JPH06346044A - Far infrared light absorbing material - Google Patents

Far infrared light absorbing material

Info

Publication number
JPH06346044A
JPH06346044A JP16651993A JP16651993A JPH06346044A JP H06346044 A JPH06346044 A JP H06346044A JP 16651993 A JP16651993 A JP 16651993A JP 16651993 A JP16651993 A JP 16651993A JP H06346044 A JPH06346044 A JP H06346044A
Authority
JP
Japan
Prior art keywords
iron
weight
phosphorus compound
powder
containing phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16651993A
Other languages
Japanese (ja)
Inventor
Hiroshi Usui
寛 臼井
Yasuko Osaki
康子 大崎
Tsuneo Manabe
恒夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP16651993A priority Critical patent/JPH06346044A/en
Publication of JPH06346044A publication Critical patent/JPH06346044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

PURPOSE:To obtain the subject colorless material useful for recognition of picture image, etc., by semiconductor laser beam in a far infrared range, having excellent far infrared light absorbing ability, undistinguishable with naked eye, comprising a specific amount of an iron-containing phosphorus compound. CONSTITUTION:The objective material comprises <=10wt.% iron-containing phosphorus compound, preferably one composed of 5-45wt.% iron calculated as FeO and 30-85wt.% phosphoric acid calculated as P2O5. The iron-containing phosphorus compound in the material contains preferably 0-30wt.% boron calculated as B2O3 and 0-35wt.% aluminum calculated as Al2O3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は近赤外線吸収材料に関す
る。
FIELD OF THE INVENTION The present invention relates to a near infrared absorbing material.

【0002】[0002]

【従来の技術】従来、物体や画像は肉眼で認識していた
ため、認識しやすい材料とは可視光領域での光を吸収あ
るいは散乱する材料であった。しかし、最近自動的に物
体や画像を認識する技術が急速に進歩している。そし
て、この画像を認識、読みとるための光源としては、半
導体レーザーが主流になるといわれている。この半導体
レーザーとしては、700〜1600nmの波長領域の
ものが、実用化されているが、この波長は近赤外線の領
域であり、肉眼では認識できない。可視光を良好に吸収
あるいは散乱する物体や画像でも、必ずしも近赤外光を
良好に吸収、散乱するとは限らない。従来の材料では物
体や画像がこの近赤外線領域で認識し難いという課題が
あった。この課題を克服する材料として、我々は先に銅
含有リン酸材料が有効であることを見出している。
2. Description of the Related Art Conventionally, since an object or an image has been recognized with the naked eye, a material that is easily recognized is a material that absorbs or scatters light in the visible light region. However, recently, a technology for automatically recognizing an object or an image has rapidly advanced. A semiconductor laser is said to become the mainstream as a light source for recognizing and reading this image. As this semiconductor laser, one having a wavelength range of 700 to 1600 nm has been put into practical use, but this wavelength is in the near infrared region and cannot be recognized by the naked eye. Even an object or an image that absorbs or scatters visible light well does not always absorb and scatter near infrared light well. The conventional material has a problem that it is difficult to recognize an object or an image in this near infrared region. As a material that overcomes this problem, we have previously found that a copper-containing phosphate material is effective.

【0003】[0003]

【発明が解決しようとする課題】銅含有リン酸材料は近
赤外線で認識が容易な材料であるが、銅による若干の緑
色を呈している。肉眼で認識されずに近赤外線でのみ認
識されるような材料が得られれば、種々の新しい用途展
開が期待される。本発明では、淡色で近赤外線吸収能に
優れた材料を提供することを目的とする。
The copper-containing phosphate material is a material that can be easily recognized by near infrared rays, but exhibits a slight green color due to copper. If a material that can be recognized only by the near infrared rays without being recognized by the naked eye is obtained, various new applications can be expected. An object of the present invention is to provide a material that is light-colored and has excellent near-infrared absorbing ability.

