JPH0634286A - Heat conveying apparatus - Google Patents

Heat conveying apparatus

Info

Publication number
JPH0634286A
JPH0634286A JP19045492A JP19045492A JPH0634286A JP H0634286 A JPH0634286 A JP H0634286A JP 19045492 A JP19045492 A JP 19045492A JP 19045492 A JP19045492 A JP 19045492A JP H0634286 A JPH0634286 A JP H0634286A
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
receiver
valve
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19045492A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamamoto
克彦 山本
Shigeru Iwanaga
茂 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19045492A priority Critical patent/JPH0634286A/en
Publication of JPH0634286A publication Critical patent/JPH0634286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

PURPOSE:To eliminate a pressure reduction start delay time in a liquid receiver and to enhance the heat conveying capacity of the title apparatus which uses heat for room heating by utilizing a pressure rise at the time of heating refrigerant. CONSTITUTION:The heat conveying apparatus comprises a refrigerant heater 2, a heat conveyor 18 in which a vapor liquid separator 1 is annularly connected by an inlet tube 3 and an outlet tube 4 and a liquid receiver 5 provided above the separator 1 is connected to the separator 1 through a switching valve 8 and a first check valve 6, an annular circulation passage 19 in which the separator 1, a heat radiator 10, a second check valve 12 and the receiver 5 are sequentially connected, a liquid refrigerant pressure feeder 20 and liquid refrigerant diffusing nozzle 23 provided in parallel with the valve 12 at a liquid refrigerant inlet side of the receiver 5, and a controller 22 for operating the feeder 20 at the time of closing the valve 8. When the valve 8 is closed, liquid refrigerant is forcedly poured in the receiver.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒を加熱する時の圧
力上昇を利用して、熱を暖房などに利用する熱搬送装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device for utilizing heat for heating or the like by utilizing a pressure increase when heating a refrigerant.

【0002】[0002]

【従来の技術】従来の熱搬送装置は例えば特開平3−5
1631公報に示されるように、図3のような構成にな
っている。
2. Description of the Related Art A conventional heat transfer device is disclosed, for example, in Japanese Patent Laid-Open No. 3-5.
As shown in the 1631 publication, it has a configuration as shown in FIG.

【0003】すなわち、気液セパレータ1は、冷媒加熱
器2の上方に配置されるとともに冷媒加熱器2の入口管
3と冷媒加熱器2の出口管4とで連結され環状の管路で
接続されている。また、受液器5は気液セパレータ1の
上方に配置され、第1逆止弁6を有する落込み管7で気
液セパレータ1へ接続され、さらに開閉弁8を有する均
圧管9により出口管4を介して気液セパレータ1に接続
されている。気液セパレータ1と利用側として室内側に
配置される放熱器10は、ガス冷媒往き管11で接続さ
れ、放熱器10と受液器5は、第2逆止弁12を有する
液冷媒戻り管13で接続されている。
That is, the gas-liquid separator 1 is arranged above the refrigerant heater 2 and is connected by an inlet pipe 3 of the refrigerant heater 2 and an outlet pipe 4 of the refrigerant heater 2 and connected by an annular pipe line. ing. Further, the liquid receiver 5 is arranged above the gas-liquid separator 1, is connected to the gas-liquid separator 1 by a drop pipe 7 having a first check valve 6, and further has an outlet pipe by a pressure equalizing pipe 9 having an opening / closing valve 8. It is connected to the gas-liquid separator 1 via 4. The gas-liquid separator 1 and the radiator 10 arranged on the indoor side as the use side are connected by a gas refrigerant forward pipe 11, and the radiator 10 and the liquid receiver 5 are liquid refrigerant return pipes having a second check valve 12. Connected at 13.

