JPH05149559A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPH05149559A
JPH05149559A JP31580691A JP31580691A JPH05149559A JP H05149559 A JPH05149559 A JP H05149559A JP 31580691 A JP31580691 A JP 31580691A JP 31580691 A JP31580691 A JP 31580691A JP H05149559 A JPH05149559 A JP H05149559A
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
gas
receiver
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31580691A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Katsuhiko Yamamoto
克彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31580691A priority Critical patent/JPH05149559A/en
Publication of JPH05149559A publication Critical patent/JPH05149559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

PURPOSE:To eliminate the delay time of starting of pressure reduction in a liquid receiver and contrive the enlargement of the transfer amount of heat, in a heat transfer device utilizing a pressure increase upon a heating refrigerant for the heat of space heating. CONSTITUTION:The title device is provided with a heat transfer unit 18, provided with a refrigerant heater 2, a gas/liquid separator 1, a liquid receiver 5, an opening and closing valve 8 and a first non-return valve 6, and an annular circulating passage 19, consisting of the gas/liquid separator 1, a radiator 10, a second non-return valve 12 and the liquid receiver 5, which are connected sequentially. Further, the title device is constituted of a liquid refrigerant pumping device 20, provided at the inlet side of the liquid refrigerant of a liquid receiver 5, and a controller 22, operating the liquid refrigerant pumping device 20 upon closing the opening and closing valve 8, whereby the liquid refrigerant is poured forcibly into the liquid receiver 5 when the opening and closing valve 8 is closed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒を加熱する時の圧
力上昇を利用して、熱を暖房などに利用する熱搬送装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device for utilizing heat for heating or the like by utilizing a pressure increase when heating a refrigerant.

【0002】[0002]

【従来の技術】従来の熱搬送装置は、例えば特開平3−
51631号公報に示されるように、図3のような構成
になっている。
2. Description of the Related Art A conventional heat transfer device is disclosed in, for example, Japanese Patent Laid-Open No.
As shown in Japanese Patent Publication No. 51631, the structure is as shown in FIG.

【0003】すなわち、気液セパレータ1は、冷媒加熱
器2の上方に配置されるとともに冷媒加熱器2の入口管
3と冷媒加熱器2の出口管4とで連結され環状の管路で
接続されている。また、受液器5は気液セパレータ1の
上方に配置され、第1逆止弁6を有する落込み管7で気
液セパレータ1へ接続され、さらに開閉弁8を有する均
圧管9により出口管4を介して気液セパレータ1に接続
されている。気液セパレータ1と利用側として室内側に
配置される放熱器10は、ガス冷媒往き管11で接続さ
れ、放熱器10と受液器5は、第2逆止弁12を有する
液冷媒戻り管13で接続されている。以上のように、気
液セパレータ1,放熱器10,第2逆止弁12,受液器
5,第1逆止弁6は順次配管接続された環状の循環路を
形成している。14は冷媒加熱器2の出口管4に設けた
温度検知器であり、15は温度検知器14の検知する温
度により、開閉弁8の開閉時間を制御する制御装置であ
る。16は冷媒加熱器2に設けたバーナであり、バーナ
16により冷媒を加熱する。17は放熱器10に設けた
送風機である。
That is, the gas-liquid separator 1 is arranged above the refrigerant heater 2 and is connected by an inlet pipe 3 of the refrigerant heater 2 and an outlet pipe 4 of the refrigerant heater 2 and connected by an annular pipe line. ing. Further, the liquid receiver 5 is arranged above the gas-liquid separator 1, is connected to the gas-liquid separator 1 by a drop pipe 7 having a first check valve 6, and is further provided with a pressure equalizing pipe 9 having an opening / closing valve 8 by an outlet pipe. It is connected to the gas-liquid separator 1 via 4. The gas-liquid separator 1 and the radiator 10 arranged on the indoor side as the use side are connected by a gas refrigerant forward pipe 11, and the radiator 10 and the liquid receiver 5 are liquid refrigerant return pipes having a second check valve 12. It is connected at 13. As described above, the gas-liquid separator 1, the radiator 10, the second check valve 12, the liquid receiver 5, and the first check valve 6 form an annular circulation path sequentially connected by piping. Reference numeral 14 is a temperature detector provided in the outlet pipe 4 of the refrigerant heater 2, and 15 is a control device for controlling the opening / closing time of the opening / closing valve 8 according to the temperature detected by the temperature detector 14. Reference numeral 16 is a burner provided in the refrigerant heater 2, and the burner 16 heats the refrigerant. A blower 17 is provided in the radiator 10.

