JPH063438B2 - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPH063438B2
JPH063438B2 JP61046164A JP4616486A JPH063438B2 JP H063438 B2 JPH063438 B2 JP H063438B2 JP 61046164 A JP61046164 A JP 61046164A JP 4616486 A JP4616486 A JP 4616486A JP H063438 B2 JPH063438 B2 JP H063438B2
Authority
JP
Japan
Prior art keywords
sample
lens
sonic
pressure
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61046164A
Other languages
Japanese (ja)
Other versions
JPS62204154A (en
Inventor
正生 高井
暢之 中島
講司 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP61046164A priority Critical patent/JPH063438B2/en
Publication of JPS62204154A publication Critical patent/JPS62204154A/en
Publication of JPH063438B2 publication Critical patent/JPH063438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波顕微鏡に係り、特に機械走査型の超音
波顕微鏡に関するものである。
The present invention relates to an ultrasonic microscope, and more particularly to a mechanical scanning ultrasonic microscope.

〔従来の技術〕[Conventional technology]

超音波顕微鏡においては、観察する試料を撮像するため
に、該試料と音波レンズとを相対的に動かす、すなわち
走査する必要がある。また、前記音波レンズの試料に対
する合焦点位置は、観察に用いる超音波の周波数によっ
て異なるが試料表面から数十μないし数mm離れた位置で
ある。前記試料に対して合焦点位置に音波レンズを配置
する場合、該合焦点位置に音波レンズが位置した時点で
反射エコーが最大となることを利用し、該音波レンズと
試料との間隔を調整していた。しかしながら、音波レン
ズと試料との間の音波伝播を行なうための媒質例えば水
等に泡を含んでいたり、前記試料からの反射エコーが小
さい場合等には前述の反射エコーの最大点を求めること
ができず、間隔調整時に音波レンズと試料とが接触して
双方が損傷する恐れがあった。また、音波レンズあるい
は資料の走査面と試料表面とが一致せず傾きを有してい
る場合は試料表面と走査面との相対的な傾きを調整する
必要があり、この操作時においても音波レンズと試料と
が接触する可能性が大きかった。したがって、音波レン
ズと試料との相対的な二次元走査時に前記接触が起る
と、音波レンズが破壊するとともに試料にも傷が生じ、
観察不能になる。この接触あるいは衝突を防止するため
に超音波によりレンズと試料間の距離を測定し、接近す
ると警告を発するもの(特開昭57−182644)、
レンズ周縁にレンズより突出した当り防止具を設け、レ
ンズが試料に当らないようにしたもの(実開昭60−1
00659)、レンズと試料の当接を検知するもの(特
開昭60−97258)などの手段が提唱されている。
In an ultrasonic microscope, in order to image a sample to be observed, it is necessary to move the sample and the acoustic lens relatively, that is, to scan. The focal point position of the sonic lens with respect to the sample is a position apart from the sample surface by several tens of μ to several mm, although it depends on the frequency of the ultrasonic wave used for observation. When the sonic lens is arranged at the in-focus position with respect to the sample, the fact that the reflected echo becomes maximum when the sonic lens is located at the in-focus position is used to adjust the distance between the sonic lens and the sample. Was there. However, when the medium for performing sound wave propagation between the sonic lens and the sample, such as water, contains bubbles, or the reflected echo from the sample is small, the maximum point of the reflected echo can be obtained. This could not be done, and there was a risk that the sonic lens and the sample would come into contact with each other at the time of adjusting the interval and damage both of them. Also, if the scanning surface of the sonic lens or the material does not match the sample surface and the sample surface has an inclination, it is necessary to adjust the relative inclination between the sample surface and the scanning surface. There was a high possibility that the sample would come into contact with the sample. Therefore, when the contact occurs during the relative two-dimensional scanning between the sonic lens and the sample, the sonic lens is destroyed and the sample is also scratched,
It becomes unobservable. In order to prevent this contact or collision, the distance between the lens and the sample is measured by ultrasonic waves and a warning is issued when the distance is approached (JP-A-57-182644).
A tool that prevents the lens from hitting the sample is provided on the peripheral edge of the lens so that it does not hit the sample.
Means such as one for detecting contact between the lens and the sample (Japanese Patent Laid-Open No. 60-97258) have been proposed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、レンズと試料間の間隔は極めて小さく、
また間隔調整の移動距離は更に小さいので、上述のレン
ズと試料間の距離を測定する方法は測定精度を極めて高
いものにしないとワークデイスタンスが制限されるし、
また高精度にすると装置が高価になる。また上述の当り
防止具を設けたものは、レンズを保護できるが試料の損
傷は防止できない。更に、上述の当接を検知する手段
は、検知した後に速やかに離間させる手段がなければ、
同様に試料やレンズの破損を防止できない。
However, the distance between the lens and the sample is very small,
In addition, since the movement distance of the distance adjustment is even smaller, the work distance is limited unless the measurement accuracy is extremely high in the above method of measuring the distance between the lens and the sample.
Further, if the precision is increased, the device becomes expensive. Moreover, the lens provided with the above-mentioned hit preventive tool can protect the lens, but cannot prevent damage to the sample. Furthermore, if there is no means for quickly separating after detecting the contact,
Similarly, it is impossible to prevent damage to the sample and lens.

