JPH06346894A - Capacity control device for centrifugal compressor - Google Patents

Capacity control device for centrifugal compressor

Info

Publication number
JPH06346894A
JPH06346894A JP13744493A JP13744493A JPH06346894A JP H06346894 A JPH06346894 A JP H06346894A JP 13744493 A JP13744493 A JP 13744493A JP 13744493 A JP13744493 A JP 13744493A JP H06346894 A JPH06346894 A JP H06346894A
Authority
JP
Japan
Prior art keywords
pressure
signal
centrifugal compressor
flow rate
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13744493A
Other languages
Japanese (ja)
Other versions
JP2774433B2 (en
Inventor
Kenji Tomomura
賢二 友村
Masao Sawada
征男 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13744493A priority Critical patent/JP2774433B2/en
Publication of JPH06346894A publication Critical patent/JPH06346894A/en
Application granted granted Critical
Publication of JP2774433B2 publication Critical patent/JP2774433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the prevention of surging even without a flow detecting device and make discharge piping or suction piping around a centrifugal compressor compact so as to allow the compressor to be packaged easily. CONSTITUTION:A capacity control device for a centrifugal compressor is provided with a divider for detecting the power (or current) of a motor 42 for driving the centrifugal compressor 1 and dividing the detection value by the discharge absolute pressure of the centrifugal compressor l, and a control part 14 for closing a flow regulating means 3 and opening a pressure regulating changeover valve 9 when the output of the divider 48 becomes the set value or less and opening a flow regulating valve when the pressure detected by a pressure controller 7 reaches the lower limit set value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばガスホルダへの
ガス圧送に適用される遠心圧縮機の容量制御装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity control device for a centrifugal compressor which is applied to, for example, gas pressure feeding to a gas holder.

【0002】[0002]

【従来の技術】従来、図6に示すガス圧送装置が公知で
ある(関連発明:特公平1−25920号公報)。この
装置は、遠心圧縮機1を用いたもので、遠心圧縮機1の
吸込流路2に、吸込絞り弁等の流量調節手段(以下、P
CVという)3が設けてあり、吐出流路4に、逆止弁5
が設けてある。さらに、逆止弁5の入側の吐出流路4の
部分には、流量検出可能に流量検出スイッチ(以下、F
Sという)6が、出側の吐出流路4の部分、即ち吐出流
路4aの部分には圧力検出可能に圧力調節計(以下、P
ICという)7が設けてある。FS6は、流量の下限設
定器を、PIC7は、圧力の下限設定器を内蔵してい
る。図6において右側に延びる吐出流路4aは、例えば
図示しないガスホルダに至っている。また、遠心圧縮機
1と逆止弁5との間の吐出流路4の部分から、吐出流路
中のガスを大気に放出させるか、或は吸込流路2に連通
して、この吸込流路2に戻すための分岐流路8を設け、
この分岐流路8に吐出流路4内の圧力を調節する圧力調
節用開閉弁(以下、FCVという)9が設けてある。
2. Description of the Related Art Conventionally, a gas pressure feeding device shown in FIG. 6 has been known (related invention: Japanese Patent Publication No. 1-252020). This apparatus uses a centrifugal compressor 1, and a suction flow path 2 of the centrifugal compressor 1 is provided with a flow rate adjusting means such as a suction throttle valve (hereinafter, P).
CV) 3 is provided, and the check valve 5 is provided in the discharge flow path 4.
Is provided. Further, in the portion of the discharge flow path 4 on the inlet side of the check valve 5, a flow rate detection switch (hereinafter, referred to as F
A pressure controller (hereinafter, referred to as P) 6 is provided at a portion of the discharge passage 4 on the outlet side, that is, a portion of the discharge passage 4a so that pressure can be detected.
7) is provided. The FS 6 has a flow rate lower limit setter, and the PIC 7 has a pressure lower limit setter. The discharge flow path 4a extending to the right in FIG. 6 reaches, for example, a gas holder (not shown). Further, from the portion of the discharge flow path 4 between the centrifugal compressor 1 and the check valve 5, the gas in the discharge flow path is released to the atmosphere or communicated with the suction flow path 2, and the suction flow A branch flow path 8 for returning to the path 2 is provided,
A pressure adjusting on-off valve (hereinafter referred to as FCV) 9 for adjusting the pressure in the discharge channel 4 is provided in the branch channel 8.

【0003】PIC7からは、a,b,cポートを有す
る第1三方電磁弁10を介してPCV3の駆動部に至る
第1計装空気流路11が延びており、FCV9の駆動部
にはd,e,fポートを有する第2三方電磁弁12を設
けた第2計装空気流路13が接続してある。さらに、F
S6による検出流量、PIC7による検出圧力を示す信
号を制御部14に入力し、これらの信号に基づき、後述
するように、第1,第2三方電磁弁10,12の流路切
換制御を行うようになっている。
A first instrument air passage 11 extending from the PIC 7 to a drive unit of the PCV 3 via a first three-way solenoid valve 10 having a, b, and c ports extends to the drive unit of the FCV 9 by d. A second instrumentation air flow path 13 having a second three-way solenoid valve 12 having ports e, f is connected. Furthermore, F
Signals indicating the flow rate detected by S6 and the pressure detected by the PIC 7 are input to the control unit 14, and based on these signals, flow path switching control of the first and second three-way solenoid valves 10 and 12 is performed as described later. It has become.

【0004】次に、上述した装置によるガス圧送の際に
行われている容量制御について、図7を参照しつつ説明
する。図7は、各種の圧力−流量関係を同一面上に表わ
したもので、曲線IはFCV9の全開時におけるFCV
9の抵抗曲線を示し、下端がこの曲線I上にある曲線群I
IはPCV3の開度θをθ1,…,θminと変化させた場
合の、各開度における遠心圧縮機1の吐出ガス圧力と吐
出ガス流量, 直線III(サージ線)はサージ圧と吐出ガ
ス流量との関係、直線IVは吐出ガス圧力PSにおけるサ
ージ防止のための許容限である下限設定流量(FSL)
を示している。また、縦軸上のPSは、PIC7におけ
る定風圧制御の圧力設定値, PSLは吐出流路4aでの
圧力下限設定値を示す。
Next, the capacity control that is performed when the gas is pressure-fed by the above-mentioned device will be described with reference to FIG. FIG. 7 shows various pressure-flow rate relationships on the same plane. Curve I shows FCV9 when FCV9 is fully open.
9 shows the resistance curve of 9 and the lower end is on this curve I
I is the discharge gas pressure and discharge gas flow rate of the centrifugal compressor 1 at each opening when the opening θ of the PCV 3 is changed to θ 1 , ..., θmin, and the straight line III (surge line) is the surge pressure and discharge gas. The relationship with the flow rate, the straight line IV is the lower limit set flow rate (FSL) which is the allowable limit for surge prevention at the discharge gas pressure PS.
Is shown. Further, PS on the vertical axis indicates the pressure set value for constant air pressure control in the PIC 7, and PSL indicates the pressure lower limit set value in the discharge flow path 4a.

【0005】遠心圧縮機1の運転が開始されると、吐出
ガス流量が、検出圧力における下限設定値FSLに至る
以前には、FS6からの信号に基づき、制御部14から
の負荷運転指令信号により、第1三方電磁弁10のa−
bポートは連通し、下記する定風圧制御が行われる一
方、第2三方電磁弁12のd−eポートが連通し、第2
計装空気流路13からの所定圧の計装空気により加圧さ
れてFCV9は閉じている。定風圧制御は、この設定圧
力PSにある点A, B間でPCV3の開度調節により行
われ、この点A, Bで示される圧力は、この制御時の吐
出流路4aでの圧力を示し、PIC7における偏差(検
出圧力−設定値)が+の場合にはPCV3の開度θを小
さくし、−の場合には開度θを大きくして吐出流路4a
での圧力が略一定に保たれる。偏差が−の状態で続くと
PCV3の開度θは増大して行き、圧縮機最大能力であ
るA点に達する。
When the operation of the centrifugal compressor 1 is started, before the discharge gas flow rate reaches the lower limit set value FSL at the detected pressure, based on the signal from FS6, the load operation command signal from the control unit 14 is issued. , A- of the first three-way solenoid valve 10
b port communicates with each other, and the following constant wind pressure control is performed, while the de-e port of the second three-way solenoid valve 12 communicates with the second port.
The FCV 9 is closed by being pressurized by the instrument air having a predetermined pressure from the instrument air flow path 13. The constant air pressure control is performed by adjusting the opening degree of the PCV 3 between the points A and B at the set pressure PS, and the pressure indicated by the points A and B indicates the pressure in the discharge passage 4a at the time of this control. , If the deviation (detected pressure minus the set value) in the PIC 7 is +, the opening θ of the PCV 3 is decreased, and if the deviation is −, the opening θ is increased to increase the discharge flow path 4a.
The pressure at is kept almost constant. When the deviation continues in the negative state, the opening degree θ of the PCV 3 increases and reaches the point A which is the maximum compressor capacity.