【0004】以上のように、気液セパレータ1、放熱器
10、第2逆止弁12、受液器5、第1逆止弁6は順次
配管接続された環状の循環路を形成している。14は冷
媒加熱器2の出口管に設けた温度検知器であり、15は
温度検知器14の検知する温度により、開閉弁8の開閉
時間を制御する制御装置である。16は冷媒加熱器2に
設けたバーナであり、バーナ16により冷媒を加熱す
る。17は放熱器10に設けた送風機である。
As described above, the gas-liquid separator 1, the radiator 10, the second check valve 12, the liquid receiver 5, and the first check valve 6 form an annular circulation path sequentially connected by piping. . Reference numeral 14 is a temperature detector provided in the outlet pipe of the refrigerant heater 2, and 15 is a control device for controlling the opening / closing time of the opening / closing valve 8 according to the temperature detected by the temperature detector 14. Reference numeral 16 is a burner provided in the refrigerant heater 2, and the burner 16 heats the refrigerant. Reference numeral 17 is a blower provided in the radiator 10.

【0005】上記構成において、その動作を以下に説明
する。冷媒加熱器2において、バーナ16の燃焼熱で加
熱された冷媒は、ガスと液の2相状態で出口管4を通
り、気液セパレータ1へ流入し、液冷媒は入口管3から
再び冷媒加熱器2に流入する。一方、気液セパレータ1
へ流入した2相状態の冷媒のうちガス冷媒は、ガス冷媒
往き管11から放熱器10へ入り、送風機17で送られ
た室内空気と熱交換し、放熱凝縮し過冷却液化する。
The operation of the above structure will be described below. In the refrigerant heater 2, the refrigerant heated by the combustion heat of the burner 16 flows into the gas-liquid separator 1 through the outlet pipe 4 in a two-phase state of gas and liquid, and the liquid refrigerant is heated again from the inlet pipe 3 by the refrigerant heating. Flows into the vessel 2. On the other hand, gas-liquid separator 1
Of the two-phase refrigerant that has flowed into the gas refrigerant, the gas refrigerant enters the radiator 10 through the gas refrigerant outflow pipe 11 and exchanges heat with the indoor air sent by the blower 17, dissipates heat and condenses into supercooled liquid.

【0006】ここで、開閉弁8が閉の時には、放熱器1
0で凝縮液化した過冷却液冷媒は、液冷媒戻り管13か
ら第2逆止弁12を介して、ガス冷媒を凝縮させること
により受液器5内へ流入する。この時受液器5内の圧力
は気液セパレータ1内の圧力より低くなっているため、
第1逆止弁6は閉状態となっている。この状態で、開閉
弁8を開とすると、受液器5と気液セパレータ1とは均
圧管9により連通して均圧状態となり、受液器5内の液
冷媒は重力により第1逆止弁6を通り気液セパレータ1
内へ流入する。
When the on-off valve 8 is closed, the radiator 1
The supercooled liquid refrigerant condensed and liquefied at 0 flows into the liquid receiver 5 from the liquid refrigerant return pipe 13 through the second check valve 12 by condensing the gas refrigerant. At this time, the pressure in the liquid receiver 5 is lower than the pressure in the gas-liquid separator 1,
The first check valve 6 is closed. When the on-off valve 8 is opened in this state, the liquid receiver 5 and the gas-liquid separator 1 communicate with each other through the pressure equalizing pipe 9 to be in a pressure equalizing state, and the liquid refrigerant in the liquid receiver 5 is subjected to the first check by gravity. Gas-liquid separator 1 through valve 6
Flows in.

【0007】次に、開閉弁8を再び閉にすると、第1逆
止弁6は閉状態となり、受液器5内へ放熱器10の凝縮
過冷却液冷媒が、受液器内の急減圧により吸引され、受
液器5が液冷媒で満たされるサイクルを繰り返す。この
ように、気液セパレータ1と冷媒加熱器2間は蒸発した
冷媒圧による自然循環サイクルであり、受液器5から気
液セパレータ1および冷媒加熱器2への液冷媒の供給は
開閉弁8の開閉周期による間欠動作サイクルである。
Next, when the on-off valve 8 is closed again, the first check valve 6 is closed, and the condensed subcooling liquid refrigerant of the radiator 10 is rapidly decompressed into the liquid receiver 5. And the liquid receiver 5 is filled with the liquid refrigerant and the cycle is repeated. As described above, the natural circulation cycle between the gas-liquid separator 1 and the refrigerant heater 2 is based on the evaporated refrigerant pressure, and the supply of the liquid refrigerant from the liquid receiver 5 to the gas-liquid separator 1 and the refrigerant heater 2 is performed by the open / close valve 8 It is an intermittent operation cycle according to the open / close cycle of

