JPH06346268A - Electrolytic production of magnesium-potassium mother alloy - Google Patents

Electrolytic production of magnesium-potassium mother alloy

Info

Publication number
JPH06346268A
JPH06346268A JP13462093A JP13462093A JPH06346268A JP H06346268 A JPH06346268 A JP H06346268A JP 13462093 A JP13462093 A JP 13462093A JP 13462093 A JP13462093 A JP 13462093A JP H06346268 A JPH06346268 A JP H06346268A
Authority
JP
Japan
Prior art keywords
alloy
magnesium
cathode
electrolysis
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13462093A
Other languages
Japanese (ja)
Inventor
Masao Onozawa
昌 男 小野澤
Joji Kanbara
原 淨 治 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13462093A priority Critical patent/JPH06346268A/en
Publication of JPH06346268A publication Critical patent/JPH06346268A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To produce a mother alloy for adding potassium and magnesium at the time of producing an alloy. CONSTITUTION:Electrolysis is carried out using a carbon material as the anode, potassium chloride-based molten salt as an electrolytic bath and molten metal magnesium on the molten salt as the cathode to form the objective magnesium- potassium alloy on the cathode. Potassium can be produced with considerably lower electric power as compared with the conventional production and the alloy withstands prevervation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合金製造においてカル
シウム(Ca)とマグネシウム(Mg)を添加するため
の母合金の製造に関するものである。
FIELD OF THE INVENTION The present invention relates to the production of a master alloy for the addition of calcium (Ca) and magnesium (Mg) in alloy production.

【0002】[0002]

【従来の技術】Mg合金においてCaは有用な合金元素
であり、Ca添加のためには金属Ca又は15〜20%
Caを含むMg母合金が用いられている。鋳鉄の組織改
良のためには、MgおよびCaはそれぞれ有効であるこ
とが知られているが、Mg合金もそのまま、あるいはN
i等と合金化して組織改良用の母合金として使用され
る。
2. Description of the Related Art Ca is a useful alloying element in Mg alloys. To add Ca, metallic Ca or 15 to 20% is added.
An Mg mother alloy containing Ca is used. It is known that Mg and Ca are respectively effective for improving the structure of cast iron, but the Mg alloy itself or N
Used as a master alloy for improving the structure by alloying with i, etc.

【0003】従来、15〜20%Ca−Mg合金は、当
然のことながらCaとMgを鉄製るつぼ等で共融解して
製造される。Caは塩化カルシウムの溶融塩電解によっ
て得られるが、Caの電解は電流効率も悪く、理論電解
電圧に対してかなり高い電圧をかけるので電力原単位も
高くなり、高価なものであった。例えば、丸善発行の
「電気化学便覧」によれば、電解槽電圧25V、電流効
率50%、電力原単位30〜50Kwh/kgであり、
塩化カルシウム(CaCl)からCaを得る理論電解
電圧約3.2Vに比し、著しく大きい。また、Caは空
気中で表面に直ちに酸化膜や、窒化膜を生じ、やがて生
石灰、炭酸石灰に変って白粉を生じて、損耗する。
Conventionally, a 15-20% Ca-Mg alloy is naturally produced by co-melting Ca and Mg in an iron crucible or the like. Although Ca is obtained by molten salt electrolysis of calcium chloride, the electrolysis of Ca is poor in current efficiency and a considerably high voltage is applied with respect to the theoretical electrolysis voltage. For example, according to "Electrochemical Handbook" published by Maruzen, the electrolytic cell voltage is 25 V, the current efficiency is 50%, and the electric power consumption rate is 30 to 50 Kwh / kg.
This is significantly higher than the theoretical electrolysis voltage of about 3.2 V for obtaining Ca from calcium chloride (CaCl 2 ). Further, Ca immediately forms an oxide film or a nitride film on the surface in the air, and eventually turns into quick lime or lime carbonate to produce white powder, which is worn.

【0004】[0004]

【発明が解決しようとする課題】本発明は、Ca当りで
みて高電流効率であり、低電力原単位のMg−Ca合金
を直接製造でき、かつ長期間の保存においてもCaが劣
化しない合金を提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention provides an alloy which has a high current efficiency in terms of Ca, can directly produce a low power consumption unit of Mg-Ca alloy, and does not deteriorate Ca even during long-term storage. It is intended to be provided.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、炭素材
を陽極として、また塩化カルシウムを主成分とする溶融
塩上の溶融金属マグネシウムを陰極として電解を行な
い、陰極に析出した金属カルシムウを溶融金属マグネシ
ウム中に溶解させることを特徴とするマグネシウム‐カ
ルシウム母合金の電解製造方法である。本発明は、Mg
−Ca合金を低い電力原単位で製造でき、得られる合金
も常温の空気中で酸化をほとんど受けない。
The gist of the present invention is to carry out electrolysis using a carbon material as an anode and molten metal magnesium on a molten salt containing calcium chloride as a main component as a cathode to obtain metal calcium hydroxide deposited on the cathode. It is an electrolytic manufacturing method of a magnesium-calcium master alloy, which is characterized in that it is dissolved in molten metal magnesium. The present invention is based on Mg
-Ca alloys can be produced with low power consumption, and the resulting alloys are hardly oxidized in normal temperature air.