【0006】これに対して、吐出流路4aでの圧力が上
昇傾向にあって偏差が+の状態が続くとPCV3の開度
θは小さくなって行き(θmin側に作動して行く。)、や
がて、吐出ガス流量はサージ防止用のFS6の下限設定
流量(FSL)を示す直線IVと交差する点Bの状態に達す
る。この結果、FS6が作動して、制御部14より無負
荷運転指令信号を出し、第2三方電磁弁12のe−fポ
ートが連通し、FCV9の駆動部を加圧していた所定圧
の計装空気は大気に解放,放出され、FCV9が全開す
る。同時に、第1三方電磁弁10のa−cポートを連通
させて、PCV3の開度θを最小値θminの状態にする
(図7中のB点より、D点の状態へ移行させる)。
On the other hand, if the pressure in the discharge passage 4a tends to increase and the deviation continues to be +, the opening degree θ of the PCV 3 becomes smaller (actuates toward the θmin side). Eventually, the discharge gas flow rate reaches a state of a point B that intersects the straight line IV indicating the lower limit set flow rate (FSL) of the FS 6 for surge prevention. As a result, the FS6 operates to output the no-load operation command signal from the control unit 14, the ef port of the second three-way solenoid valve 12 is communicated, and the instrumentation of a predetermined pressure that pressurizes the drive unit of the FCV 9 is performed. The air is released and released into the atmosphere, and FCV9 is fully opened. At the same time, the a-c ports of the first three-way solenoid valve 10 are communicated with each other to bring the opening degree θ of the PCV 3 to the minimum value θmin (transition from point B to point D in FIG. 7).

【0007】そして、吐出ガス圧力,流量は、D点の状
態となり、この状態は遠心圧縮機1の最小負荷状態で、
消費動力は最小となる。また、この状態では吐出流路4
a側へのガス圧送はなく、かつ逆止弁3によりガスの逆
流は阻止されており、図7において逆止弁5の右方の吐
出流路4aの部分の圧送ガスは蓄圧された状態にあり、
その消費とともに徐々に圧力降下が生じる。吐出流路4
aの圧力が下限設定値PSLまで下がると、即ち、PI
C7によりPSLの値に等しい圧力値が検出されると、
第1三方電磁弁10のa−bポートを連通させて、PIC
7による制御状態にする。即ち、PCV3をPIC7と
接続し、PCV3を全開にする。同時に、第2三方電磁
弁12のd−eポートを連通させて、FCV9を全閉に
する。この結果、吐出圧力,流量は、D点からA′点に
移行する。
Then, the discharge gas pressure and flow rate are in the state of point D, which is the minimum load state of the centrifugal compressor 1.
Power consumption is minimal. Further, in this state, the discharge flow path 4
There is no gas pressure feeding to the a side, and the check valve 3 blocks the backflow of gas. In FIG. 7, the pressure-fed gas in the portion of the discharge flow passage 4a on the right side of the check valve 5 is accumulated. Yes,
A pressure drop gradually occurs with the consumption. Discharge channel 4
When the pressure of a falls to the lower limit set value PSL, that is, PI
When a pressure value equal to the value of PSL is detected by C7,
The ab port of the first three-way solenoid valve 10 is communicated with the PIC
The control state by 7. That is, PCV3 is connected to PIC7, and PCV3 is fully opened. At the same time, the de-e ports of the second three-way solenoid valve 12 are communicated with each other to fully close the FCV 9. As a result, the discharge pressure and flow rate shift from point D to point A '.

【0008】さらに、吐出圧力が上昇して点A′を超え
ると、吐出ガスの吐出流路4aへの圧送が始まり、吐出
流路4a内の圧力は徐々に上昇して点Aの水準に達し、
これまでのB点からD点を経てA点に至る負荷,無負荷
制御から、上記A−B線上の定風圧制御に移行し、以
後、上記同様な制御の繰り返しとなる。図7中、実線に
よる曲線Vが以上の制御による吐出ガスの状態変化を示
している。即ち、この公知技術は、FS6を設けること
により、遠心圧縮機1の吐出ガス流量がサージング領域
に近い所定の流量下限値以下に達すると、直ちに吸入弁
であるPCV3を遮断し、排気弁(放風弁)であるFCV
9を開放して無負荷運転することでサージングを防止す
ることを前提とした技術である。
Further, when the discharge pressure rises and exceeds point A ', pumping of discharge gas to the discharge channel 4a starts, and the pressure in the discharge channel 4a gradually rises to reach the level of point A. ,
The load / no-load control from the point B to the point A to the point A is shifted to the constant wind pressure control on the line AB, and the same control is repeated thereafter. In FIG. 7, a solid line curve V shows the change in the state of the discharged gas under the above control. That is, in this known technique, by providing the FS6, as soon as the discharge gas flow rate of the centrifugal compressor 1 reaches a predetermined flow rate lower limit value close to the surging region or less, the intake valve PCV3 is shut off and the exhaust valve (release valve) is released. FCV which is a wind valve)
This is a technology based on the premise that surging is prevented by opening 9 to perform no-load operation.

【0009】この他、上述したFS6を設ける代わり
に、図8に示すように、遠心圧縮機1を駆動する電動機
21の入力電流、または電力を検出し、調節器22によ
りこの検出値と基準値とを比較し、検出値が基準値以下
になると、放風弁(サージング防止弁)23を開いて、
放風運転するようにしたガス圧送装置が公知である(実
開昭63−31292号公報,関連発明:特開昭52−
17203号公報)。なお、図8において二点鎖線で示
された部分は公知技術である遠心圧縮機1の吸込絞り弁
24による吐出圧力制御(定風圧制御)と、電動機21
の過負荷防止用制御のためのループを示している。ま
た、図9は、遠心圧縮機1の吐出圧力と風量との関係、
並びに入力電力(または、電流)と風量との関係を示
し、Iはサージ線、IIは圧縮機の特性曲線、IIIは入力電
力(または、電流)の曲線、MAX−Wは過負荷防止最
大電動機電力(または、電流)値、MIN−Wはサージ
ング防止最小電動機電力(または、電流)値を示し、サ
ージング防止のための基準電力(または、電流)値をA
点に定めている。
In addition, instead of providing the above-mentioned FS6, as shown in FIG. 8, the input current or power of the electric motor 21 for driving the centrifugal compressor 1 is detected, and the detected value and the reference value are adjusted by the controller 22. When the detected value becomes equal to or less than the reference value, the blow-off valve (surging prevention valve) 23 is opened and
A gas pressure feeding device adapted to perform a blow-off operation is known (Japanese Utility Model Laid-Open No. 63-31292, Related Invention: Japanese Patent Laid-Open No. 52-).
17203). It should be noted that in FIG. 8, a portion indicated by a chain double-dashed line is a known technique, and the discharge pressure control (constant wind pressure control) by the suction throttle valve 24 of the centrifugal compressor 1 and the motor 21
3 shows a loop for overload prevention control of the above. 9 shows the relationship between the discharge pressure of the centrifugal compressor 1 and the air volume,
It also shows the relationship between the input power (or current) and the air volume, I is the surge line, II is the characteristic curve of the compressor, III is the input power (or current) curve, and MAX-W is the overload prevention maximum motor. Power (or current) value, MIN-W indicates the minimum motor power (or current) value for preventing surging, and the reference power (or current) value for preventing surging is A
Set to the point.