〔問題を解決するための手段〕[Means for solving problems]

超音波顕微鏡の走査装置に空気軸受を使用することによ
って、レンズと試料の間隔を高精度に位置決めしながら
非接触で高速走査することが提唱され(特開昭57−1
04856)、実用化されている。本発明は、この空気
軸受を利用して接触を敏感に検出し、且つこの空気軸受
の支持面の隙間を利用して高速で退避させるものであ
る。
It has been proposed that an air bearing be used for a scanning device of an ultrasonic microscope to perform high-speed non-contact scanning while positioning the lens and the sample with high accuracy (Japanese Patent Laid-Open No. 57-1).
04856), which has been put to practical use. The present invention utilizes this air bearing to detect contact sensitively, and utilizes the gap of the support surface of this air bearing to evacuate at high speed.

〔作 用〕[Work]

すなわち、音波レンズと試料との相対的な走査を行なう
空気軸受において、該空気軸受における空気圧を検知す
る圧力手段を設け、試料との接触を前記圧力検出手段に
より空気軸受の変動として検出し、且つこの検出によっ
て空気軸受の両側の圧力バランスを制御して、空気軸受
の隙間だけの距離を急速に退避するようにしたことによ
って前記目的を達成できる。
That is, in the air bearing that performs relative scanning between the sonic lens and the sample, pressure means for detecting the air pressure in the air bearing is provided, and contact with the sample is detected by the pressure detecting means as fluctuation of the air bearing, and The above-mentioned object can be achieved by controlling the pressure balance on both sides of the air bearing by this detection so that the distance corresponding to the gap between the air bearings is rapidly withdrawn.