【0004】[0004]

【課題を解決するための手段】本発明は、鉄含有リンの
化合物を10重量%以上含有してなる近赤外線吸収材料
である。
The present invention is a near infrared absorbing material containing 10% by weight or more of an iron-containing phosphorus compound.

【0005】本発明の近赤外線吸収材料において鉄含有
リンの化合物の含有量が10重量%未満の場合は、近赤
外線吸収能力が不充分である。鉄を含有するリン酸化合
物の含有量が多いほど近赤外線吸収能力が大きくなり好
ましい。一方、その含有量の上限に制限はないが、この
化合物を結合する媒体の量が相対的に少なくなり本材料
の強度が低下してくるため、用途によっては、含有量の
上限が制限される。
When the content of the iron-containing phosphorus compound in the near infrared ray absorbing material of the present invention is less than 10% by weight, the near infrared ray absorbing ability is insufficient. The larger the content of the iron-containing phosphate compound, the larger the near-infrared absorbing capacity, which is preferable. On the other hand, the upper limit of the content is not limited, but since the amount of the medium that binds this compound is relatively small and the strength of the material decreases, the upper limit of the content is limited depending on the application. .

【0006】鉄含有リンの化合物としては、鉄を含有す
るリン酸塩ガラスをはじめ、鉄とリンとが化合したも
の、鉄の化合物とリンの化合物とが混合されたものなど
いずれであってもよい。
The iron-containing phosphorus compound may be a phosphate glass containing iron, a combination of iron and phosphorus, or a mixture of an iron compound and a phosphorus compound. Good.

【0007】鉄含有リンの化合物において、鉄は近赤外
線を良好に吸収する働きをする。鉄の含有量は、FeO
に換算して5〜45重量%が好ましい。5重量%未満の
場合には近赤外線吸収能が不充分であり、好ましくな
い。また45重量%より多くなると着色が濃くなり好ま
しくない。
In the iron-containing phosphorus compound, iron functions to absorb near infrared rays well. The iron content is FeO
Is preferably 5 to 45% by weight. If it is less than 5% by weight, the near-infrared absorbing ability is insufficient, which is not preferable. On the other hand, if it is more than 45% by weight, the coloring becomes deep, which is not preferable.

【0008】一方、鉄含有リンの化合物において、リン
の含有量はP25 に換算して30〜85重量%が好ま
しい。30重量%未満の場合にはリン酸化合物が不安定
になり好ましくない。また85重量%を超える場合には
リン酸化合物の耐久性が低下するため好ましくない。
On the other hand, in the iron-containing phosphorus compound, the phosphorus content is preferably 30 to 85% by weight in terms of P 2 O 5 . If it is less than 30% by weight, the phosphoric acid compound becomes unstable, which is not preferable. On the other hand, if it exceeds 85% by weight, the durability of the phosphoric acid compound decreases, which is not preferable.

【0009】ホウ素、アルミニウムは、必須成分ではな
いが、含有することにより、いずれも鉄含有リンの化合
物の安定性を高める働きをする。ホウ素の含有量は、B
23 に換算して0〜30重量%が好ましい。30重量
%より多いと融点が高くなり反応が困難なため好ましく
ない。アルミニウムの含有量は、Al23 に換算して
0〜35重量%が好ましい。35重量%より多いと材料
の融点が高くなり反応が困難なため好ましくない。
Boron and aluminum are not essential components, but when they are contained, they both serve to enhance the stability of the iron-containing phosphorus compound. The content of boron is B
It is preferably 0 to 30% by weight in terms of 2 O 3 . If it exceeds 30% by weight, the melting point becomes high and the reaction becomes difficult, which is not preferable. The content of aluminum is preferably 0 to 35% by weight in terms of Al 2 O 3 . If it exceeds 35% by weight, the melting point of the material becomes high and the reaction becomes difficult, which is not preferable.