【0010】さらに、図10に示すガス圧送装置が公知
である(特開平2−123299号公報)。この装置
は、上述したFS6を設ける代わりに、遠心圧縮機1を
駆動する電動機31の入力電流(AMP)を電流変換器
32により検知するとともに、遠心圧縮機1の吐出圧力
(逆止弁33以降の圧力)を圧力変換器34により検知
して、この二つの値の組合わせをコントローラ35にて
認識し、図11に示すマップの上で遠心圧縮機1がサー
ジ領域Iで運転されている場合は、遠心圧縮機1に無負
荷運転をさせる一方、非サージ領域IIで運転されている
場合は、遠心圧縮機1に圧力一定の定圧制御運転を行わ
せるようにしたものである。なお、図11の縦軸のf1
は固定常数を示している。
Further, a gas pressure feeding device shown in FIG. 10 is known (Japanese Patent Laid-Open No. 123232/1990). This device detects the input current (AMP) of the electric motor 31 that drives the centrifugal compressor 1 by the current converter 32 instead of providing the FS 6 described above, and discharge pressure of the centrifugal compressor 1 (from the check valve 33 onward). Pressure) is detected by the pressure converter 34, the combination of these two values is recognized by the controller 35, and the centrifugal compressor 1 is operating in the surge region I on the map shown in FIG. In the above, the centrifugal compressor 1 is operated under no load, and when the centrifugal compressor 1 is operated in the non-surge region II, the centrifugal compressor 1 is controlled to perform constant pressure control operation. Note that f 1 on the vertical axis of FIG.
Indicates a fixed constant.

【0011】[0011]

【発明が解決しようとする課題】上述した公知例の内、
図6に示すガス圧送装置の場合、流量を検出する手段で
あるFS6はオリフィスと差圧伝送器と信号設定器とに
より構成されるのが一般的である。一方、最近のガス圧
送装置は、付属機器も含めてパッケージ化されることが
多く、流量検出のために必要なオリフィス前後の直管長
を確保することができず、正確な流量検出が困難な場合
が多く、かつ流量検出装置は一般的に高価であるという
問題がある。
Among the above-mentioned known examples,
In the case of the gas pressure feeding device shown in FIG. 6, the FS6 which is a means for detecting the flow rate is generally composed of an orifice, a differential pressure transmitter and a signal setting device. On the other hand, recent gas pressure feeders are often packaged with accessories, and it is not possible to secure the straight pipe length before and after the orifice required for flow rate detection, making accurate flow rate detection difficult. However, there is a problem that the flow rate detection device is generally expensive.

【0012】また、急激な負荷変動があった場合、PI
C7の応答遅れにより、ガスホルダー圧力が、PIC7
の設定値(図7中のA−B線)より上昇するおそれがあ
る。この場合、設定値がFLSの値に固定されたFS6
では、サージングを防止することはできない。即ち、図
7中の一点鎖線VIの経路でサージング領域の状態に陥る
可能性がある。さらに、PIC7の設定値を変えた場合
には、FLSの設定値も変える必要がある等の問題があ
る。
When a sudden load change occurs, PI
Due to the delayed response of C7, the gas holder pressure is
May be higher than the set value (line AB in FIG. 7). In this case, FS6 whose set value is fixed to the value of FLS
Then, surging cannot be prevented. That is, there is a possibility that the path of the alternate long and short dash line VI in FIG. Further, when the setting value of PIC7 is changed, there is a problem that the setting value of FLS also needs to be changed.

【0013】図8に示すガス圧送装置の場合、遠心圧縮
機1の運転圧力(定風圧制御の調節器の設定値)を変化
させると、基準電力(または、電流)値も変える必要が
ある。また、これを自動的に行うようにしても、予め各
々の吐出圧力に対する基準電力(または、電流)値を求
めておく必要があるという問題がある。さらに、電力
(または、電流)が、基準電力(または、電流)値に近
付くと、無負荷運転をさせずに、放風運転を行わせるた
め、例えば工場空気源のように流量変化が大きい用途に
用いられる場合は、動力損失が大きいという問題があ
る。
In the case of the gas pressure feeding device shown in FIG. 8, when the operating pressure of the centrifugal compressor 1 (the set value of the controller for constant wind pressure control) is changed, it is necessary to change the reference power (or current) value. Further, even if this is automatically performed, there is a problem in that it is necessary to previously obtain the reference power (or current) value for each discharge pressure. Further, when the electric power (or current) approaches the reference electric power (or current) value, the blow-off operation is performed without performing the no-load operation, so that the flow rate is largely changed, such as a factory air source. However, there is a problem that the power loss is large.

【0014】図10に示すガス圧送装置の制御方式を採
用する場合、市販の工業用調節計では、機能,メモリ
ー,容量の面で無理があり、コンピュータを利用した専
用のコントローラか、または比較的高価な市販の小,中
規模のプロセスコンピュータが必要になるという問題が
ある。また、この制御方式では、遠心圧縮機1の放風運
転は行わないが、マップの境界条件として、吐出圧力P
が、設定圧力PSET×f1以下か、P<電流/MIN・A
MP+PM(サージマージン)か、電動機電流AMP>
MIN・AMPかの三つの条件で決められる。このた
め、遠心圧縮機1の運転設定圧力PSETを変更すれば、
MIN・AMPも変化するので、設定圧力PSETを変え
ることのある用途に用いられる場合、予め各吐出圧力に
対するMIN・AMP値を求めておき、マップを変更し
てゆく必要がある。
When the control system of the gas pressure feeding device shown in FIG. 10 is adopted, a commercially available industrial controller is not possible in terms of function, memory and capacity, and it is either a dedicated controller using a computer or relatively. There is a problem in that an expensive commercially available small or medium-sized process computer is required. Further, in this control method, the blow-off operation of the centrifugal compressor 1 is not performed, but the discharge pressure P is set as the boundary condition of the map.
Is set pressure P SET × f 1 or less, or P <current / MIN · A
MP + PM (surge margin) or motor current AMP>
It is decided by three conditions of MIN and AMP. Therefore, if the operation set pressure P SET of the centrifugal compressor 1 is changed,
Since MIN / AMP also changes, when it is used for an application in which the set pressure P SET may be changed, it is necessary to obtain the MIN / AMP value for each discharge pressure in advance and change the map.