〔実施例〕〔Example〕

以下、本発明による超音波顕微鏡の一実施例を図によっ
て説明する。同図において、1はレンズホルダ2を介し
て音波レンズ3を支持する加振板で、その端部は図中X
方向の加振を行なうための駆動源である加振器5と接続
されている。また、該加振板1は図中右側にその断面を
示した気体軸受すなわち空気軸受7で前記加振動作が行
なえるように支持されている。即ち、加振板1を挟んで
試料より離れた方に吹出口7a、試料に近い方に吹出口
7cを備え、両側から圧気を吹き出すことにより、加振
板1は両者のほゞ中央部に支持される。また、側端面に
吹出口7bが配置され、加振板1の反対側端面にも同様
に配置された吹出口(図示せず)との両方から吹き出す
圧気により、加振板1は両側端が軸受に接することなく
支持される。bは加振板1を挟んでいる上記吹出口7a
または7cの一方(図では7c側)における供給空気圧
力の変化を検知する圧力検出器である。4は前記音波レ
ンズ3に併設してレンズホルダ2に取付けられた当り防
止具で、音波レンズ3の半球穴が形成されている先端部
よりわずかに突出して設置されている。9は前記音波レ
ンズ3に対向して配置された試料で、試料台8によって
図中Y方向すなわち前記X方向と直交する方向に走査可
能に支持されている。10は前記加振器5のX方向の走査
および試料台8のY方向の走査を同期させて二次元走査
を行なわせるための走査制御器である。11は前記圧力検
出器6に接続された異常検出器で、空気軸受7における
供給の圧力に一定値以上の変化が生じた際の該圧力検出
器6からの入力により制御信号を出力するものである。
12は前記空気軸受7に圧縮空気を供給する空気源、13は
該空気源12と空気軸受7の吹出口7a,7bとを接続
する配管途中に設けられた切換弁である。該切換弁13は
前記異常検出器11の制御信号によって走査されるもの
で、前記圧力検出器6が空気軸受7への供給空気圧力に
変化が生じたことを検知した時点で異常検出器11が作動
し、その制御信号によって空気軸受7の吹出口7a,7
bへの圧縮空気供給を停止するものである。該切換弁13
の動作によって吹出し口7a,7bへは圧縮空気が供給
されないこととなる。したがって、前記空気軸受7の吹
出口7cのみが圧縮空気を吹き出していることになり、
加振器1は通常の支持位置よりも吹出口7a側に吹き寄
せられることになる。14は音波レンズ2に設けられた圧
電膜に電力を供給するためのコネクタ、15は該コネクタ
14に接続されたケーブルである。
An embodiment of the ultrasonic microscope according to the present invention will be described below with reference to the drawings. In the figure, reference numeral 1 is a vibrating plate that supports a sound wave lens 3 via a lens holder 2, and its end portion is X in the figure.
It is connected to a vibration exciter 5 which is a drive source for performing directional vibration. The vibrating plate 1 is supported by a gas bearing, that is, an air bearing 7 whose cross section is shown on the right side in the figure, so that the vibrating operation can be performed. That is, the vibrating plate 1 is provided in the central part of the both by providing the air outlet 7a on the side farther from the sample and the air outlet 7c on the side closer to the sample with the vibrating plate 1 sandwiched therebetween, and by blowing out pressure air from both sides. Supported. In addition, the air outlet 7b is arranged on the side end surface, and both ends of the vibrating plate 1 are moved by the pressure air blown out from both the air outlet (not shown) similarly arranged on the opposite end surface of the vibrating plate 1. It is supported without touching the bearing. b is the air outlet 7a sandwiching the vibrating plate 1
Alternatively, it is a pressure detector that detects a change in the supply air pressure on one side (7c side in the figure) of 7c. Reference numeral 4 denotes a hit preventive attached to the lens holder 2 along with the sonic lens 3, and is installed so as to slightly project from the tip end portion of the sonic lens 3 where the hemispherical hole is formed. A sample 9 is arranged so as to face the acoustic wave lens 3, and is supported by a sample table 8 so as to be scannable in the Y direction in the figure, that is, in the direction orthogonal to the X direction. Reference numeral 10 denotes a scanning controller for synchronizing the X-direction scanning of the vibration exciter 5 and the Y-direction scanning of the sample stage 8 to perform two-dimensional scanning. Reference numeral 11 denotes an abnormality detector connected to the pressure detector 6, which outputs a control signal in response to an input from the pressure detector 6 when the supply pressure in the air bearing 7 changes more than a certain value. is there.
Reference numeral 12 is an air source for supplying compressed air to the air bearing 7, and 13 is a switching valve provided in the middle of a pipe connecting the air source 12 and the air outlets 7a, 7b of the air bearing 7. The switching valve 13 is scanned by the control signal of the abnormality detector 11, and when the pressure detector 6 detects that the supply air pressure to the air bearing 7 has changed, the abnormality detector 11 The air outlet 7a, 7 of the air bearing 7 is activated by the control signal.
The supply of compressed air to b is stopped. The switching valve 13
By this operation, the compressed air is not supplied to the outlets 7a and 7b. Therefore, only the air outlet 7c of the air bearing 7 blows compressed air,
The vibrator 1 is blown closer to the outlet 7a side than the normal support position. 14 is a connector for supplying electric power to the piezoelectric film provided on the sonic lens 2, and 15 is the connector
It is a cable connected to 14.