【0008】[0008]

【発明が解決しようとする課題】上記従来の構成におい
て、冷媒加熱による熱搬送を行うため開閉弁8の開閉動
作周期の設定には、図4に示すように受液器5での減圧
開始遅れ時間Tlを考慮する必要があった。すなわち、
開閉弁8が開状態から閉状態に切替った時間t1からTl
だけ遅れて受液器5内の減圧が発生し、減圧時間Tr
受液器5内が液冷媒で満たされ減圧が完了する。この減
圧開始遅れ時間Tlは主に受液器5の容器の熱容量にお
よび受液器5内に入った液冷媒の拡散不足に起因するも
のである。また減圧時間Trは空となった受液器5内へ
液冷媒が流入し終わるまでの時間であり、受液器5の内
容積および放熱器10から受液器5までの流路抵抗によ
り定まる。さらに開時間TONは満液となった受液器5か
ら気液セパレータ1へ液冷媒が落し込まれるのに要する
時間であり、受液器5の内容積および均圧管9と落込み
管7の流路抵抗により定まる。
In the above-mentioned conventional structure, the decompression start delay in the liquid receiver 5 is set as shown in FIG. It was necessary to consider the time T l . That is,
From the time t 1 when the open / close valve 8 is switched from the open state to the closed state, T l
After that, the pressure in the receiver 5 is reduced, and the receiver 5 is filled with the liquid refrigerant in the pressure reduction time Tr to complete the pressure reduction. The depressurization start delay time T l is mainly due to the heat capacity of the container of the liquid receiver 5 and insufficient diffusion of the liquid refrigerant entering the liquid receiver 5. The decompression time T r is the time until the liquid refrigerant finishes flowing into the empty receiver 5 and depends on the internal volume of the receiver 5 and the flow path resistance from the radiator 10 to the receiver 5. Determined. Further, the opening time T ON is the time required for the liquid refrigerant to drop from the liquid receiver 5 which is full to the gas-liquid separator 1, and the internal volume of the liquid receiver 5 and the pressure equalizing pipe 9 and the drop pipe 7 are set. It is determined by the flow path resistance of.

【0009】このように開閉弁8の開閉周期Tsは開時
間TONと閉時間TOFFの和(Ts=TO N+TOFF)であ
り、さらに閉時間TOFFは減圧開始遅れ時間Tlと減圧時
間Trの和(TOFF=Tl+Tr)である。この減圧開始遅
れ時間Tlが比較的大きいために閉時間TOFFの短縮に制
約が生じ、開閉周期TSが長目に設定せざるを得ない状
況となり、熱搬送量(暖房に利用の場合は暖房能力)の
大能力化に制約があった。
[0009] closing period T s of the thus-off valve 8 is the sum of the open time T ON and the closing time T OFF (T s = T O N + T OFF), further closing time T OFF is vacuum start delay time T It is the sum of l and the depressurization time T r (T OFF = T l + T r ). Since this depressurization start delay time T l is relatively large, there is a restriction on the reduction of the closing time T OFF , and there is no choice but to set the opening / closing cycle T S to be long, and the heat transfer amount (when used for heating is used. There was a constraint on increasing the heating capacity).

【0010】本発明は上記課題を解決するもので、減圧
開始遅れ時間を無くすことにより開閉周期を短縮し、熱
搬送量の大能力化を目的とする。
The present invention is intended to solve the above problems, and aims at shortening the opening / closing cycle by eliminating the depressurization start delay time and increasing the heat transfer capacity.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するために冷媒加熱器と、気液セパレータを環状の管路
で接続し、かつ前記気液セパレータの上方に設けた受液
器を、開閉弁および第1逆止弁を介して前記気液セパレ
ータに接続した熱搬送部と、前記気液セパレータ、放熱
器、第2逆止弁および前記受液器を順次接続した環状の
循環路と、前記受液器の液冷媒入口側で前記第2逆止弁
と並列に設けた液冷媒圧送器および液冷媒の拡散ノズル
と、前記開閉弁の閉成時に、前記液冷媒圧送器を作動さ
せる制御装置とを設けた構成としたものである。
In order to achieve the above object, the present invention provides a refrigerant heater, a liquid-liquid separator connected by an annular pipe line, and a liquid receiver provided above the gas-liquid separator. , A heat transfer part connected to the gas-liquid separator via an on-off valve and a first check valve, and an annular circulation path sequentially connecting the gas-liquid separator, a radiator, a second check valve and the liquid receiver And a liquid refrigerant pressure feeder and a liquid refrigerant diffusion nozzle provided in parallel with the second check valve on the liquid refrigerant inlet side of the liquid receiver, and actuating the liquid refrigerant pressure feeder when the on-off valve is closed. And a control device for controlling.