【0010】この鉄含有リンの化合物の製造方法として
は、リン化合物の一般的製法が適宜用いられ、鉄および
鉄以外の元素を含む物質をリン化合物と混合し加熱し、
固相反応させる方法、リンを含む溶液中に鉄および鉄以
外の元素を含む物質を溶解させた後、加熱乾燥させる方
法、鉄および鉄以外の元素とリンを含む物質を500〜
2000℃で溶融し、リン酸化合物化する方法等を用い
ることができる。
As a method for producing the iron-containing phosphorus compound, a general method for producing a phosphorus compound is appropriately used. A substance containing iron and an element other than iron is mixed with a phosphorus compound and heated,
Solid-phase reaction method, method of dissolving iron and a substance containing an element other than iron in a solution containing phosphorus, and then heating and drying, 500 to 500 wt.
A method of melting at 2000 ° C. and converting to a phosphoric acid compound can be used.

【0011】この場合、鉄はリンの化合物中に2価と3
価という2種のイオン状態で存在するが、近赤外線吸収
には2価の鉄イオンが寄与するため、鉄含有リンの化合
物作製中に酸化作用を有する還元剤を添加したり、非酸
化性雰囲気中、還元性雰囲気中で鉄含有リンの化合物を
製造することも、その近赤外線吸収能力を高めるのに有
効である。
In this case, iron is divalent and trivalent in the phosphorus compound.
It exists in two kinds of ionic state called valence, but since divalent iron ion contributes to near infrared absorption, a reducing agent having an oxidizing action is added during the preparation of the iron-containing phosphorus compound, or a non-oxidizing atmosphere is added. It is also effective to increase the near-infrared absorbing ability of the iron-containing phosphorus compound in a reducing atmosphere.

【0012】この鉄含有リンの化合物は、通常、粉末と
して使用される。粒径としては特に制限はなく、用途に
応じて適切な粒径がありうる。微細な形状やパターンを
認識させたい場合には、リン酸化合物粉末の粒径は細か
い方がよい。一般的に平均粒径として100μm以下が
好ましい。鉄含有リンの化合物を粉末にする方法として
は、ボールミルによる粉砕等、一般的な方法が用いられ
る。
This iron-containing phosphorus compound is usually used as a powder. The particle size is not particularly limited and may be an appropriate particle size depending on the application. In order to recognize a fine shape or pattern, the particle size of the phosphoric acid compound powder should be small. Generally, the average particle size is preferably 100 μm or less. As a method for powdering the iron-containing phosphorus compound, a general method such as pulverization by a ball mill is used.

【0013】鉄含有リンの化合物の粉末を分散する媒体
としては、この粉末が適切に分散され、鉄含有リンの化
合物の近赤外線吸収能力が発現されるような近赤外線に
比較的透明な材料が好ましい。用途によっては、リン酸
化合物と可視光の屈折率が一致した材料が、可視光に対
して透明な材料となるので好ましい場合がある。常温で
使用する場合は、この媒体として樹脂系材料が一般的に
使用できる。
As a medium in which the powder of the iron-containing phosphorus compound is dispersed, there is used a material which is appropriately dispersed in the near-infrared ray and in which the near-infrared absorbing ability of the iron-containing phosphorus compound is exhibited. preferable. Depending on the application, a material in which the refractive index of the phosphoric acid compound matches that of visible light may be preferable because it becomes a material transparent to visible light. When used at room temperature, a resin material can be generally used as this medium.

【0014】鉄含有リンの化合物の粉末を分散する方法
としては、樹脂系材料に分散する場合には、樹脂溶液に
分散した後に溶媒を蒸発させる方法、樹脂低分子量体中
に分散した後に樹脂を重合する方法、樹脂粉末をリン酸
化合物粉末に混合した後に加熱焼結する方法等が適宜使
用できる。
As a method for dispersing the iron-containing phosphorus compound powder, in the case of dispersing it in a resin material, a method of dispersing the solvent in a resin solution and then evaporating a solvent, and a method of dispersing in a resin low molecular weight substance and then dispersing the resin A method of polymerizing, a method of mixing the resin powder with the phosphoric acid compound powder and then heating and sintering, etc. can be appropriately used.