このような構成において、試料9観察を行なう場合、走
査制御器10の指令により加振器5および試料台8を動作
させX方向およびY方向の走査を同期させて行なう。す
なわち、加振器5によって加振板1をX方向に加振する
とともに該加振と同期させて試料台8をステッピングモ
ータ(図示省略)等によってY方向へ移動させ、音波レ
ンズ3と試料9との相対的な二次元走査を行なって該試
料9の超音波画像を撮像する。次に、音波レンズ3と試
料9との間隔設定すなわち合焦点位置合せを行なう必要
がある。この時、該音波レンズ3と試料9とを近づけ過
ぎた場合、まず、当り防止具4が試料9の表面に接触す
る。この接触によって加振版1に外力が加わるため、空
気軸受7と前記加振版1との間隔が変化する。この間隔
の変化によって特に吹出口7a,7cの供給圧力に変化
が生じ、この変化を圧力検出器6が検出する。そして、
異常検出器11に出力し、該異常検出器では切換弁3に制
御信号を出力して吹出口7aおよび7bへの圧縮空気の
供給を停止する。したがって、空気軸受7では吹出口7
cのみに圧縮空気が供給されることとなり、加振版1は
該加振版1と空気軸受7との隙間だけ吹出口7cから離
れることになる。このことにより、前記当り防止具4が
試料9に接触した際に、瞬時に加振版1を試料9から離
すことができるため、試料9表面の損傷を最少限にする
ことができる。なお、音波レンズ3についても当り防止
具4を設ければ、この当り防止具4が試料9側へ突出し
ているため、必らず該当り防止具4が先に試料9に接触
することになり、該音波レンズ3が損傷することはな
い。
In this configuration, when observing the sample 9, the vibration controller 5 and the sample table 8 are operated by the command of the scanning controller 10 and the scanning in the X and Y directions is synchronized. That is, the vibrating plate 1 is vibrated in the X direction by the vibrating device 5, and the sample stage 8 is moved in the Y direction by a stepping motor (not shown) or the like in synchronization with the vibrating, so that the sonic lens 3 and the sample 9 The ultrasonic image of the sample 9 is captured by performing a two-dimensional scan relative to the sample 9. Next, it is necessary to set the distance between the sonic lens 3 and the sample 9, that is, to adjust the in-focus position. At this time, if the sonic lens 3 and the sample 9 are brought too close to each other, the hit prevention tool 4 first contacts the surface of the sample 9. An external force is applied to the vibrating plate 1 by this contact, so that the distance between the air bearing 7 and the vibrating plate 1 changes. A change in this interval causes a change in the supply pressure of the outlets 7a and 7c, and the change is detected by the pressure detector 6. And
The abnormality detector 11 outputs the control signal to the switching valve 3 to stop the supply of compressed air to the outlets 7a and 7b. Therefore, in the air bearing 7, the outlet 7
Since the compressed air is supplied only to c, the vibrating plate 1 is separated from the air outlet 7c by the gap between the vibrating plate 1 and the air bearing 7. With this, when the hit preventing tool 4 contacts the sample 9, the vibrating plate 1 can be instantly separated from the sample 9, so that the surface damage of the sample 9 can be minimized. If the hit preventive tool 4 is provided for the sonic lens 3 as well, the hit preventive tool 4 protrudes toward the sample 9 side, so that the hit preventive tool 4 necessarily contacts the sample 9 first. The sonic lens 3 is not damaged.

さらに、前記異常検出器11の制御信号を走査制御器10に
も出力することにより、該走査制御器10で二次元走査を
停止させることもできる。したがって、当り防止具4と
試料9との接触に伴って生じる走査駆動系の損傷および
当り防止具4と試料9の損傷を防止できる。
Further, by outputting the control signal of the abnormality detector 11 to the scan controller 10, the scan controller 10 can also stop the two-dimensional scanning. Therefore, it is possible to prevent the damage of the scanning drive system and the damage of the hit preventive tool 4 and the sample 9 caused by the contact between the hit preventive tool 4 and the sample 9.