【0012】[0012]

【作用】本発明は上記構成によって、開閉弁の閉成とと
もに液冷媒圧送器を作動させて液冷媒を受液器内に強制
的に注入し、受液器内のガス冷媒を凝縮させ始めるきっ
かけを作る。この強制注入作用と拡散ノズルによる過冷
却液冷媒の微粒化と拡散によりガス冷媒と効率よく接触
し、凝縮する。これにより受液器内の減圧が減圧開始遅
れ時間なしに発生し、液冷媒が受液器内に一気に吸引さ
れる。
With the above-described structure, the present invention serves as a trigger for starting the condensation of the gas refrigerant in the liquid receiver by forcibly injecting the liquid refrigerant into the liquid receiver by operating the liquid refrigerant pump with the closing of the on-off valve. make. Due to this forced injection action and atomization and diffusion of the supercooled liquid refrigerant by the diffusion nozzle, the supercooled liquid refrigerant efficiently contacts and condenses with the gas refrigerant. As a result, the decompression in the liquid receiver occurs without the decompression start delay time, and the liquid refrigerant is sucked into the liquid receiver all at once.

【0013】このように減圧開始遅れ時間を無くすこと
により、開閉弁の閉時間を大幅に短縮して開閉周期を小
さくし、単位時間当りの受液器の吸引・落込み回数を増
大させて冷媒循環量を増大可能とし、冷媒加熱量を増大
させることにより熱搬送量(暖房に利用の場合は暖房能
力)の大能力化を得ることができる。
By eliminating the depressurization start delay time in this way, the closing time of the on-off valve is greatly shortened, the opening / closing cycle is shortened, and the number of times of sucking and dropping of the liquid receiver per unit time is increased to increase the refrigerant. By increasing the circulation amount and increasing the refrigerant heating amount, the heat transfer amount (heating capacity in the case of use for heating) can be increased.

【0014】[0014]

【実施例】以下本発明の実施例を図1を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0015】図1において、図3と同一符号は同一部材
を示し同一機能を有しているので詳細な説明は省略し、
異なる点を中心に説明する。
In FIG. 1, the same reference numerals as those in FIG. 3 denote the same members and have the same functions, and thus detailed description thereof will be omitted.
The different points will be mainly described.

【0016】18はバーナ16を有する冷媒加熱器2と
気液セパレータ1を環状管路に接続し、前記気液セパレ
ータ1の上方に設けた受液器5を、第1逆止弁6を有す
る落込み管7と、開閉弁8を有する均圧管9とで前記環
状管路に接続した熱搬送部である。19は気液セパレー
タ1、放熱器10、第2逆止弁12、受液器5を順次配
管接続した環状の循環路である。20は受液器5の液冷
媒入口側に設けた液冷媒圧送器であり、受液器5と放熱
器10を接続する液冷媒戻り管13に接続され、本実施
例では第2逆止弁12に並列に設けて第2逆止弁12を
バイパスしている。
Reference numeral 18 connects the refrigerant heater 2 having the burner 16 and the gas-liquid separator 1 to the annular pipe line, the liquid receiver 5 provided above the gas-liquid separator 1 and the first check valve 6. The heat transfer section is connected to the annular pipe line by a drop pipe 7 and a pressure equalizing pipe 9 having an opening / closing valve 8. Reference numeral 19 is an annular circulation path in which the gas-liquid separator 1, the radiator 10, the second check valve 12, and the liquid receiver 5 are sequentially connected by piping. Reference numeral 20 denotes a liquid refrigerant pump that is provided on the liquid refrigerant inlet side of the liquid receiver 5, and is connected to a liquid refrigerant return pipe 13 that connects the liquid receiver 5 and the radiator 10, and in the present embodiment, a second check valve. It is provided in parallel with 12 and bypasses the second check valve 12.