【0015】鉄含有リンの化合物の粉末を分散した近赤
外線吸収材料の形態にも特に制限はなく、用途に応じて
適宜選択できる。この材料自体を成形体として用いるこ
とも可能であるが、認識したい物体の表面に塗布して使
用することでも目的は達成できる。この場合、本発明の
近赤外線吸収材料は可視光に対し無色透明であることを
特徴としてもつので、基材の肉眼による外観を損ねず近
赤外光のみを有効に吸収させることが可能となる。ま
た、本材料を基材上にパターンを付与して塗布あるいは
印刷することにより、近赤外光で有効に判読できる印刷
も可能となる。
The form of the near-infrared absorbing material in which the powder of the iron-containing phosphorus compound is dispersed is not particularly limited and can be appropriately selected depending on the application. Although this material itself can be used as a molded body, the purpose can be achieved by applying it to the surface of an object to be recognized. In this case, the near-infrared absorbing material of the present invention is characterized by being colorless and transparent with respect to visible light, so that it is possible to effectively absorb only near-infrared light without impairing the appearance of the substrate with the naked eye. . In addition, by applying or printing the present material on a base material in a pattern, it is possible to perform printing that can be effectively read by near infrared light.

【0016】[0016]

【実施例】【Example】

[実施例1]85%リン酸100重量部に、鉄粉19.
4重量部、水酸化アルミニウム(Al(OH)3 )1
3.5重量部を加えた。この量は、鉄をFeO、アルミ
ニウムをAl23 、リン酸をP25 に換算して、そ
れぞれ26.1重量%、9.3重量%、64.6重量%
に相当する。充分撹拌した後、テフロン製バットに移
し、150℃で乾燥した。これをアルミナ坩堝に入れ
て、窒素雰囲気下で1200℃で2時間溶融し、ガラス
化した。この溶融ガラスをカーボン板上に流しだし急冷
して鉄含有リン酸塩ガラスを得た。次いで、この鉄含有
リン酸塩ガラスをボールミルで粉砕し、粉末を得た。粉
末の平均粒径は、2.8μmであった。この粉末40重
量部に対し、20重量%のエチルセルロースを溶解した
α−テルピネオール溶液を60重量部の割合で加えて混
練し、3本ロールミルにより均質分散を行い、所望の粘
度に調整し、ペースト状のインク組成物を得た。
Example 1 100 parts by weight of 85% phosphoric acid was mixed with iron powder 19.
4 parts by weight, aluminum hydroxide (Al (OH) 3 ) 1
3.5 parts by weight were added. These amounts are 26.1% by weight, 9.3% by weight, and 64.6% by weight, respectively, in terms of FeO for iron, Al 2 O 3 for aluminum, and P 2 O 5 for phosphoric acid.
Equivalent to. After sufficiently stirring, the mixture was transferred to a Teflon vat and dried at 150 ° C. This was put in an alumina crucible and melted at 1200 ° C. for 2 hours in a nitrogen atmosphere to be vitrified. This molten glass was poured onto a carbon plate and rapidly cooled to obtain an iron-containing phosphate glass. Next, this iron-containing phosphate glass was crushed with a ball mill to obtain a powder. The average particle size of the powder was 2.8 μm. To 40 parts by weight of this powder, an α-terpineol solution in which 20% by weight of ethylcellulose was dissolved was added at a ratio of 60 parts by weight, and kneaded, and homogenously dispersed by a three-roll mill to adjust to a desired viscosity, and to form a paste. An ink composition of

【0017】このインクを4インチ角のアルミナ板状の
約半面にスクリーン印刷し、乾燥した。乾燥後の印刷膜
厚は約15μmであった。印刷部分は、無色であった。
この板による半導体レーザー(波長:900nm)に対
する反射率を、アルミナ基板の反射率に対して測定した
結果印刷部分の反射率はアルミナ基板の反射率の約45
%であった。
This ink was screen-printed on about half of a 4-inch square alumina plate and dried. The printed film thickness after drying was about 15 μm. The printed part was colorless.
The reflectance of the semiconductor laser (wavelength: 900 nm) by this plate was measured with respect to the reflectance of the alumina substrate, and the reflectance of the printed portion was about 45 times that of the alumina substrate.
%Met.