【0015】また、電動機31の電圧が変化する場合
は、電流値も変化し、制御が不安定になる等の問題があ
る。本発明は、斯る従来の問題点を課題としてなされた
もので、高価な流量検出手段を不要とし、遠心圧縮機回
りの配管がコンパクトで、遠心圧縮機のサージ防止パラ
メータを単純に決定でき、遠心圧縮機の運転圧力設定値
を変更してもサージ防止パラメータの変更の必要はな
く、市販の一般工業用調節計の使用で足りる遠心圧縮機
の容量制御装置を提供しようとするものである。
Further, when the voltage of the electric motor 31 changes, the current value also changes, and there is a problem that the control becomes unstable. The present invention has been made to solve the problems of the prior art, does not require expensive flow rate detection means, the piping around the centrifugal compressor is compact, the surge prevention parameter of the centrifugal compressor can be simply determined, Even if the operating pressure set value of the centrifugal compressor is changed, it is not necessary to change the surge prevention parameter, and it is an object of the present invention to provide a capacity control device for a centrifugal compressor, which is sufficient by using a commercially available general industrial controller.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、遠心圧縮機の吸込流路に設けた流量調節
手段と、吐出流路に設けた逆止弁の上流側にて、吐出流
路から分岐し、大気または吸込流路に通ずる開閉弁を備
えた分岐流路と、上記逆止弁の下流側に圧力検出可能に
設け、検出圧力信号を出力するとともに、検出圧力が、
設定圧力以下の場合には第1オン信号を、他の場合には
第1オフ信号を出力する圧力下限設定器を内蔵する他、
検出圧力が高い程、上記流量調節手段の開度を小とする
開度調節信号を出力する圧力調節計と、この圧力調節計
による検出圧力を絶対圧力に変換する変換手段と、上記
遠心圧縮機の駆動部に供給する電力を検出する電力検出
手段と、この電力検出手段による検出電力の値を上記変
換手段より得られる絶対圧力値で除する演算手段と、こ
の演算手段からの出力値が設定値以下の場合には第2オ
フ信号を、他の場合には第2オン信号を出力する電力下
限設定器と、遠心圧縮機の起動後、上記圧力下限設定器
からの第1オン信号により上記開閉弁を閉、上記流量調
節手段を開として負荷運転を行わせ、上記第1オン信
号,第2オン信号が出力されている間は上記圧力調節計
からの開度調節信号に基づく流量調節手段の開度調節に
よる定風圧制御を行わせるとともに、上記第1オフ信
号,第2オフ信号の出力により上記開閉弁を開、上記流
量調節手段を閉として無負荷運転を行わせる制御装置と
を備えた構成とした。
In order to solve the above problems, the present invention provides a flow rate adjusting means provided in a suction passage of a centrifugal compressor and an upstream side of a check valve provided in a discharge passage. , A branch flow passage branched from the discharge flow passage and provided with an on-off valve communicating with the atmosphere or the suction flow passage, and provided on the downstream side of the check valve so that pressure can be detected, and a detection pressure signal is output and the detected pressure is ,
In addition to the built-in pressure lower limit setting device that outputs the first ON signal when the pressure is below the set pressure and the first OFF signal in other cases,
The higher the detected pressure, the smaller the opening of the flow rate adjusting means, the pressure controller that outputs an opening adjustment signal, the converting means that converts the pressure detected by the pressure controller into an absolute pressure, and the centrifugal compressor. Power detecting means for detecting the electric power supplied to the driving section, calculating means for dividing the value of the detected power by the power detecting means by the absolute pressure value obtained by the converting means, and the output value from the calculating means is set. When the value is less than or equal to the value, the second lower signal is output, and in other cases, the second lower signal is output. The on-off valve is closed and the flow rate adjusting means is opened to perform the load operation, and the flow rate adjusting means based on the opening degree adjusting signal from the pressure controller while the first ON signal and the second ON signal are being output. Constant air pressure control by adjusting the opening of Causes, and the first off signal, the on-off valve by the output of the second off-signal to open, a configuration in which a said flow rate control means controlling device to perform the no-load operation is closed.

【0017】[0017]

【作用】上記発明のように構成することにより、遠心圧
縮機の容量制御に流量検出手段を用いる必要が無くな
り、圧縮機の軸動力を吐出絶対圧力で除した値が、サー
ジ線上では、一定の値となることに着目し、この値が設
定値以下になれば無負荷運転を行うようにしているた
め、放風圧運転することなく容易に非サージ制御ができ
るようになり、圧縮機の定格圧力付近では、電力下限設
定線がサージ線にほぼ平行になるため、圧力調節計(P
IC)の応答遅れによって、設定圧力よりも実際の圧力
が上下してもサージ防止ができるようになる。
By configuring as in the above invention, it becomes unnecessary to use the flow rate detecting means for controlling the capacity of the centrifugal compressor, and the value obtained by dividing the shaft power of the compressor by the absolute discharge pressure is constant on the surge line. Paying attention to the fact that it becomes a value, if this value becomes less than or equal to the set value, no-load operation is performed, so it becomes possible to easily perform non-surge control without running in blowout pressure. In the vicinity, the power lower limit setting line is almost parallel to the surge line.
Due to the response delay of IC), the surge can be prevented even if the actual pressure rises or falls below the set pressure.

【0018】[0018]

【実施例】次に、本発明の一実施例を図面にしたがって
説明する。図1は、本発明の第1実施例に係る遠心圧縮
機1の容量制御装置I1を適用したガス圧送装置を示
し、図6に示すガス圧送装置と共通する部分について
は、互いに同一番号を付して説明を省略する。この装置
では、動力線41から遠心圧縮機1を駆動する電動機4
2に供給される電力を、計器用変流器43および計器用
変圧器44を介して電力変換器45により検出するよう
に形成してある。なお、計器用変流器43,計器用変圧
器44は、電動機42の保護等のために本発明とは関係
なく、動力線41に遮断器46とともに設けられるのが
一般的である。
An embodiment of the present invention will be described below with reference to the drawings. Figure 1 shows a gas pumping device to which the capacity control device I 1 of the centrifugal compressor 1 according to the first embodiment of the present invention, portions which are common with the gas pumping device shown in FIG. 6, the same numbers together The description is omitted. In this device, the electric motor 4 that drives the centrifugal compressor 1 from the power line 41
The power supplied to 2 is formed so as to be detected by the power converter 45 via the instrument current transformer 43 and the instrument transformer 44. Note that the instrument current transformer 43 and the instrument transformer 44 are generally provided on the power line 41 together with the circuit breaker 46 for protection of the electric motor 42 and the like, regardless of the present invention.

【0019】一方、吐出流路4aの圧力を検出するPI
C7からの圧力信号を加算器47に導き、ここで入力信
号に常数を加算して、この信号から絶対圧力を算出し、
絶対圧力信号を除算器48に入力するとともに、電力変
換器45からの電力信号をこの除算器48に入力してい
る。そして、この除算器48にて電力信号を吐出流路4
aの絶対圧力信号で除した値を示す信号を電力下限設定
器49に入力している。電力下限設定器49では、除算
器48からの上記信号と、電力下限設定値(WSL)と
を比較し、この信号が設定値以下であればオフの接点信
号を設定値よりも大きい場合はオンの接点信号を発生
し、これを制御部14に入力するように形成してある。
なお、本装置では、PIC7と第1三方電磁弁10との
間に電空変換器50を介在させてある。
On the other hand, a PI for detecting the pressure in the discharge channel 4a
The pressure signal from C7 is led to the adder 47, where the constant is added to the input signal and the absolute pressure is calculated from this signal,
The absolute pressure signal is input to the divider 48, and the power signal from the power converter 45 is input to the divider 48. Then, the electric power signal is output from the divider 48 by the divider 48.
A signal indicating a value divided by the absolute pressure signal of a is input to the power lower limit setter 49. The power lower limit setter 49 compares the above signal from the divider 48 with the power lower limit set value (WSL), and if this signal is less than or equal to the set value, it turns on if the off contact signal is greater than the set value. The contact signal is generated and input to the control unit 14.
In this device, the electropneumatic converter 50 is interposed between the PIC 7 and the first three-way solenoid valve 10.

【0020】図2は、制御部14内のシーケンス回路の
一部を示し、接点46Xは、遮断器46が投入され、電
動機42、および遠心圧縮機1が起動状態、或は運転状
態になると閉路するものである。接点46Xが閉路する
ことにより、タイマー46XTが作動を開始し、遠心圧
縮機1の起動時間経過後にタイムアップするように設定
されており、タイムアップすると接点46XTが閉路
し、第1,第2三方電磁弁10,12のコイルSV1
0,SV12に通電するようになっている。また、電力
下限設定器49の出力接点WSL、およびPIC7に内
蔵された圧力下限設定器の出力接点PSLを並列に接続
し、コイルSV10,SV12に通電させるように形成
してある。
FIG. 2 shows a part of the sequence circuit in the control unit 14, and the contact 46X is closed when the circuit breaker 46 is turned on and the electric motor 42 and the centrifugal compressor 1 are in the starting state or the operating state. To do. When the contact 46X is closed, the timer 46XT starts to operate, and the time is set to elapse after the startup time of the centrifugal compressor 1. When the time is up, the contact 46XT is closed, and the first, second, and third directions are closed. Coil SV1 of solenoid valves 10 and 12
0 and SV12 are energized. Further, the output contact WSL of the power lower limit setting device 49 and the output contact PSL of the pressure lower limit setting device built in the PIC 7 are connected in parallel, and the coils SV10 and SV12 are energized.