【0017】21はバーナ16の燃焼量を可変する燃焼
量可変装置、22は開閉弁8、温度検知器14、液冷媒
圧送器20、燃焼量可変装置21に電気的に接続され、
開閉弁8の閉成時に液冷媒圧送器20を作動させる制御
装置である。23は、液冷媒圧送器より送られた液冷媒
を受液器5内に微粒化して放出させる拡散ノズルであ
る。
Reference numeral 21 is a combustion amount varying device for varying the combustion amount of the burner 16, 22 is electrically connected to the on-off valve 8, the temperature detector 14, the liquid refrigerant pump 20, and the combustion amount varying device 21.
The control device operates the liquid refrigerant pump 20 when the on-off valve 8 is closed. Reference numeral 23 is a diffusion nozzle that atomizes and discharges the liquid refrigerant sent from the liquid refrigerant pressure feeder into the liquid receiver 5.

【0018】上記構成において、開閉弁8の開閉動作と
バーナ16での燃焼、送風機17の運転および開閉弁8
の閉成時の液冷媒圧送器20の作動により冷媒加熱によ
る熱搬送の暖房を行う。
In the above structure, the opening / closing operation of the opening / closing valve 8, the combustion in the burner 16, the operation of the blower 17 and the opening / closing valve 8
By the operation of the liquid refrigerant pumping device 20 at the time of closing, the heating of the heat transfer by heating the refrigerant is performed.

【0019】以上の熱搬送運転において、開閉弁8が開
状態から閉成すると同時に液冷媒圧送器20を作動させ
る場合について図2で説明する。
In the above heat transfer operation, the case where the liquid refrigerant pump 20 is operated at the same time when the on-off valve 8 is closed from the open state will be described with reference to FIG.

【0020】図2において、開閉弁8が開状態から閉状
態に切替った時間t0同時に液冷媒圧送器20を作動さ
せ、受液器内のガス冷媒を凝縮させるための最初の過冷
却液を拡散ノズル23より微粒化して、強制的に受液器
内へ注入する。この過冷却液の強制注入と微粒化により
受液器内の減圧が開始するため、減圧開始遅れ時間T’
lは実用上無くする(T’l=0)ことができる。
In FIG. 2, at the time t 0 when the open / close valve 8 is switched from the open state to the closed state, at the same time, the liquid refrigerant pumping device 20 is operated and the first supercooled liquid for condensing the gas refrigerant in the liquid receiver. Is atomized from the diffusion nozzle 23 and forcedly injected into the liquid receiver. Since the pressure reduction in the receiver starts due to the forced injection and atomization of the supercooled liquid, the pressure reduction start delay time T '
L can be practically eliminated (T ′ l = 0).

【0021】従って、開閉弁8の閉時間T’OFFは正味
の減圧時間Trだけで良く(T’OFF=Tr)、開閉周期
T’sは大幅に短縮(T’s=Tr+TON)できる。この
ため、受液器での液冷媒の吸引・落込み回数の増加によ
り冷媒循環能力が増大し、冷媒加熱器での燃焼量を増大
させ熱搬送量(暖房に利用の場合は暖房能力)の大能力
化ができる。
[0021] Accordingly, the closing time T 'OFF need only decompression time T r of the net (T' OFF = T r) of the on-off valve 8, the opening and closing period T 's is greatly reduced (T' s = T r + T ON ) Yes. Therefore, the refrigerant circulation capacity increases due to the increase in the number of times the liquid refrigerant is sucked and dropped in the liquid receiver, increasing the combustion amount in the refrigerant heater and increasing the heat transfer amount (heating capacity when used for heating). Greater ability can be achieved.