【0006】以下、本発明を詳細に説明する。本発明の
構成をもっとも簡単に示したのが、図1である。図1に
おいて、1は鋳鋼製の容器である。マグネシウムおよび
カルシウムと反応しない金属は数多いが、もっとも容易
に入手できるものは鉄であり、鋳鉄、鋳鋼、鋼板溶接製
の筒体等を容器とするのがよい。クロムモリブデンも侵
され難いのでクロムメッキをするか、12クロム耐熱鋼
やクロム系ステンレスにより耐熱性、耐酸化性を有する
ものを用いると更によい。
The present invention will be described in detail below. The structure of the present invention is shown most simply in FIG. In FIG. 1, 1 is a container made of cast steel. Although there are many metals that do not react with magnesium and calcium, the most easily available metal is iron, and it is preferable to use cast iron, cast steel, a steel plate welded cylinder, or the like as the container. Chromium-molybdenum is also less likely to be attacked, so it is more preferable to perform chrome plating, or to use 12 chrome heat-resistant steel or chrome-based stainless steel having heat resistance and oxidation resistance.

【0007】この容器を加熱炉炉体2の中に入れ、ガ
ス、電気等で加熱し、内部の塩浴を溶融する。4は、必
要に応じて設置する隔壁でマグネシアのような耐火物を
用いる。5は、炭素質の電極であって、ピッチ、無煙
炭、オイルコークスを混練成型し焼成したものか、ある
いは電極黒鉛を用いる。図1は、陽極を1本で代表して
いるが、浴の抵抗を減ずるため容器の大きさに応じて多
数本にすることもできる。6は、陽極への導電線であ
り、7は陰極への導電線である。
This container is placed in the furnace body 2 of the heating furnace and heated by gas, electricity or the like to melt the salt bath therein. Reference numeral 4 is a partition wall that is installed as needed, and a refractory material such as magnesia is used. Reference numeral 5 denotes a carbonaceous electrode, which is obtained by kneading and firing pitch, anthracite, and oil coke, or uses electrode graphite. Although FIG. 1 shows one anode as a representative, a large number of anodes can be used depending on the size of the container in order to reduce the resistance of the bath. 6 is a conductive wire to the anode, and 7 is a conductive wire to the cathode.

【0008】8は、電解浴であり、CaClを主成分
とする溶融塩であるが、融点を下げるため例えば、弗化
カルシウム(CaF)15%を添加した浴を用いる。
他に少量の塩化カリウム(KCl)等を加えてもよい。
9は、浮遊する溶融Mgであり、投入口10から投入す
る。陰極の導電線7から容器1を介して浮遊する溶融マ
グネシウムに導電され、陰極を形成する。電解により陰
極に生成するCaは、溶融Mg中に直ちに溶解してMg
−Ca合金となる。CaClの分解電圧は、800℃
で約3.2Vであるが、本実験では2.7〜2.9Vで
あり、合金化により生成自由エネルギーが減少するもの
と思われる。
Reference numeral 8 is an electrolytic bath, which is a molten salt containing CaCl 2 as a main component, but for lowering the melting point, for example, a bath to which 15% of calcium fluoride (CaF 2 ) is added is used.
Besides, a small amount of potassium chloride (KCl) or the like may be added.
9 is a molten Mg that floats, and is charged through the charging port 10. The conductive wire 7 of the cathode is conducted to the molten magnesium floating through the container 1 to form the cathode. The Ca generated in the cathode by electrolysis is immediately dissolved in molten Mg
-It becomes a Ca alloy. The decomposition voltage of CaCl 2 is 800 ℃
Is about 3.2 V, but in the present experiment it is 2.7 to 2.9 V, and it is considered that the free energy of formation is reduced by alloying.