【0021】次に、上記構成からなる装置における容量
制御について説明する。吐出流路4aの圧力が0kgf
/cm2Gにある状態で、遠心圧縮機1を起動すると、
吐出流路4aの圧力は設定値PSL以下であるから、出
力接点PSLはオンの状態であるため、即ち閉路してい
るため、起動時間経過後、タイマー接点46XTが閉路
して、第1,第2三方電磁弁10,12のコイルSV1
0,SV12に通電される。第2三方電磁弁12に通電
されるとd−eポートが連通状態になる。そして、第2
計装空気流路13からの所定圧の計装空気によりFCV
9は全閉状態となる。
Next, the capacity control in the device having the above structure will be described. The pressure in the discharge passage 4a is 0 kgf
When the centrifugal compressor 1 is started in the state of / cm 2 G,
Since the pressure in the discharge flow path 4a is equal to or lower than the set value PSL, the output contact PSL is in the ON state, that is, the circuit is closed. Therefore, after the start-up time has elapsed, the timer contact 46XT is closed and the first and first 2 Three-way solenoid valve 10, 12 coil SV1
0, SV12 is energized. When the second three-way solenoid valve 12 is energized, the de port will be in communication. And the second
FCV by instrumentation air of a predetermined pressure from the instrumentation air flow path 13
9 is fully closed.

【0022】同時に、第1三方電磁弁10に通電され、
a−bポートが連通状態になり、PIC7からの圧力信
号が、電空変換器50を介してPCV3の駆動部に送ら
れる。このとき、PIC7の設定値よりも実際の検出圧
力が低いため、PIC7からの信号はPCV3を全開さ
せる信号になっており、PCV3は全開状態になる。し
たがって、遠心圧縮機1は、100%以上の風量で、例
えば図示しないガスホルダーにガス圧送してゆくことに
なる。
At the same time, the first three-way solenoid valve 10 is energized,
The ab port is in the communication state, and the pressure signal from the PIC 7 is sent to the drive unit of the PCV 3 via the electropneumatic converter 50. At this time, since the actual detected pressure is lower than the set value of PIC7, the signal from PIC7 is a signal for fully opening PCV3, and PCV3 is in a fully open state. Therefore, the centrifugal compressor 1 sends gas with a flow rate of 100% or more, for example, to a gas holder (not shown).

【0023】このガスホルダーの圧力が圧力下限設定器
の設定値PSLに達し、その出力接点PSLがオフの状
態、即ち開路するが、電力下限設定器49の出力接点W
SLはオンの状態、即ち閉路しており、第1,第2三方
電磁弁10,12への通電は続けられる。そして、圧送
ガスの消費量が少ないか、無い場合は、やがてPIC7
における設定値PSまで吐出圧力が上昇し、PIC7か
らの出力が低下し、PCV3は閉側に作動し始めるが、
ガスホルダーへのガス圧送は続くため、吐出流路4aの
圧力は上昇し続ける。この圧力の上昇とPCV3の閉じ
てゆく変化にしたがって、遠心圧縮機1からの吐出風
量,軸動力とも低下してゆく。そして、電動機42への
入力電力を吐出流路4a圧力で除した値が、電力下限設
定器49における設定値WLS以下となり、電力下限設
定器49の出力接点WSLがオフの状態、即ち開路す
る。
The pressure of this gas holder reaches the set value PSL of the pressure lower limit setter, and its output contact PSL is in the OFF state, that is, the circuit is opened, but the output contact W of the power lower limit setter 49.
SL is in the ON state, that is, closed, and the energization of the first and second three-way solenoid valves 10 and 12 is continued. Then, if the consumption of the pressure-fed gas is small or not, the PIC7 will eventually be released.
The discharge pressure rises up to the set value PS in, the output from the PIC7 drops, and the PCV3 starts to operate in the closing side,
Since the gas pressure feed to the gas holder continues, the pressure in the discharge passage 4a continues to rise. Both the amount of air discharged from the centrifugal compressor 1 and the shaft power decrease as the pressure increases and the PCV 3 changes as it closes. Then, the value obtained by dividing the input power to the electric motor 42 by the pressure in the discharge flow path 4a becomes equal to or less than the set value WLS in the power lower limit setting unit 49, and the output contact WSL of the power lower limit setting unit 49 is in the OFF state, that is, the circuit is opened.

【0024】既に、上記圧力下限設定器の出力接点PS
Lはオフの状態になっているので、出力接点WSLが開
路することにより、第1,第2三方電磁弁10,12の
コイルSV10,SV12への通電が同時に断たれる。
この通電が断たれることにより、第2三方電磁弁12の
e−fポートが連通状態になり、FCV9の駆動部に供
給されていた計装空気は大気に放出され、FCV9は全
開状態になる。同時に、第1三方電磁弁10への通電が
断たれることにより、b−cポートが連通状態になり、
PCV3の駆動部に供給されていたPIC7からの信号
圧力空気も大気に放出され、PCV3の開度は最小値
(θmin)の閉状態になる。
Already, the output contact PS of the pressure lower limit setter
Since L is in the off state, the output contacts WSL are opened, so that the coils SV10 and SV12 of the first and second three-way solenoid valves 10 and 12 are simultaneously de-energized.
When this energization is cut off, the ef port of the second three-way solenoid valve 12 is brought into communication, the instrumentation air supplied to the drive part of the FCV 9 is released to the atmosphere, and the FCV 9 is fully opened. . At the same time, the energization of the first three-way solenoid valve 10 is cut off, so that the bc port is in the communication state,
The signal pressure air from the PIC7, which was supplied to the drive unit of the PCV3, is also released to the atmosphere, and the opening degree of the PCV3 is closed to the minimum value (θmin).

【0025】この結果、逆止弁5の上流側の圧力、即ち
遠心圧縮機1の吐出圧力は、大気圧近くまで低下し、遠
心圧縮機1の消費動力が最小の無負荷運転状態に移行す
る。以上の遠心圧縮機1の容量制御における圧力、流量
状態の推移について図3を参照しつつ説明する。なお、
この図3は、図7に対応する図で、この図7と同様の表
し方をしたもので、図7と共通する事項については、同
一の表現を用いて説明は割愛する。曲線IVは、図7にお
けるサージ防止のための下限流量設定値を示す直線IVに
対応し、電力下限設定器49の設定線で、遠心圧縮機1
のサージ圧とガス流量との関係を示す直線IIIと原点付
近で交差する直線に近いものとなるので、遠心圧縮機1
の定格圧力付近では、直線IIIとほぼ平行になる。
As a result, the pressure on the upstream side of the check valve 5, that is, the discharge pressure of the centrifugal compressor 1 decreases to near atmospheric pressure, and the centrifugal compressor 1 shifts to a no-load operation state in which the power consumption is minimum. . The transition of the pressure and flow rate states in the capacity control of the centrifugal compressor 1 will be described with reference to FIG. In addition,
This FIG. 3 is a diagram corresponding to FIG. 7, and is expressed in the same way as FIG. 7, and items common to FIG. 7 will be omitted using the same expressions. The curve IV corresponds to the straight line IV indicating the lower limit flow rate setting value for surge prevention in FIG. 7, and is the setting line of the electric power lower limit setter 49, and the centrifugal compressor 1
Since it is close to the straight line III that shows the relationship between the surge pressure and the gas flow rate, and the straight line that intersects near the origin, the centrifugal compressor 1
It becomes almost parallel to the line III near the rated pressure of.

【0026】曲線I′は、ガスホルダにおける圧力をD
点から、ガス消費が無い状態で、ガス圧送する吐出流路
系の抵抗曲線を示している。一点鎖線による曲線VIは、
上述したガス消費が無いときのガスホルダ初期充圧時に
おける遠心圧縮機1からの吐出風量,吐出圧力の推移を
示している。即ち、遠心圧縮機1は、起動後、吐出圧力
はD点で運転されているが、タイマー46XT(図2)
のタイムアップと同時に、PCV3は全開、FCV9は
全閉となり遠心圧縮機1の吐出圧力は、D点よりA″点
に移行し、定格風量,定格動力以上の運転でA′点,A
点まで充圧する。PIC7の設定値PSであるA点まで
充圧するとPIC7は、PCV3を閉じ始めるが、ガス
消費が無いため、吐出ガス流量,遠心圧縮機1の消費動
力は減少しつつも、吐出流路4aの圧力はC点まで上昇
する。
Curve I'shows the pressure at the gas holder D
From the point, the resistance curve of the discharge flow path system in which the gas is pressure-fed is shown without gas consumption. The curve VI by the one-dot chain line is
The change of the discharge air volume and discharge pressure from the centrifugal compressor 1 at the time of initial charging of the gas holder when there is no gas consumption described above is shown. That is, the centrifugal compressor 1 is operated at the discharge pressure point D after starting, but the timer 46XT (FIG. 2) is used.
Simultaneously with the time up, the PCV3 is fully opened, the FCV9 is fully closed, and the discharge pressure of the centrifugal compressor 1 shifts from point D to point A ″, and when the operation exceeds rated air volume and rated power, points A ′ and A
Fill to the point. When the point A, which is the set value PS of the PIC7, is filled, the PIC7 starts to close the PCV3, but since there is no gas consumption, the discharge gas flow rate and the power consumption of the centrifugal compressor 1 are reduced, but the discharge flow path 4a The pressure rises to point C.