このような構成によれば、音波レンズ3と試料9とが接
触することがなく、双方の損傷を防止できる。また、当
り防止具4と試料9との接触時において、即座に加振版
1を試料から離すため、試料9の損傷を最少限に押える
ことができる。したがって、音波レンズ3の取替えある
いは試料9表面の再仕上げ等の操作もなくすか、あるい
は、大幅に消滅できるため、効率的な該試料9の観察が
行なえる。
According to such a configuration, the sonic lens 3 and the sample 9 do not come into contact with each other, and damage to both can be prevented. In addition, since the vibrating plate 1 is immediately separated from the sample when the hit prevention tool 4 and the sample 9 are in contact with each other, damage to the sample 9 can be suppressed to a minimum. Therefore, the operation of replacing the sonic lens 3 or refinishing the surface of the sample 9 can be eliminated or can be largely eliminated, so that the sample 9 can be efficiently observed.

なお、前記一実施例においては、音波レンズを気体軸受
で支持した実施例について説明したが、本発明はこれに
限定されるものではなく、試料を気体軸受で支持する方
式の超音波顕微鏡においても同様な効果を有するもので
ある。
In addition, in the above-mentioned one embodiment, the embodiment in which the sonic lens is supported by the gas bearing has been described, but the present invention is not limited to this, and also in the ultrasonic microscope of the method of supporting the sample by the gas bearing. It has a similar effect.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、音波レンズと試料
との接触を直ちに検出して速やかに接触を断つことがで
きる。
As described above, according to the present invention, it is possible to immediately detect the contact between the sonic lens and the sample and quickly disconnect the contact.

【図面の簡単な説明】[Brief description of drawings]

図は本発明による超音波顕微鏡の一実施例を示す回路図
である。 1……加振版、3……音波レンズ、4……当り防止具、
5……加振器、6……圧力検出器、7…空気軸受、8…
…試料台、9……試料、10……走査制御器、11……異常
検出器。
FIG. 1 is a circuit diagram showing an embodiment of an ultrasonic microscope according to the present invention. 1 ... Excitation plate, 3 ... Sonic lens, 4 ... Hit prevention device,
5 ... Vibrator, 6 ... Pressure detector, 7 ... Air bearing, 8 ...
… Sample stand, 9 …… Sample, 10 …… Scan controller, 11 …… Abnormality detector.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】試料に対置した音波レンズと、試料と音波
レンズとの間隔を調整する手段とを備え、音波レンズを
支持する部材と試料を載置する部材との少なくとも一方
を前記試料と音波レンズとの間隔方向に空気軸受によっ
て支持し、音波レンズを支持する部材と試料を載置する
部材とを前記間隔方向と直角の方向に相対的に移動させ
ることによって音波レンズを試料表面に沿って走査する
ようにした超音波顕微鏡において、前記空気軸受の両側
の軸受面に供給する圧気の少くとも一方の圧力変化を検
知する圧力検出器と、前記軸受面に供給する圧気の少な
くとも一方を制御する手段を備え、空気軸受によって支
持されている部材が試料と音波レンズとの間隔を拡げる
方向に外力を受けて変位したときに、この変位によって
生ずる前記供給圧気の圧力変化を圧力検出器が検知した
ときに出力する信号によって前記試料と音波レンズとが
離れる方向に前記空気軸受の両側に差圧が発生するよう
にしたことを特徴とする超音波顕微鏡。
1. A sonic lens opposite to a sample, and means for adjusting a distance between the sample and the sonic lens, wherein at least one of a member for supporting the sonic lens and a member for mounting the sample is sonic wave with the sample. The sonic lens is supported along the surface of the sample by being supported by an air bearing in the direction of the interval with the lens, and the member supporting the sonic lens and the member on which the sample is mounted are relatively moved in a direction perpendicular to the interval direction. In the scanning ultrasonic microscope, a pressure detector that detects a pressure change of at least one of the pressure air supplied to the bearing surfaces on both sides of the air bearing, and at least one of the pressure air supplied to the bearing surface is controlled. When the member, which is provided with the means and is supported by the air bearing, is displaced by an external force in the direction of expanding the distance between the sample and the sonic lens, the supply pressure generated by this displacement Ultrasonic microscope by a signal output of the pressure change when the pressure detector detects, characterized in that as the pressure difference is generated on both sides of the air bearing in a direction away and the said sample with sound waves lens.
【請求項2】特許請求の範囲第1項において、試料と音
波レンズとが離れる方向に空気軸受の両側に差圧が発生
するように軸受面に供給する圧気の少くとも一方を制御
する手段は、試料と音波レンズとの間から遠い方の軸受
面への圧気の供給を停止する手段であることを特徴とす
る超音波顕微鏡。
2. A means for controlling at least one of the compressed air supplied to the bearing surface so that a differential pressure is generated on both sides of the air bearing in a direction in which the sample and the sonic lens are separated from each other, according to claim 1. The ultrasonic microscope, which is a means for stopping the supply of compressed air to the bearing surface that is distant from between the sample and the acoustic lens.
【請求項3】特許請求の範囲第1項において音波レンズ
は、レンズ面の前端より突出した当り防止具を周縁部に
備えた音波レンズであることを特徴とする超音波顕微
鏡。
3. The ultrasonic microscope according to claim 1, wherein the sonic lens is a sonic lens provided with a hitting prevention member protruding from a front end of the lens surface on a peripheral portion.
JP61046164A 1986-03-05 1986-03-05 Ultrasonic microscope Expired - Lifetime JPH063438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61046164A JPH063438B2 (en) 1986-03-05 1986-03-05 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61046164A JPH063438B2 (en) 1986-03-05 1986-03-05 Ultrasonic microscope