【0022】なお、液冷媒圧送器20としては微少吐出
量で良く、プランジャー型ポンプなどを応用することが
可能である。従って、駆動入力もわずかで良く熱搬送だ
けの入力としては開閉弁の入力と合わせてもわずかであ
り経済性は失われない。
It should be noted that the liquid refrigerant pump 20 may have a small discharge amount, and a plunger type pump or the like can be applied. Therefore, the driving input is also small, and the input for heat transfer is small even when combined with the input of the on-off valve, and the economical efficiency is not lost.

【0023】さらに、液冷媒圧送器20の作動は開閉弁
8の閉成と同時でなくても良く、閉成時に任意に設定で
き、従来の受液器の自然放熱による圧力低下や熱搬送系
の圧力変動等の成り行き条件により減圧開始が発生して
いたのに較べて、受液器5の吸引・落込み動作の制御性
が向上しきめ細かな冷媒循環量制御ができる。
Further, the operation of the liquid refrigerant pressure feeder 20 does not have to be performed at the same time as the closing of the on-off valve 8 and can be arbitrarily set at the time of closing, and the pressure drop due to the natural heat dissipation of the conventional receiver and the heat transfer system. As compared with the case where the decompression start is generated due to the eventual condition such as the pressure fluctuation, the controllability of the suction / fall operation of the liquid receiver 5 is improved, and the fine refrigerant circulation amount control can be performed.

【0024】また、液冷媒圧送器20を第2逆止弁12
に並列に設けてバイパス構成とすれば、受液器内の急減
圧時における液冷媒の急速な流れに対し、液冷媒圧送器
20の流路抵抗を考慮しなくても良く構造設計が容易と
なる。
Further, the liquid refrigerant pump 20 is connected to the second check valve 12.
If it is provided in parallel with and has a bypass configuration, it is not necessary to consider the flow path resistance of the liquid refrigerant pumping device 20 against the rapid flow of the liquid refrigerant during rapid depressurization in the liquid receiver, which facilitates the structural design. Become.

【0025】[0025]

【発明の効果】以上のように本発明の熱搬送装置は、熱
搬送部と、循環路と、受液器の液冷媒入口側に設けた拡
散ノズルおよび液冷媒圧送器と、開閉弁の閉成時に液冷
媒圧送器を作動させる制御装置を設けた構成としている
ので、減圧開始遅れ時間をほとんどなくすことができ、
開閉周期の大幅短縮による冷媒循環能力の増大により熱
搬送量の大能力化ができるという効果がある。また、わ
ずかな入力で液冷媒圧送器を任意にコントロールできる
から、経済性を失わずにきめ細かな冷媒循環量制御で
き、制御性が向上するという利点もある。
As described above, the heat transfer device of the present invention includes the heat transfer portion, the circulation path, the diffusion nozzle and the liquid refrigerant pumping device provided on the liquid refrigerant inlet side of the liquid receiver, and the closing of the on-off valve. Since it is configured to have a control device that operates the liquid refrigerant pump at the time of forming, it is possible to almost eliminate the depressurization start delay time,
There is an effect that the heat transfer amount can be increased by increasing the refrigerant circulation capacity by greatly shortening the opening / closing cycle. Further, since the liquid refrigerant pump can be arbitrarily controlled with a small input, there is an advantage that the refrigerant circulation amount can be finely controlled without losing the economical efficiency and the controllability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の熱搬送装置のシステム構成
FIG. 1 is a system configuration diagram of a heat transfer device according to an embodiment of the present invention.

【図2】本発明の実施例での受液器の減圧特性図FIG. 2 is a decompression characteristic diagram of a liquid receiver according to an embodiment of the present invention.

【図3】従来の熱搬送装置のシステム構成図FIG. 3 is a system configuration diagram of a conventional heat transfer device.

【図4】従来の熱搬送装置での受液器の減圧特性図FIG. 4 is a decompression characteristic diagram of a liquid receiver in a conventional heat transfer device.