【0027】C点に至ると、電力下限設定器49が動作
し、第1,第2三方電磁弁10,12が同時に非通電状
態となり、FCV9は全開、PCV3は閉状態になっ
て、遠心圧縮機1の吐出ガス流量,吐出ガス圧力は、一
点鎖線による曲線VIに沿って、C点からD点に移行し、
遠心圧縮機1は無負荷運転状態になるが、ガスホルダの
圧力はC点で示される充圧された状態を保つ。
When reaching the point C, the power lower limit setter 49 operates, the first and second three-way solenoid valves 10 and 12 are simultaneously de-energized, the FCV9 is fully opened, and the PCV3 is closed, and centrifugal compression is performed. The discharge gas flow rate and discharge gas pressure of the machine 1 move from the point C to the point D along the curved line VI of the one-dot chain line,
The centrifugal compressor 1 is in the no-load operation state, but the pressure of the gas holder is kept in the charged state indicated by the point C.

【0028】次に、ガスの消費が始まり、ガスホルダの
圧力がPIC7における圧力下限設定値PSLに達する
と第1,第2三方電磁弁10,12が同時に通電される
される。これにより、FCV9が全閉,PCV3が全開
状態になり、遠心圧縮機1は負荷運転状態になる。即
ち、遠心圧縮機1の吐出ガス流量,吐出ガス圧力は、図
3におけるD点からA′点に移行する。また、ガス消費
量が、図3におけるA点からB点までの量である場合
は、遠心圧縮機1の吐出ガス圧力がA点まで昇圧された
後、PIC7による定風圧制御が働き、吐出流路4aの
圧力(≒吐出ガス圧力)は、PIC7の設定値PSに保
たれる。
Next, when gas consumption starts and the pressure in the gas holder reaches the pressure lower limit set value PSL in the PIC 7, the first and second three-way solenoid valves 10 and 12 are simultaneously energized. As a result, the FCV 9 is fully closed, the PCV 3 is fully open, and the centrifugal compressor 1 is in a load operation state. That is, the discharge gas flow rate and discharge gas pressure of the centrifugal compressor 1 shift from point D to point A'in FIG. Further, when the gas consumption amount is the amount from point A to point B in FIG. 3, after the discharge gas pressure of the centrifugal compressor 1 is increased to point A, the constant air pressure control by the PIC 7 works to discharge gas. The pressure of the passage 4a (≈discharge gas pressure) is maintained at the set value PS of the PIC7.

【0029】その後、ガス消費量が減少し、図3におけ
るB点の量以下になると、電力下限設定器49が作動
し、第1,第2三方電磁弁10,12が同時に非通電状
態となる。これによって、FCV9は全開,PCV3は
閉状態になり、遠心圧縮機1は無負荷運転状態になる。
その後、ガス消費量に見合って、上述した制御が繰り返
される。以上のように、遠心圧縮機1を駆動する電動機
42への入力電力を検出し、この検出値を吐出流路4a
の圧力で除した値が一定値以下になったときに遠心圧縮
機1を無負荷運転させ、吐出流路4aの圧力が一定値以
下になれば負荷運転させることにより、遠心圧縮機1の
サージングを防止しつつ、定圧制御と負荷/無負荷運転
制御を行うことができるようになっている。
After that, when the gas consumption decreases and becomes equal to or less than the amount of point B in FIG. 3, the power lower limit setting device 49 operates and the first and second three-way solenoid valves 10 and 12 are simultaneously de-energized. . As a result, the FCV 9 is fully opened, the PCV 3 is closed, and the centrifugal compressor 1 is in a no-load operation state.
Then, the above-mentioned control is repeated according to the gas consumption. As described above, the input power to the electric motor 42 that drives the centrifugal compressor 1 is detected, and this detected value is used as the discharge flow path 4a.
When the value divided by the pressure is less than a certain value, the centrifugal compressor 1 is operated without load, and when the pressure in the discharge passage 4a is less than the certain value, the centrifugal operation is performed with a load, thereby performing the surging of the centrifugal compressor 1. It is possible to perform constant pressure control and load / no-load operation control while preventing the above.

【0030】したがって、上述した容量制御装置によれ
ば、流量検出装置が無くても、サージング防止が可能と
なり、遠心圧縮機回りの吐出配管、或は吸込配管に、流
量検出装置を設置する場合のような制約条件がなくな
り、圧縮機のパッケージ化が容易になっている。図1に
示す装置の枠X内の部分は、市販されているマイクロプ
ロセッサを使用したプログラム可能なシングルループコ
ントローラ1台で実現可能であり、この容量制御装置I
1は、プログラムを構築するだけで実現でき、制御ハー
ドウエアの追加の必要がない。したがって、比較的高価
な流量検出装置が不要なだけ全体的にコストダウンする
ことができる。
Therefore, according to the above-mentioned capacity control device, surging can be prevented even without the flow rate detecting device, and when the flow rate detecting device is installed in the discharge pipe or the suction pipe around the centrifugal compressor. Such constraints are eliminated and the compressor can be packaged easily. The part within the frame X of the device shown in FIG. 1 can be realized by one programmable single-loop controller using a commercially available microprocessor.
1 can be realized simply by building a program, and there is no need to add control hardware. Therefore, the cost can be reduced as a whole because a relatively expensive flow rate detecting device is unnecessary.

【0031】また、一般的に、電動機駆動の遠心圧縮機
では、電動機のオーバーロードを防止する制御が付加さ
れることが多く、図4に、斯る制御を付加した本発明の
第2実施例に係る容量制御装置I2を適用したガス圧送
装置を示す。この図4に示す装置は、図1に示す装置と
は、一点鎖線で囲んだ枠Y内の部分が異なるだけで、新
たに電力コントローラ61,セレクタ62が付加されて
いる点を除き、他は実質的に同一であり、互いに対応す
る部分には、同一番号を付して説明を省略する。本発明
に係る容量制御装置の場合、電力下限設定線が図3中の
直線III、即ち圧縮機のサージ線にほぼ平行になるた
め、PIC7の設定値PSを変更しても、電力下限設定
値を変更する必要がないというメリットがある。
Further, generally, in an electric motor driven centrifugal compressor, a control for preventing overload of the electric motor is often added, and FIG. 4 shows a second embodiment of the present invention to which such control is added. 1 shows a gas pressure feeding device to which the capacity control device I 2 according to the present invention is applied. The apparatus shown in FIG. 4 is different from the apparatus shown in FIG. 1 only in the portion within a frame Y surrounded by a one-dot chain line, except that a power controller 61 and a selector 62 are newly added. Portions which are substantially the same and correspond to each other are designated by the same reference numerals, and description thereof will be omitted. In the case of the capacity control device according to the present invention, the power lower limit setting line becomes substantially parallel to the straight line III in FIG. 3, that is, the surge line of the compressor. Therefore, even if the setting value PS of the PIC 7 is changed, the power lower limit setting value is changed. There is an advantage that there is no need to change.