【0009】一方、炭素極5に生成する塩素(Cl
は、導出管11より吸引して、捕収して利用するか、あ
るいはアルカリ等で吸収して処理する。得られたMg−
Ca合金は、排出口(図示されていない)から柄杓で汲
み出し、鋳型に注入して母合金とする。
On the other hand, chlorine (Cl 2 ) formed at the carbon electrode 5
Is either sucked from the lead-out pipe 11 and collected for use, or is absorbed by an alkali or the like for processing. Obtained Mg-
Ca alloy is pumped out from a discharge port (not shown) with a ladle and poured into a mold to form a mother alloy.

【0010】電解浴の温度は、Mgの融点以上であっ
て、出来るだけ低い温度がよい。前記CaCl−15
%CaF浴の融点は、664℃なので、700℃程度
で電解ができる。但し、40〜50%の合金を得るには
750℃まで昇温する必要がある。また、得られるMg
−Ca合金を間欠的または連続的に若干量を残しつつ交
換し、Caが適当量浮遊Mg中に残るようにし、更に溶
融点にもKClを10%程度加えて融点を下げれば、6
00℃近い温度で電解を行なうことができる。
The temperature of the electrolytic bath is preferably the melting point of Mg or higher and as low as possible. The CaCl 2 -15
Since the melting point of the% CaF 2 bath is 664 ° C., electrolysis can be performed at about 700 ° C. However, in order to obtain a 40 to 50% alloy, it is necessary to raise the temperature to 750 ° C. Also, the obtained Mg
-Ca alloy is intermittently or continuously exchanged while leaving a small amount so that Ca remains in an appropriate amount in suspended Mg, and KCl is also added to the melting point at about 10% to lower the melting point.
Electrolysis can be performed at a temperature close to 00 ° C.

【0011】Caの電解を行なってMg中のCa濃度が
高くなると、Caが電解浴中に溶解して、一部は陽極で
酸化される。また、溶解したものは、捕収が困難であ
る。電解浴の温度が高いほど溶解量がふえ、こうして電
流効率が低下する。実験の結果では、Ca45%程度ま
では電流効率は余り低下しないが、45%から徐々に低
下し、50%以上から稍々急激に電流効率が低下する。
このため、本発明によるMg−Ca合金の製造は、Ca
50%までとするのが有利である。また、65%以上で
はほとんど電流効率が0となり、製造することができな
い。
When Ca is electrolyzed to increase the Ca concentration in Mg, Ca is dissolved in the electrolytic bath and a part is oxidized at the anode. Further, the dissolved one is difficult to collect. The higher the temperature of the electrolytic bath, the greater the amount of dissolution, thus lowering the current efficiency. According to the result of the experiment, the current efficiency does not decrease so much up to about 45% Ca, but gradually decreases from 45%, and the current efficiency decreases sharply from 50% or more.
Therefore, the production of the Mg-Ca alloy according to the present invention is
Up to 50% is advantageous. Further, if it is 65% or more, the current efficiency becomes almost 0, and it cannot be manufactured.

【0012】電流密度は、陽極に対して0.5〜3A/
cm2 と高目にとれるが、陰極に対しては図1からみる
ように十分小さくてもよい。図2は、図1と余り変らな
いが、小型の実験装置である。21は12クロム耐熱鋼
の容器であり、この中に22の同じ12クロム耐熱鋼の
筒体をおきこれを介して溶融Mgに導電して陰極とす
る。23はマントルヒーターであり、これによって容器
全体を加熱して溶融塩28を融解する。
The current density is 0.5 to 3 A / a with respect to the anode.
Although it can be as high as cm 2 , it may be sufficiently small for the cathode as seen from FIG. 2 is not so different from FIG. 1, but is a small experimental device. Reference numeral 21 denotes a 12-chromium heat-resistant steel container, in which the same 12-chromium heat-resistant steel cylinder 22 is placed, through which the molten Mg is electrically conductive to serve as a cathode. Reference numeral 23 is a mantle heater, which heats the entire container to melt the molten salt 28.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
る。実施例1 図2の実験装置を使用して、CaF12%、KCl8
%、残余CaClからなる電解浴を用い、Mg200
gを投入し、680℃に保って電解を行なった。陽極電
流密度1.5A/cm2 で80Aの電流を通して2時間
の電解を行なった。電解槽電圧は、5.29Vであっ
た。2時間後にMg融液を汲み上げて鋳型に注ぎ、約2
90gの合金を得た。この合金の分析を行なった結果、
Ca濃度は32.0%であった。Mgの損失がないと仮
定して計算した電流効率は78.8%、電源等の抵抗損
失を除いてのCa当りの電力源単位は8970Kwh/
tとなる。
EXAMPLES The present invention will be specifically described below with reference to examples. Using an experimental apparatus of Example 1 FIG. 2, CaF 2 12%, KCl8
%, Using an electrolytic bath comprising the balance CaCl 2, MG200
g was added and electrolysis was performed while maintaining the temperature at 680 ° C. Electrolysis was carried out for 2 hours by passing a current of 80 A at an anode current density of 1.5 A / cm 2 . The electrolytic cell voltage was 5.29V. After 2 hours, pump up the Mg melt and pour it into the mold.
90 g of alloy was obtained. As a result of analyzing this alloy,
The Ca concentration was 32.0%. The current efficiency calculated assuming that there is no loss of Mg is 78.8%, and the power source unit per Ca excluding the resistance loss of the power source is 8970 Kwh /
t.