【0004】上記構成において、その動作を以下に説明
する。冷媒加熱器2において、バーナ16の燃焼熱で加
熱された冷媒は、ガスと液の2相状態で出口管4を通
り、気液セパレータ1へ流入し、液冷媒は入口管3から
再び冷媒加熱器2に流入する。一方、気液セパレータ1
へ流入した2相状態の冷媒のうちガス冷媒は、ガス冷媒
往き管11から放熱器10へ入り、送風機17で送られ
た室内空気と熱交換し、放熱凝縮し過冷却液化する。
The operation of the above structure will be described below. In the refrigerant heater 2, the refrigerant heated by the combustion heat of the burner 16 flows into the gas-liquid separator 1 through the outlet pipe 4 in a two-phase state of gas and liquid, and the liquid refrigerant is heated again from the inlet pipe 3 by the refrigerant heating. Flows into the vessel 2. On the other hand, gas-liquid separator 1
The gas refrigerant of the two-phase state refrigerant that has flowed into the heat exchanger 10 enters the radiator 10 through the gas refrigerant forward pipe 11 and exchanges heat with the indoor air sent by the blower 17, condenses heat and condenses into supercooled liquid.

【0005】ここで、開閉弁8が閉のときには、放熱器
10で凝縮液化した過冷却液冷媒は、液冷媒戻り管13
から第2逆止弁12を介して、ガス冷媒を凝縮させるこ
とにより受液器5内へ流入する。このとき受液器5内の
圧力は気液セパレータ1内の圧力より低くなっているた
め、第1逆止弁6は閉状態となっている。この状態で、
開閉弁8を開とすると、受液器5と気液セパレータ1と
は均圧管9により連通して均圧状態となり、受液器5内
の液冷媒は重力により第1逆止弁6を通り気液セパレー
タ1内へ流入する。
When the opening / closing valve 8 is closed, the supercooled liquid refrigerant condensed and liquefied in the radiator 10 is returned to the liquid refrigerant return pipe 13
Through the second check valve 12 to flow into the liquid receiver 5 by condensing the gas refrigerant. At this time, the pressure inside the liquid receiver 5 is lower than the pressure inside the gas-liquid separator 1, so the first check valve 6 is in a closed state. In this state,
When the open / close valve 8 is opened, the liquid receiver 5 and the gas-liquid separator 1 communicate with each other through the pressure equalizing pipe 9 to be in a pressure equalizing state, and the liquid refrigerant in the liquid receiver 5 passes through the first check valve 6 by gravity. It flows into the gas-liquid separator 1.

【0006】次に、開閉弁8を再び閉にすると、第1逆
止弁6は閉状態になり、受液器5内へ放熱器10の凝縮
過冷却液冷媒が、受液器内の急減圧により吸引され受液
器5が液冷媒で満たされるサイクルを繰り返す。このよ
うに、気液セパレータ1と冷媒加熱器2間は蒸発した冷
媒圧による自然循環サイクルであり、受液器5から気液
セパレータ1および冷媒加熱器2への液冷媒の供給は開
閉弁8の開閉周期による間欠動作サイクルである。
Next, when the on-off valve 8 is closed again, the first check valve 6 is closed, and the condensed subcooling liquid refrigerant of the radiator 10 flows into the liquid receiver 5 immediately. The cycle in which the liquid is sucked by the reduced pressure and the liquid receiver 5 is filled with the liquid refrigerant is repeated. As described above, the natural circulation cycle between the gas-liquid separator 1 and the refrigerant heater 2 is based on the evaporated refrigerant pressure, and the supply of the liquid refrigerant from the liquid receiver 5 to the gas-liquid separator 1 and the refrigerant heater 2 is performed by the open / close valve 8 It is an intermittent operation cycle according to the open / close cycle.

【0007】[0007]