【0032】図5に示す枠Z内の部分は、本発明の第3
実施例に係る容量制御装置の一部を示し、図4におい
て、PCV3を容量調節用のガイドベーンとした場合、
枠Yに代えて、置換されるもので、新たに補正演算器7
1が付加されている。そして、セレクタ62からのガイ
ドベーン角度を決める信号によって、遠心圧縮機軸動力
(kW)/遠心圧縮機の吐出絶対圧力(PA)の値を補
正するようになっている。好ましくは、直接ガイドベー
ン角度を検出して、補正するようにするのがよい。その
理由は、ガイドベーン角度の変化によって、遠心圧縮機
1のサージ線が直線とならないからである。上記実施例
では、動力線46から供給される電力を検出するように
したものを示したが、本発明は、これに限定するもので
なく、電源電圧に変動が無い場合は電力に代えて動力線
46を流れる電流を検出するようにしたものであっても
よい。
The part inside the frame Z shown in FIG. 5 is the third part of the present invention.
FIG. 4 shows a part of the capacity control device according to the embodiment, and in FIG. 4, when PCV3 is used as a guide vane for capacity adjustment,
Instead of the frame Y, it is replaced and a new correction calculator 7 is added.
1 is added. Then, the value of the centrifugal compressor shaft power (kW) / the absolute discharge pressure (P A ) of the centrifugal compressor is corrected by the signal that determines the guide vane angle from the selector 62. Preferably, the guide vane angle is directly detected and corrected. The reason is that the surge line of the centrifugal compressor 1 does not become a straight line due to the change of the guide vane angle. In the above embodiment, the power supplied from the power line 46 is detected, but the present invention is not limited to this, and when the power supply voltage does not change, the power is used instead of the power. The current flowing through the line 46 may be detected.

【0033】[0033]

【発明の効果】以上の説明より明らかなように、本発明
によれば、遠心圧縮機の吸込流路に設けた流量調節手段
と、吐出流路に設けた逆止弁の上流側にて、吐出流路か
ら分岐し、大気または吸込流路に通ずる開閉弁を備えた
分岐流路と、上記逆止弁の下流側に圧力検出可能に設
け、検出圧力信号を出力するとともに、検出圧力が、設
定圧力以下の場合には第1オン信号を、他の場合には第
1オフ信号を出力する圧力下限設定器を内蔵する他、検
出圧力が高い程、上記流量調節手段の開度を小とする開
度調節信号を出力する圧力調節計と、この圧力調節計に
よる検出圧力を絶対圧力に変換する変換手段と、上記遠
心圧縮機の駆動部に供給する電力を検出する電力検出手
段と、この電力検出手段による検出電力の値を上記変換
手段より得られる絶対圧力値で除する演算手段と、この
演算手段からの出力値が設定値以下の場合には第2オフ
信号を、他の場合には第2オン信号を出力する電力下限
設定器と、遠心圧縮機の起動後、上記圧力下限設定器か
らの第1オン信号により上記開閉弁を閉、上記流量調節
手段を開として負荷運転を行わせ、上記第1オン信号,
第2オン信号が出力されている間は上記圧力調節計から
の開度調節信号に基づく流量調節手段の開度調節による
定風圧制御を行わせるとともに、上記第1オフ信号,第
2オフ信号の出力により上記開閉弁を開、上記流量調節
手段を閉として無負荷運転を行わせる制御部とを備えた
構成としてある。
As is apparent from the above description, according to the present invention, the flow rate adjusting means provided in the suction passage of the centrifugal compressor and the upstream side of the check valve provided in the discharge passage, A branch flow path branched from the discharge flow path and provided with an on-off valve that communicates with the atmosphere or the suction flow path, is provided on the downstream side of the check valve so that pressure can be detected, and a detected pressure signal is output, and the detected pressure is In addition to having a built-in pressure lower limit setting device that outputs a first ON signal when the pressure is equal to or lower than a set pressure and a first OFF signal in other cases, the opening of the flow rate adjusting unit is set to be smaller as the detected pressure is higher. A pressure controller that outputs an opening adjustment signal, a converter that converts the pressure detected by the pressure controller to an absolute pressure, a power detector that detects the power supplied to the drive unit of the centrifugal compressor, The value of the electric power detected by the electric power detection means is obtained by the conversion means. A calculating unit that divides by the pressure value, a power lower limit setting unit that outputs a second OFF signal when the output value from the calculating unit is less than or equal to a set value, and a second ON signal in other cases, and centrifugal compression After the machine is started, the opening / closing valve is closed by the first ON signal from the pressure lower limit setter, the flow rate adjusting means is opened to perform the load operation, and the first ON signal,
While the second ON signal is being output, the constant wind pressure control is performed by adjusting the opening of the flow rate adjusting means based on the opening adjusting signal from the pressure controller, and the first OFF signal and the second OFF signal are controlled. The control unit is configured to open the on-off valve and close the flow rate adjusting unit by output to perform no-load operation.

【0034】このため、流量検出装置が無くても、サー
ジング防止が可能となり、遠心圧縮機回りの吐出配管、
或は吸込配管に、流量検出装置を設置する場合のような
制約条件がなくなり、圧縮機のパッケージ化が容易にな
っている。また、圧縮機の軸動力を吐出絶対圧力で除し
た値が、サージ線上では、一定の値となることに着目
し、この値が設定値以下になれば無負荷運転を行うよう
にしているため、放風運転することなく容易に非サージ
制御ができるようなり、動力の低減が可能になる。さら
に、サージ防止のための圧縮機の特性データは、圧縮機
の定格圧力付近のサージ点の一点だけを求めれば、サー
ジ防止パラメータが決定できるので、試運転の工程を大
幅に短縮できる。さらに、圧縮機の定格圧力付近では、
電力下限設定線がサージ線にほぼ平行になるため、圧縮
機の運転圧力設定値を変更してもサージ防止パラメータ
を変更する必要が無く、圧力調節計(PIC)の応答遅
れによって、設定圧力よりも実際の圧力が上下してもサ
ージ防止ができるようになる。その他、プログラマブル
・シングルループコントローラと称される一般工業用調
節計で比較的安価に実現可能である等の効果を奏する。
For this reason, it is possible to prevent surging even without a flow rate detecting device, and the discharge pipe around the centrifugal compressor,
Alternatively, the constraint condition as in the case where the flow rate detecting device is installed in the suction pipe is eliminated, and the compressor can be packaged easily. Also, note that the value obtained by dividing the shaft power of the compressor by the absolute discharge pressure is a constant value on the surge line, and if this value is below the set value, no-load operation is performed. As a result, non-surge control can be easily performed without blowing air, and power can be reduced. Further, as for the characteristic data of the compressor for surge prevention, the surge prevention parameter can be determined by obtaining only one surge point in the vicinity of the rated pressure of the compressor, so that the trial run process can be greatly shortened. Furthermore, near the rated pressure of the compressor,
Since the power lower limit setting line is almost parallel to the surge line, it is not necessary to change the surge prevention parameter even if the operating pressure setting value of the compressor is changed. Due to the response delay of the pressure controller (PIC), Even if the actual pressure rises and falls, it will be possible to prevent surges. In addition, a general industrial controller called a programmable single-loop controller can be realized at a relatively low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係る容量制御装置を適
用したガス圧送装置の全体構成図である。
FIG. 1 is an overall configuration diagram of a gas pressure feeding device to which a capacity control device according to a first embodiment of the present invention is applied.

【図2】 図1に示す装置における制御部のシーケンス
回路の一部を示す図である。
FIG. 2 is a diagram showing a part of a sequence circuit of a control unit in the device shown in FIG.

【図3】 図1に示す装置における遠心圧縮機の特性お
よび容量制御における吐出ガス流量と吐出ガス圧力との
関係を示す図である。
3 is a diagram showing the characteristics of the centrifugal compressor in the apparatus shown in FIG. 1 and the relationship between discharge gas flow rate and discharge gas pressure in capacity control.

【図4】 本発明の第2実施例に係る容量制御装置を適
用したガス圧送装置の全体構成図である。
FIG. 4 is an overall configuration diagram of a gas pressure feeding device to which a capacity control device according to a second embodiment of the present invention is applied.

【図5】 本発明の第3実施例に係る容量制御装置の制
御部の一部を示す図である。
FIG. 5 is a diagram showing a part of a control unit of a capacity control device according to a third embodiment of the present invention.