【0018】[実施例2]85%リン酸100重量部
に、鉄粉14.5重量部、ホウ酸(H3 BO3 )21.
5重量部を加えた。この量は、鉄をFeO、ホウ素をB
23 、リン酸をP25 に換算して、それぞれ20.
2重量%、13.1重量%、66.7重量%に相当す
る。以下実施例1と同様にして粉末を得た。粉末の平均
粒径は2.5μmであった。この粉末を実施例1と同様
な操作で、ペースト状のインク組成物にした。
Example 2 100% by weight of 85% phosphoric acid, 14.5 parts by weight of iron powder, and boric acid (H 3 BO 3 ) 21.
5 parts by weight were added. This amount is iron for FeO and boron for B
2 O 3 and phosphoric acid were converted into P 2 O 5 to give 20.
It corresponds to 2% by weight, 13.1% by weight and 66.7% by weight. A powder was obtained in the same manner as in Example 1 below. The average particle size of the powder was 2.5 μm. This powder was made into a paste-like ink composition by the same operation as in Example 1.

【0019】このインクを4インチ角のアルミナ板状の
約半面にスクリーン印刷し、乾燥した。乾燥後の印刷膜
厚は約13μmであった。印刷部分は無色であった。こ
の板による半導体レーザー(波長:810nm)に対す
る反射率を測定した結果、印刷部分の反射率はアルミナ
基板の約52%であった。
This ink was screen-printed on a half surface of a 4-inch square alumina plate and dried. The printed film thickness after drying was about 13 μm. The printed part was colorless. As a result of measuring the reflectance of this plate with respect to the semiconductor laser (wavelength: 810 nm), the reflectance of the printed portion was about 52% of that of the alumina substrate.

【0020】[実施例3]85%リン酸100重量部
に、鉄粉24.2重量部を加えた。この量は、鉄をFe
O、リン酸をP25 に換算してそれぞれ33.6重量
%、66.4重量%に相当する。以下実施例1と同様に
して粉末を得た。粉末の平均粒径は2.5μmであっ
た。この粉末を実施例1と同様な操作で、ペースト状の
インク組成物にした。
Example 3 24.2 parts by weight of iron powder was added to 100 parts by weight of 85% phosphoric acid. This amount of iron is Fe
O and phosphoric acid are converted into P 2 O 5 and correspond to 33.6% by weight and 66.4% by weight, respectively. A powder was obtained in the same manner as in Example 1 below. The average particle size of the powder was 2.5 μm. This powder was made into a paste-like ink composition by the same operation as in Example 1.

【0021】このインクを4インチ角のアルミナ板状の
約半面にスクリーン印刷し、乾燥した。乾燥後の印刷膜
厚は約14μmであった。印刷部分は淡い褐色であっ
た。この板による半導体レーザー(波長:810nm)
に対する反射率を測定した結果、印刷部分の反射率はア
ルミナ基板の約42%であった。
This ink was screen-printed on a half surface of a 4-inch square alumina plate and dried. The printed film thickness after drying was about 14 μm. The printed part was a light brown color. Semiconductor laser with this plate (wavelength: 810 nm)
The reflectance of the printed portion was about 42% that of the alumina substrate.