Publications (2)

Publication Number Publication Date
JPS62204154A JPS62204154A (en) 1987-09-08
JPH063438B2 true JPH063438B2 (en) 1994-01-12

Family

ID=12739373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61046164A Expired - Lifetime JPH063438B2 (en) 1986-03-05 1986-03-05 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPH063438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202679A (en) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp Lens drive device and laser processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202679A (en) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp Lens drive device and laser processing device

Also Published As

Publication number Publication date
JPS62204154A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
JP4573794B2 (en) Probe card and microstructure inspection device
JP4628419B2 (en) Microstructure inspection apparatus, microstructure inspection method, and microstructure inspection program
US6057967A (en) Apparatus for extracting pattern features
CA1304173C (en) Microlithographic apparatus
JPH07254555A (en) Aligner
US8626468B2 (en) MEMS device comprising oscillations measurements means
JPH063438B2 (en) Ultrasonic microscope
JP2001317933A (en) Shape-measuring apparatus
JP2009535632A (en) Measuring apparatus and measuring method for inspection of substrate surface
EP0708391B1 (en) Processing apparatus with movable processing tool and processing method
JP2004132823A (en) Sampling scanning probe microscope and scanning method
RU2139783C1 (en) Device for laser cutting
WO2010067570A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
JPH063439B2 (en) Ultrasonic microscope
JPH08321274A (en) Active vibration resisting device of electron microscope
JPH0470562A (en) Transmission type ultrasonic microscope
JPH0649958U (en) Semiconductor wafer thickness measuring machine
JPS62121349A (en) Ultrasonic microscope
JP3523510B2 (en) Linear guide device
JPH07128130A (en) Vibration measuring apparatus
JPH03189552A (en) Breakage preventing device for sensor of scanning device
JPH08292814A (en) Positioning device
JPH11118672A (en) Characteristic measuring apparatus for fluidic static pressure bearing and dynamic characteristic determining method of positioning apparatus
JP2002090134A (en) Minute shape measuring device
JP2714219B2 (en) Positioning device