【発明が解決しようとする課題】上記従来の構成におい
て、冷媒加熱による熱搬送を行なうため開閉弁8の開閉
動作周期の設定には、図4に示すように受液器5での減
圧開始遅れ時間Tl を考慮する必要があった。即ち、開
閉弁8が開状態から閉状態に切替った時間t1 から時間
l だけ遅れて受液器5内の減圧が発生し、減圧時間T
r で受液器5内が液冷媒で満たされ減圧が完了する。こ
の減圧開始遅れ時間Tl は主に受液器5の容器の熱容量
に起因するものである。また減圧時間Tr は空となった
受液器5内へ液冷媒が流入し終るまでの時間であり、受
液器5の内容積および放熱器10から受液器5までの流
路抵抗により定まる。さらに開時間TONは満液となった
受液器5から気液セパレータ1へ液冷媒が落し込まれる
のに要する時間であり、受液器5の内容積および均圧管
9と落込み管7の流路抵抗により定まる。
In the above-mentioned conventional structure, the decompression start delay in the liquid receiver 5 is set as shown in FIG. 4 for setting the opening / closing operation cycle of the opening / closing valve 8 for heat transfer by heating the refrigerant. It was necessary to consider the time T l . That is, after the time t 1 when the open / close valve 8 is switched from the open state to the closed state, the pressure reduction in the liquid receiver 5 occurs after a delay of the time T l , and the pressure reduction time T
At r , the liquid receiver 5 is filled with the liquid refrigerant, and the pressure reduction is completed. This depressurization start delay time T l is mainly due to the heat capacity of the container of the liquid receiver 5. Further, the depressurization time T r is the time until the liquid refrigerant completely flows into the empty receiver 5 and depends on the internal volume of the receiver 5 and the flow path resistance from the radiator 10 to the receiver 5. Determined. Further, the opening time T ON is the time required for the liquid refrigerant to drop from the liquid receiver 5 that is full to the gas-liquid separator 1, and the internal volume of the liquid receiver 5 and the pressure equalizing pipe 9 and the drop pipe 7 are set. It is determined by the flow path resistance of.

【0008】このように開閉弁8の開閉周期TS は開時
間TONと閉時間TOFF の和(TS =TON+TOFF )であ
り、さらに閉時間TOFF は減圧開始遅れ時間Tl と減圧
時間Tr の和(TOFF =Tl +Tr )である。この減圧
開始遅れ時間Tl が比較的大きいために閉時間TOFF
短縮に制約が生じ、開閉周期TS が長目に設定せざるを
得ない状況となり、熱搬送量(暖房に利用の場合は暖房
能力)の大能力化に制約があった。
As described above, the opening / closing cycle T S of the opening / closing valve 8 is the sum of the opening time T ON and the closing time T OFF (T S = T ON + T OFF ), and the closing time T OFF is the depressurization start delay time T l. And the depressurization time T r (T OFF = T l + T r ). Since this depressurization start delay time T l is relatively large, there is a restriction on the reduction of the closing time T OFF , and the opening / closing cycle T S has to be set longer. There was a restriction on increasing the heating capacity).

【0009】本発明は上記課題を解決するもので、減圧
開始遅れ時間を無くすことにより開閉周期を短縮し、熱
搬送量の大能力化を目的とする。
The present invention is intended to solve the above problems, and an object thereof is to shorten the opening / closing cycle by eliminating the depressurization start delay time and to increase the heat transfer amount.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために、冷媒加熱器,この冷媒加熱器と連通する気
液セパレータ、この気液セパレータに開閉弁および第1
逆止弁を介して連通する受液器を有する熱搬送部と、前
記気液セパレータ,放熱器,第2逆止弁および前記受液
器を順次接続した環状の循環路と、前記受液器の液冷媒
入口側に設けた液冷媒圧送器と、前記開閉弁の閉成時に
前記液冷媒圧送器を作動させる制御装置を設けた構成と
している。
In order to achieve the above object, the present invention provides a refrigerant heater, a gas-liquid separator communicating with the refrigerant heater, an opening / closing valve for the gas-liquid separator, and a first
A heat transfer part having a liquid receiver communicating through a check valve, an annular circulation path sequentially connecting the gas-liquid separator, the radiator, the second check valve and the liquid receiver, and the liquid receiver. The liquid refrigerant pumping device provided on the liquid refrigerant inlet side and the control device for operating the liquid refrigerant pumping device when the on-off valve is closed are provided.

【0011】[0011]

【作用】本発明は上記構成によって、開閉弁の閉成とと
もに液冷媒圧送器を作動させて液冷媒を受液器内に強制
的に注入し、受液器内のガス冷媒を凝縮させ始めるきっ
かけを作る。この強制注入された過冷却液冷媒によるガ
ス冷媒の凝縮により受液器内の減圧が減圧開始遅れ時間
なしに発生し、液冷媒が受液器内に一気に吸引される。
According to the present invention, with the above-described structure, the liquid refrigerant pumping device is actuated when the on-off valve is closed to forcibly inject the liquid refrigerant into the liquid receiver, and the gas refrigerant inside the liquid receiver starts to be condensed. make. Condensation of the gas refrigerant by the forcibly injected supercooled liquid refrigerant causes a pressure reduction in the liquid receiver to occur without a delay in starting the pressure reduction, and the liquid refrigerant is sucked into the liquid receiver at once.