【符号の説明】[Explanation of symbols]

1 気液セパレータ 2 冷媒加熱器 5 受液器 6 第1逆止弁 8 開閉弁 10 放熱器 12 第2逆止弁 18 熱搬送部 19 循環路 20 液冷媒圧送器 22 制御装置 23 拡散ノズル DESCRIPTION OF SYMBOLS 1 Gas-liquid separator 2 Refrigerant heater 5 Liquid receiver 6 1st check valve 8 Open / close valve 10 Radiator 12 2nd check valve 18 Heat transfer part 19 Circulation path 20 Liquid refrigerant pressure transmitter 22 Control device 23 Diffusion nozzle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷媒加熱器と気液セパレータを環状の管路
で接続し、かつ前記気液セパレータの上方に設けた受液
器を開閉弁および第1逆止弁を介して前記気液セパレー
タに接続した熱搬送部と、前記気液セパレータ、放熱
器、第2逆止弁および前記受液器を順次接続した環状の
循環路と、前記受液器の液冷媒入口側で前記第2逆止弁
と並列に設けた液冷媒圧送器および、液冷媒の拡散ノズ
ルと、前記開閉弁の閉成時に、前記液冷媒圧送器を作動
させる制御装置とを設けた熱搬送装置。
1. A refrigerant heater and a gas-liquid separator are connected by an annular pipe line, and a liquid receiver provided above the gas-liquid separator is connected to the gas-liquid separator via an opening / closing valve and a first check valve. A heat transfer unit connected to the gas-liquid separator, the radiator, the second check valve, and the liquid receiver in this order, and the second reverse side at the liquid refrigerant inlet side of the liquid receiver. A heat transfer device provided with a liquid refrigerant pressure feeder provided in parallel with a stop valve, a liquid refrigerant diffusion nozzle, and a control device for operating the liquid refrigerant pressure feeder when the on-off valve is closed.
JP19045492A 1992-07-17 1992-07-17 Heat conveying apparatus Pending JPH0634286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19045492A JPH0634286A (en) 1992-07-17 1992-07-17 Heat conveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19045492A JPH0634286A (en) 1992-07-17 1992-07-17 Heat conveying apparatus

Publications (1)

Publication Number Publication Date
JPH0634286A true JPH0634286A (en) 1994-02-08

Family

ID=16258399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19045492A Pending JPH0634286A (en) 1992-07-17 1992-07-17 Heat conveying apparatus

Country Status (1)

Country Link
JP (1) JPH0634286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144123A1 (en) * 2011-04-22 2012-10-26 パナソニック株式会社 Cooling device and electric vehicle equipped therewith
CN111060039A (en) * 2019-12-27 2020-04-24 宁波奥克斯电气股份有限公司 Detection device and detection method for pressure equalizing hole of gas-liquid separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144123A1 (en) * 2011-04-22 2012-10-26 パナソニック株式会社 Cooling device and electric vehicle equipped therewith
CN111060039A (en) * 2019-12-27 2020-04-24 宁波奥克斯电气股份有限公司 Detection device and detection method for pressure equalizing hole of gas-liquid separator

Similar Documents

Publication Publication Date Title
US4903495A (en) Transport refrigeration system with secondary condenser and maximum operating pressure expansion valve
US5692387A (en) Liquid cooling of discharge gas
MY123976A (en) Vapor separation of variable capacity heat pump refrigerant
JPH0634286A (en) Heat conveying apparatus
JPH10197077A (en) Refrigerating apparatus
JPH0634285A (en) Heat conveying apparatus
JPH05149559A (en) Heat transfer device
JP2827863B2 (en) Heat transfer device
JPH06117652A (en) Heat transfer device
JPH06117653A (en) Heat transferring device
JP3252577B2 (en) Heat transfer device
JPH06117651A (en) Heat transfer device
JP2783025B2 (en) Heat transfer device
JPH07174353A (en) Heat conveying device
JPH0712360A (en) Heat conveyor
JP3252530B2 (en) Heat transfer device
JP3252529B2 (en) Heat transfer device
JP2532628B2 (en) Heating system
JP3254838B2 (en) Heat transfer device
JPH07174351A (en) Heat conveying device
JP2689663B2 (en) Heating system
JP2827809B2 (en) Heat transfer device
JPH05149561A (en) Heat transfer device
JP3399025B2 (en) Heat transfer device
JPH05157262A (en) Heat transferring apparatus