【0014】実施例2 図2に示す実験装置を使用して、CaF15%、残り
CaClからなる電解浴を用い、Mg200gを投入
し、750℃に保って電解を行なった。実施例1と同じ
電流条件で3時間45分の電解を行なった。平均の電解
槽電圧は、5.50Vであった。終了後Mg融液を汲み
上げて鋳型に注ぎ、360gの合金を得た。この合金の
分析の結果、Ca濃度は45.0%であった。Mgの損
失がなかったものとして計算すると、電流効率は73.
1%、電源等の抵抗損失を除いてのCa当りの電力源単
位は10,070Kwh/tとなる。実施例1、2のい
ずれの合金も新らしい破面を空気中に曝しておいても僅
かに白く曇る程度であり、5cm角程度の塊の重量増加
は0.1%にみたなかった。
Example 2 Using the experimental apparatus shown in FIG. 2, 200 g of Mg was added using an electrolytic bath consisting of 15% CaF 2 and the rest CaCl 2 , and electrolysis was carried out at 750 ° C. Electrolysis was performed under the same current conditions as in Example 1 for 3 hours and 45 minutes. The average electrolytic cell voltage was 5.50V. After the completion, the Mg melt was pumped up and poured into a mold to obtain 360 g of an alloy. As a result of analysis of this alloy, the Ca concentration was 45.0%. When calculated assuming that there was no Mg loss, the current efficiency was 73.
1%, the power source unit per Ca is 10,070 Kwh / t excluding the resistance loss of the power source and the like. In each of the alloys of Examples 1 and 2, even if the new fracture surface was exposed to the air, it was slightly clouded in white, and the weight increase of a lump of about 5 cm square was not found to be 0.1%.

【0015】[0015]

【発明の効果】本発明の電解製造方法によると、Ca当
りでみて電力原単位は、従来技術で示したCaのそれと
比して数分の1に低くなり、また、得られる合金もCa
についてみると酸化等による変質は少ない。従って、従
来のMg−Ca母合金に代る製造方法であるとともに、
得られるMg−Ca母合金もCaの用途を代替しうる。
According to the electrolytic production method of the present invention, the electric power consumption per Ca is reduced to a fraction of that of Ca shown in the prior art, and the obtained alloy is also Ca.
The deterioration caused by oxidation is small. Therefore, as well as a manufacturing method that replaces the conventional Mg-Ca master alloy,
The resulting Mg-Ca master alloy can also replace the use of Ca.

【図面の簡単な説明】[Brief description of drawings]

【図1】典型的な電解炉の構造である。FIG. 1 is a typical electrolysis furnace structure.

【図2】本発明の実施例に使用した実験装置である。FIG. 2 is an experimental apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 鋳鋼製容器 2 加熱炉炉体 3 ガスバーナー 4 隔壁 5 炭素質電極 6 陽極導電線 7 陰極導電線 8 溶融塩の電解浴 9 陰極に接し浮遊するMg 10 Mgの投入口 11 塩素ガスの導出管 21 耐熱鋼容器 22 耐熱鋼筒体 23 マントルヒーター 24 隔壁 25 炭素質電極 26 陽極導電線 27 陰極導電線 28 溶融塩の電解浴 29 陰極に接し浮遊するMg 30 Mgの投入口兼Mg−Ca合金の汲出口 31 塩素ガスの導出管 1 Cast Steel Container 2 Heating Furnace Body 3 Gas Burner 4 Partition Wall 5 Carbonaceous Electrode 6 Anode Conductive Wire 7 Cathode Conductive Wire 8 Electrolyte Bath of Molten Salt 9 Mg 10 Floating in Contact with Cathode Charge Port 11 Chlorine Gas Outlet Pipe 21 Heat-Resistant Steel Container 22 Heat-Resistant Steel Tube 23 Mantle Heater 24 Partition Wall 25 Carbonaceous Electrode 26 Anode Conductive Wire 27 Cathode Conductive Wire 28 Molten Salt Electrolyte Bath 29 Mg 30 Floating in Contact with Cathode and Mg-Ca Alloy Pumping port 31 Chlorine gas outlet pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素材を陽極、塩化カルシウムを主成分と
する溶融塩を電解浴とし、溶解塩上の溶融金属マグネシ
ウムを陰極として電解を行ない、陰極に析出した金属カ
ルシウムを溶融金属マグネシウム中に溶解させることを
特徴とするマグネシウム‐カルシウム母合金の電解製造
方法。
1. A carbon material is used as an anode, a molten salt containing calcium chloride as a main component is used as an electrolytic bath, and molten metal magnesium on the molten salt is used as a cathode for electrolysis. Metal calcium deposited on the cathode is placed in molten metal magnesium. A method for electrolytically manufacturing a magnesium-calcium master alloy, which comprises melting.
JP13462093A 1993-06-04 1993-06-04 Electrolytic production of magnesium-potassium mother alloy Withdrawn JPH06346268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13462093A JPH06346268A (en) 1993-06-04 1993-06-04 Electrolytic production of magnesium-potassium mother alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13462093A JPH06346268A (en) 1993-06-04 1993-06-04 Electrolytic production of magnesium-potassium mother alloy

