 2 Light source 2a Pump light source 2b Probe light source 2c Variable wavelength light source 3 Optical pulse generator 3a Modulator using acousto-optic effect 4 Optical splitter 5 Optical receiver 6 Averaging processing circuit 7 Optical fiber 8 Calculation Circuit 9 Optical switch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光ファイバの両端からパルス光と持続波光
を光ファイバ中に対向して入射し、パルス光の光周波数
と持続波光の光周波数の差を光ファイバのブリルアン周
波数シフトに一致させ、持続波光のみを検出する受光回
路と、その受光信号のS/N比を改善するための平均化
処理回路と、この信号から光ファイバの歪分布を測定す
る演算回路とを備えた光ファイバ歪分布測定装置におい
て、前記パルス光と持続波光の発生に使用する光源を一
つの可変波長光源とし光ファイバをループ状に設置し、
光ファイバの両端と前記可変波長光源とを光スイッチに
より切換使用したことを特徴とする光ファイバ歪分布測
定装置。
1. A pulsed light and a continuous wave light are incident from both ends of the optical fiber so as to face each other in the optical fiber, and the difference between the optical frequency of the pulsed light and the optical frequency of the continuous wave light is matched with the Brillouin frequency shift of the optical fiber. Optical fiber strain distribution including a light receiving circuit that detects only continuous wave light, an averaging circuit that improves the S / N ratio of the light receiving signal, and an arithmetic circuit that measures the strain distribution of the optical fiber from this signal In the measuring device, the light source used to generate the pulsed light and continuous wave light is one variable wavelength light source and the optical fiber is installed in a loop,
An optical fiber strain distribution measuring apparatus characterized in that both ends of an optical fiber and the variable wavelength light source are switched and used by an optical switch.
【請求項2】前記光スイッチに代わり音響光学効果を利
用した変調子を用いたことを特徴とする請求項1記載の
光ファイバ歪分布測定装置。
2. The optical fiber strain distribution measuring apparatus according to claim 1, wherein a modulator utilizing an acousto-optic effect is used instead of the optical switch.
JP14039393A 1993-06-11 1993-06-11 Apparatus for measuring distortion distribution of optical fiber Pending JPH06347225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14039393A JPH06347225A (en) 1993-06-11 1993-06-11 Apparatus for measuring distortion distribution of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14039393A JPH06347225A (en) 1993-06-11 1993-06-11 Apparatus for measuring distortion distribution of optical fiber

Publications (1)

Publication Number Publication Date
JPH06347225A true JPH06347225A (en) 1994-12-20

Family

ID=15267763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14039393A Pending JPH06347225A (en) 1993-06-11 1993-06-11 Apparatus for measuring distortion distribution of optical fiber

Country Status (1)

Country Link
JP (1) JPH06347225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305795A (en) * 1995-09-26 1997-04-16 Ando Electric Optical fiber characteristic measuring device
JPH11183135A (en) * 1997-12-25 1999-07-09 Mitsubishi Heavy Ind Ltd Distribution type strain gauge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2305795A (en) * 1995-09-26 1997-04-16 Ando Electric Optical fiber characteristic measuring device
US5686986A (en) * 1995-09-26 1997-11-11 Ando Electric Co., Ltd. Optical fiber characteristic measuring device
GB2305795B (en) * 1995-09-26 1997-11-26 Ando Electric Optical fiber characteristic measuring device
JPH11183135A (en) * 1997-12-25 1999-07-09 Mitsubishi Heavy Ind Ltd Distribution type strain gauge

Similar Documents

Publication Publication Date Title
JPH0933389A (en) Rear brillouin scattering light otdr device, measuring method therefor, and optical communication line system using this device
JP3094925B2 (en) Optical fiber strain measurement device
EP1045237B1 (en) Optical fiber characteristics measuring apparatus
JP3306819B2 (en) Optical pulse tester
JP3237745B2 (en) Strain / temperature distribution measuring method and its measuring device
JP3094917B2 (en) Optical fiber strain measurement device
JPH06347225A (en) Apparatus for measuring distortion distribution of optical fiber
JP3408789B2 (en) Method and apparatus for measuring backscattered light
JP3236661B2 (en) Optical pulse tester
JP3124184B2 (en) Optical fiber temperature distribution measurement method
US6646746B1 (en) Method and system for optical heterodyne detection of an optical signal
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JP5212878B2 (en) Optical fiber characteristic measuring device
JP3250587B2 (en) Chromatic dispersion measurement device
JPH08184502A (en) Light waveform measuring equipment
JP2000081374A (en) Method and device for measuring wavelength dispersion
JP2002509612A (en) Wavelength measurement system
RU1811599C (en) Measuring attenuation distribution and nonuniformity locations in fibre-glass light pipes
JPH08334436A (en) Wavelength dispersion measuring method for optical fiber
JPH05172657A (en) Optical fiber distributed temperature sensor
JP4037840B2 (en) Optical pulse tester
JPH0540075A (en) Light pulse tester
JP3019530B2 (en) Optical pulse tester using heterodyne light reception
JPS6039526A (en) Optical fiber measuring device
JPH03257336A (en) Method and apparatus for measuring width of spectral line of laser beam source