【図6】 従来の容量制御装置を適用したガス圧送装置
の全体構成図である。
FIG. 6 is an overall configuration diagram of a gas pressure feeding device to which a conventional capacity control device is applied.

【図7】 図6に示す装置における遠心圧縮機の特性お
よび容量制御における吐出ガス流量と吐出ガス圧力との
関係を示す図である。
7 is a diagram showing the characteristics of the centrifugal compressor in the device shown in FIG. 6 and the relationship between discharge gas flow rate and discharge gas pressure in capacity control.

【図8】 従来の別の容量制御装置を適用したガス圧送
装置の全体構成図である。
FIG. 8 is an overall configuration diagram of a gas pressure feeding device to which another conventional capacity control device is applied.

【図9】 図8に示す遠心圧縮機の風量と吐出ガス圧力
および入力電力(電流)との関係を示す図である。
9 is a diagram showing the relationship between the air flow rate of the centrifugal compressor shown in FIG. 8, the discharge gas pressure, and the input power (current).

【図10】 従来の別の容量制御装置を適用したガス圧
送装置の全体構成図である。
FIG. 10 is an overall configuration diagram of a gas pressure feeding device to which another conventional capacity control device is applied.

【図11】 図10に示す遠心圧縮機の吐出ガス流量と
吐出ガス圧力との関係を示すマップ図である。
11 is a map diagram showing a relationship between a discharge gas flow rate and a discharge gas pressure of the centrifugal compressor shown in FIG.

【符号の説明】[Explanation of symbols]

1,I2 容量制御装置 1 遠心圧縮機 3 流量調節手段 4,4a 吐出
流路 5 逆止弁 7 圧力調節計 8 分岐流路 9 圧力調節用
開閉弁 10 第1三方電磁弁 12 第2三方
電磁弁 14 制御部 41 動力線 42 電動機 43 計器用変
流器 44 計器用変圧器 45 電力変換
器 47 加算器 48 除算器 49 電力下限設定器 50 電空変換
I 1 , I 2 Capacity control device 1 Centrifugal compressor 3 Flow rate control means 4, 4a Discharge flow path 5 Check valve 7 Pressure controller 8 Branch flow path 9 Pressure control on-off valve 10 First three-way solenoid valve 12 Second three-way Solenoid valve 14 Control unit 41 Power line 42 Electric motor 43 Current transformer for instrument 44 Transformer for instrument 45 Power converter 47 Adder 48 Divider 49 Power lower limiter 50 Electropneumatic converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 遠心圧縮機の吸込流路に設けた流量調節
手段と、吐出流路に設けた逆止弁の上流側にて、吐出流
路から分岐し、大気または吸込流路に通ずる開閉弁を備
えた分岐流路と、上記逆止弁の下流側に圧力検出可能に
設け、検出圧力信号を出力するとともに、検出圧力が、
設定圧力以下の場合には第1オン信号を、他の場合には
第1オフ信号を出力する圧力下限設定器を内蔵する他、
検出圧力が高い程、上記流量調節手段の開度を小とする
開度調節信号を出力する圧力調節計と、この圧力調節計
による検出圧力を絶対圧力に変換する変換手段と、上記
遠心圧縮機の駆動部に供給する電力を検出する電力検出
手段と、この電力検出手段による検出電力の値を上記変
換手段より得られる絶対圧力値で除する演算手段と、こ
の演算手段からの出力値が設定値以下の場合には第2オ
フ信号を、他の場合には第2オン信号を出力する電力下
限設定器と、遠心圧縮機の起動後、上記圧力下限設定器
からの第1オン信号により上記開閉弁を閉、上記流量調
節手段を開として負荷運転を行わせ、上記第1オン信
号,第2オン信号が出力されている間は上記圧力調節計
からの開度調節信号に基づく流量調節手段の開度調節に
よる定風圧制御を行わせるとともに、上記第1オフ信
号,第2オフ信号の出力により上記開閉弁を開、上記流
量調節手段を閉として無負荷運転を行わせる制御部とを
備えたことを特徴とする遠心圧縮機の容量調節装置。
1. An opening / closing device that branches from the discharge flow path and communicates with the atmosphere or the suction flow path on the upstream side of the flow rate adjusting means provided in the suction flow path of the centrifugal compressor and the check valve provided in the discharge flow path. A branch flow path provided with a valve and a pressure-detectable unit provided on the downstream side of the check valve to output a detection pressure signal, and the detection pressure is
In addition to the built-in pressure lower limit setting device that outputs the first ON signal when the pressure is below the set pressure and the first OFF signal in other cases,
The higher the detected pressure, the smaller the opening of the flow rate adjusting means, the pressure controller that outputs an opening adjustment signal, the converting means that converts the pressure detected by the pressure controller into an absolute pressure, and the centrifugal compressor. Power detecting means for detecting the electric power supplied to the driving section, calculating means for dividing the value of the detected power by the power detecting means by the absolute pressure value obtained by the converting means, and the output value from the calculating means is set. When the value is less than or equal to the value, the second lower signal is output, and in other cases, the second lower signal is output. The on-off valve is closed and the flow rate adjusting means is opened to perform the load operation, and the flow rate adjusting means based on the opening degree adjusting signal from the pressure controller while the first ON signal and the second ON signal are being output. Constant air pressure control by adjusting the opening of And a control section for opening the on-off valve and closing the flow rate adjusting means to perform no-load operation in response to the output of the first off signal and the second off signal. Capacity control device.
JP13744493A 1993-06-08 1993-06-08 Centrifugal compressor capacity control device Expired - Lifetime JP2774433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13744493A JP2774433B2 (en) 1993-06-08 1993-06-08 Centrifugal compressor capacity control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13744493A JP2774433B2 (en) 1993-06-08 1993-06-08 Centrifugal compressor capacity control device

Publications (2)

Publication Number Publication Date
JPH06346894A true JPH06346894A (en) 1994-12-20
JP2774433B2 JP2774433B2 (en) 1998-07-09

Family

ID=15198769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13744493A Expired - Lifetime JP2774433B2 (en) 1993-06-08 1993-06-08 Centrifugal compressor capacity control device

Country Status (1)

Country Link
JP (1) JP2774433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771712A (en) * 2023-08-23 2023-09-19 中粮生化(成都)有限公司 Anti-asthma driving system and method for centrifugal compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771712A (en) * 2023-08-23 2023-09-19 中粮生化(成都)有限公司 Anti-asthma driving system and method for centrifugal compressor
CN116771712B (en) * 2023-08-23 2023-10-24 中粮生化(成都)有限公司 Anti-asthma driving system and method for centrifugal compressor

Also Published As

Publication number Publication date
JP2774433B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
JP2754079B2 (en) Control method and control device for compressor system
JP3837278B2 (en) Compressor operation method
KR101167556B1 (en) Number-of-compressors controlling system
RU2528768C2 (en) Method of compressor control
CN210566569U (en) Circuit for a control device
US4976588A (en) Compressor control system to improve turndown and reduce incidents of surging
JPH06346894A (en) Capacity control device for centrifugal compressor
CN106762774B (en) The control method of multi-stage centrifugal air compressor constant pressure air feeding
US6135720A (en) Air compressors of sliding vane eccentric rotor type
JP3384894B2 (en) Turbo compressor capacity control method
JPH11303792A (en) Capacity adjusting method for compressor and device therefor
KR101788233B1 (en) Opening/closing device for blow-off control valve of turbo compressor
JP4496886B2 (en) Operation method of turbo compressor system
JP2793510B2 (en) Centrifugal compressor capacity control device
JP2781527B2 (en) Pump control method for pressure tank type water supply device
JPH05240186A (en) Liquid feed device for city water
JP3288635B2 (en) Water supply system
JPS61182491A (en) Automatic operation controller of turbocompressor
JP2803238B2 (en) Compressor capacity control device
JP2000320467A (en) Air compressor
CN116792305A (en) Control system of air compression station
JPH0418155B2 (en)
JP3368480B2 (en) Compressor control method and device
JPH08277781A (en) Water feeding device
JP4541369B2 (en) Variable speed water supply device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080424

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120424

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130424

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 16

EXPY Cancellation because of completion of term