Publications (1)

Publication Number Publication Date
JPH06346268A true JPH06346268A (en) 1994-12-20

Family

ID=15132647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13462093A Withdrawn JPH06346268A (en) 1993-06-04 1993-06-04 Electrolytic production of magnesium-potassium mother alloy

Country Status (1)

Country Link
JP (1) JPH06346268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049373A1 (en) * 1997-04-30 1998-11-05 Sumitomo Sitix Of Amagasaki, Inc. Metal magnesium electrolyzer
CN103173785A (en) * 2013-04-16 2013-06-26 中国科学院青海盐湖研究所 Method for preparing magnesium metal through electrolysis by using novel magnesium deep eutectic solvent
WO2018059706A1 (en) * 2016-09-30 2018-04-05 Siemens Aktiengesellschaft Method for storing energy and/or generating energy on the basis of calcium and/or magnesium and power station with a steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049373A1 (en) * 1997-04-30 1998-11-05 Sumitomo Sitix Of Amagasaki, Inc. Metal magnesium electrolyzer
US6129821A (en) * 1997-04-30 2000-10-10 Alcan International Limited Metal magnesium electrolyzer
CN103173785A (en) * 2013-04-16 2013-06-26 中国科学院青海盐湖研究所 Method for preparing magnesium metal through electrolysis by using novel magnesium deep eutectic solvent
WO2018059706A1 (en) * 2016-09-30 2018-04-05 Siemens Aktiengesellschaft Method for storing energy and/or generating energy on the basis of calcium and/or magnesium and power station with a steam turbine

Similar Documents

Publication Publication Date Title
US5024737A (en) Process for producing a reactive metal-magnesium alloy
Fray Emerging molten salt technologies for metals production
KR101684813B1 (en) Electrolysis tank used for aluminum electrolysis and electrolysis process using the electrolyzer
US5185068A (en) Electrolytic production of metals using consumable anodes
NO130606B (en)
US3114685A (en) Electrolytic production of titanium metal
EP1088113A1 (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt
US20090152104A1 (en) Molten salt electrolyzer for reducing metal, method for electrolyzing the same, and process for producing refractory metal with use of reducing metal
JP3718691B2 (en) Titanium production method, pure metal production method, and pure metal production apparatus
CN104928720A (en) Electrolyzing method for titanium soluble anode
WO2003071005A2 (en) Carbon containing cu-ni-fe anodes for electrolysis of alumina
Yan et al. Molten salt electrolysis for sustainable metals extraction and materials processing—A review
JPH06346268A (en) Electrolytic production of magnesium-potassium mother alloy
JP4198434B2 (en) Method for smelting titanium metal
JPH01152226A (en) Manufacture of metallic lithium
US4108741A (en) Process for production of aluminum
RU2103391C1 (en) METHOD FOR PRODUCING REFRACTORY METALS FROM ORE CONCENTRATES
JPH0688280A (en) Electrolytic method for producing alloy of rare earth and other metal
JP2004315891A (en) Method for manufacturing magnesium alloy containing rare earth metal
US3503857A (en) Method for producing magnesium ferrosilicon
JP2004360025A (en) Method for manufacturing metallic titanium with direct electrolysis method
Fray Electrochemical processing using slags, fluxes and salts
JPH02259092A (en) Production of calcium
GB812817A (en) Electrolytic production of titanium
JP7334710B2 (en) Power generation device and power generation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905