【0022】[比較例1]85%リン酸100重量部
に、鉄粉1.4重量部、ホウ酸9.2重量部、水酸化ア
ルミニウム13.5重量部を加えた。この量は、鉄をF
eO、ホウ酸をB23 、アルミニウムをAl23
リン酸をP25 に換算してそれぞれ2.3重量%、
6.7重量%、11.4重量%、79.6重量%に相当
する。次いで、実施例1と同様にして粉末を得た。粉末
の平均粒径は2.5μmであった。次いで、この粉末3
重量部と、40重量%のエチルセルロースをα−テルピ
ネオールに溶解した溶液97重量部と、を混練し、ペー
スト状のインク組成物にした。
COMPARATIVE EXAMPLE 1 To 100 parts by weight of 85% phosphoric acid, 1.4 parts by weight of iron powder, 9.2 parts by weight of boric acid and 13.5 parts by weight of aluminum hydroxide were added. This amount of iron is F
eO, B 2 O 3 for boric acid, Al 2 O 3 for aluminum,
2.3% by weight of phosphoric acid converted to P 2 O 5 ,
It corresponds to 6.7% by weight, 11.4% by weight and 79.6% by weight. Then, a powder was obtained in the same manner as in Example 1. The average particle size of the powder was 2.5 μm. Then this powder 3
By weight, 40 parts by weight of ethyl cellulose and 97 parts by weight of a solution of ethyl cellulose dissolved in α-terpineol were kneaded to form a paste-like ink composition.

【0023】このインクを4インチ角のアルミナ板状の
約半面にスクリーン印刷し、乾燥した。乾燥後の印刷膜
は、上記粉末を約重量%含有し、膜厚は約15μmであ
った。印刷部分は無色であった。この板による半導体レ
ーザーに対する反射率を実施例1と同様にして測定した
結果、アルミナ基板の88%であり半導体レーザーの吸
収は不充分であった。
This ink was screen-printed on a half surface of a 4-inch square alumina plate and dried. The printed film after drying contained the above powder in an amount of about wt% and had a film thickness of about 15 μm. The printed part was colorless. The reflectance of this plate with respect to the semiconductor laser was measured in the same manner as in Example 1. As a result, it was 88% of that of the alumina substrate, and the absorption of the semiconductor laser was insufficient.

【0024】[比較例2]酸化鉄(FeO)が33.6
重量%、五酸化リン(P25 )が66.4重量%から
なり、平均粒径1.8μmのリン酸ガラス粉末7重量部
に対し、93重量部のアクリル樹脂粉末を加熱混練した
後、4cm角、3mm厚の板に成形した。同様にして平
均粒径1.5μmの石英粉末でも同様にして、板を作製
した。
Comparative Example 2 Iron oxide (FeO) was 33.6.
% By weight and 66.4% by weight of phosphorus pentoxide (P 2 O 5 ) and after heating and kneading 93 parts by weight of acrylic resin powder to 7 parts by weight of phosphate glass powder having an average particle size of 1.8 μm It was molded into a 4 cm square and 3 mm thick plate. Similarly, a plate was prepared using quartz powder having an average particle diameter of 1.5 μm.

【0025】板はやや緑青色を呈しており、これらの板
による半導体レーザーに対する反射率を測定した結果、
リン酸ガラス粉末を用いた板の反射率は石英粉末を用い
た板の反射率の約62%であり、半導体レーザーの吸収
は不充分であった。
The plates are slightly greenish blue, and the results of measuring the reflectivity of these plates with respect to the semiconductor laser are as follows:
The reflectance of the plate using the phosphoric acid glass powder was about 62% of the reflectance of the plate using the quartz powder, and the absorption of the semiconductor laser was insufficient.

【0026】[0026]

【発明の効果】本発明の近赤外線吸収材料は、無色で、
近赤外域での半導体レーザーを良好に吸収するため、肉
眼で判別されずに、半導体レーザー光源を用いたシステ
ムにより物体、画像として良好に認識できる。
The near infrared absorbing material of the present invention is colorless and
Since the semiconductor laser in the near-infrared region is well absorbed, the system using the semiconductor laser light source can satisfactorily recognize it as an object or an image without being discriminated by the naked eye.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄含有リンの化合物を10重量%以上含有
する近赤外線吸収材料。
1. A near infrared absorbing material containing 10% by weight or more of a compound of iron-containing phosphorus.
【請求項2】鉄含有リンの化合物は、鉄をFeOに換算
して5〜45重量%、リン酸をP25 に換算して30
〜85重量%からなる請求項1の近赤外線吸収材料。
2. The iron-containing phosphorus compound is 5 to 45% by weight when iron is converted to FeO and 30 when phosphoric acid is converted to P 2 O 5.
The near-infrared absorbing material according to claim 1, which comprises ˜85% by weight.
【請求項3】鉄含有リンの化合物は、ホウ素をB23
に換算して0〜30重量%、アルミニウムをAl23
に換算して0〜35重量%含有する請求項1または2の
近赤外線吸収材料。
3. The iron-containing phosphorus compound is boron-containing B 2 O 3
Converted to 0-30% by weight, aluminum is Al 2 O 3
The near-infrared absorbing material according to claim 1 or 2, which is contained in an amount of 0 to 35% by weight.
JP16651993A 1993-06-11 1993-06-11 Far infrared light absorbing material Pending JPH06346044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16651993A JPH06346044A (en) 1993-06-11 1993-06-11 Far infrared light absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16651993A JPH06346044A (en) 1993-06-11 1993-06-11 Far infrared light absorbing material

Publications (1)

Publication Number Publication Date
JPH06346044A true JPH06346044A (en) 1994-12-20

Family

ID=15832829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16651993A Pending JPH06346044A (en) 1993-06-11 1993-06-11 Far infrared light absorbing material

Country Status (1)

Country Link
JP (1) JPH06346044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469077A1 (en) * 1989-04-14 1992-02-05 HELFERICH, Richard J. Analog/digital voice storage cellular telephone
CN115716706A (en) * 2021-08-24 2023-02-28 白金科技股份有限公司 Near-infrared absorbing glass and near-infrared cut filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469077A1 (en) * 1989-04-14 1992-02-05 HELFERICH, Richard J. Analog/digital voice storage cellular telephone
EP0469077B1 (en) * 1989-04-14 1999-06-30 HELFERICH, Richard J. Voice storage device for co-operation with transceiver stations
CN115716706A (en) * 2021-08-24 2023-02-28 白金科技股份有限公司 Near-infrared absorbing glass and near-infrared cut filter

Similar Documents

Publication Publication Date Title
US5849649A (en) Glass composition
CN104583142B (en) Optical glass, preform and optical element
US6022819A (en) Dental porcelain compositions
JP3550705B2 (en) Near infrared absorbing material
US4115131A (en) Optical glass
CN1055348A (en) Glass composition
US5629247A (en) High bismuth oxide based flux and paint compositions for glass substrates
JPS6350293B2 (en)
US4856670A (en) Low temperature processing transfer printing ink
US4376169A (en) Low-melting, lead-free ceramic frits
JPH06207161A (en) Improved near infrared light absorbing material and ink using the same
JP2011105587A (en) Flaky glass and method for producing the same
JPH06346044A (en) Far infrared light absorbing material
JPH06306349A (en) Near-infrared-absorbing material
JP3379548B2 (en) Forehearth colorant
JPS60224538A (en) Beam-accumulating enamel
JPH0770548A (en) Near-infrared-absorbing powder
JPS6319542B2 (en)
JPH05279078A (en) Near infrared ray absorption material
JPS6055454B2 (en) Colored ceramic color frit composition
JPH07118262B2 (en) Black matrix composition for color cathode ray tube
EP3980387A1 (en) Colored glass frits and related methods for laser marking applications
JPS6143297B2 (en)
JPH03215329A (en) Ultraviolet-ray shielding glass fiber composition for printed wiring board
JPH05331449A (en) Near infrared absorbing material