【0012】このように減圧開始遅れ時間を無くすこと
により、開閉弁の閉時間を大幅に短縮して開閉周期を小
さくし、単位時間当りの受液器の吸引・落込み回数を増
大させて冷媒循環量を増大可能とし、冷媒加熱量の増大
させることにより熱搬送量(暖房に利用の場合は暖房能
力)の大能力化を得ることができる。
By eliminating the decompression start delay time in this way, the closing time of the on-off valve is greatly shortened, the opening / closing cycle is shortened, and the number of times the liquid receiver is sucked / dropped per unit time is increased. By increasing the circulation amount and increasing the refrigerant heating amount, the heat transfer amount (heating capacity in the case of use for heating) can be increased.

【0013】[0013]

【実施例】以下本発明の実施例を図1で説明する。Embodiment An embodiment of the present invention will be described below with reference to FIG.

【0014】図1において、図3と同一符号は同一部材
を示し同一機能を有しているので詳細な説明は省略し、
異なる点を中心に説明する。
In FIG. 1, the same reference numerals as those in FIG. 3 denote the same members and have the same functions, and therefore detailed description thereof will be omitted.
The different points will be mainly described.

【0015】18はバーナ16を有する冷媒加熱器2と
気液セパレータ1を環状管路に接続し、前記気液セパレ
ータ1の上方に設けた受液器5を、第1逆止弁6を有す
る落込み管7と、開閉弁8を有する均圧管9とで前記環
状管路に接続した熱搬送部である。19は気液セパレー
タ1,放熱器10,第2逆止弁12,受液器5を順次配
管接続した環状の循環路である。20は受液器5の液冷
媒入口側に設けた液冷媒圧送器であり、受液器5と放熱
器10を接続する液冷媒戻り管13に接続され、本実施
例では第2逆止弁12に並列に設けて第2逆止弁12を
バイパスしている。
Reference numeral 18 connects the refrigerant heater 2 having the burner 16 and the gas-liquid separator 1 to the annular pipe line, the liquid receiver 5 provided above the gas-liquid separator 1 and the first check valve 6. It is a heat transfer section which is connected to the annular pipe line by a drop pipe 7 and a pressure equalizing pipe 9 having an on-off valve 8. Reference numeral 19 is an annular circulation path in which the gas-liquid separator 1, the radiator 10, the second check valve 12, and the liquid receiver 5 are sequentially connected by piping. Reference numeral 20 denotes a liquid refrigerant pumping device provided on the liquid refrigerant inlet side of the liquid receiver 5, which is connected to a liquid refrigerant return pipe 13 which connects the liquid receiver 5 and the radiator 10, and in the present embodiment, a second check valve. 12 is provided in parallel with 12 to bypass the second check valve 12.

【0016】21はバーナ16の燃焼量を可変する燃焼
量可変装置、22は開閉弁8,温度検知器14,液冷媒
圧送器20,燃焼量可変装置21に電気的に接続され開
閉弁8の閉成時に液冷媒圧送器20を作動させる制御装
置である。
Reference numeral 21 denotes a combustion amount varying device for varying the combustion amount of the burner 16, and 22 denotes an on / off valve 8 electrically connected to the on-off valve 8, the temperature detector 14, the liquid refrigerant pump 20, and the combustion amount varying device 21. It is a control device that operates the liquid refrigerant pump 20 at the time of closing.

【0017】上記構成において、開閉弁8の開閉動作と
バーナ16での燃焼、送風機17の運転および開閉弁8
の閉成時の液冷媒圧送器20の作動により冷媒加熱によ
る熱搬送の暖房を行なう。
In the above structure, the opening / closing operation of the opening / closing valve 8, the combustion in the burner 16, the operation of the blower 17 and the opening / closing valve 8 are performed.
By the operation of the liquid refrigerant pumping unit 20 at the time of closing, the heating of the heat transfer by heating the refrigerant is performed.

【0018】以上の熱搬送運転において、開閉弁8が開
状態から閉成すると同時に液冷媒圧送器20を作動させ
る場合について図2で説明する。
In the above heat transfer operation, the case where the liquid refrigerant pump 20 is operated at the same time when the on-off valve 8 is closed from the open state will be described with reference to FIG.

【0019】図2において、開閉弁8が開状態から閉状
態に切換った時間tO と同時に液冷媒圧送器20を作動
させ、受液器内のガス冷媒を凝縮させるための最初の過
冷却液を強制的に受液器内へ注入する。この過冷却液の
強制注入により受液器内の減圧が開始するため、減圧開
始遅れ時間Tl ' は実用上無くする(Tl ' =0)こと
ができる。
[0019] In FIG. 2, on-off valve 8 so that activates the time Tsu switched to the closed state t O simultaneously the liquid refrigerant pumped 20 from the open state, the first subcooling to condense the gas refrigerant in the receiver Forcibly inject the liquid into the receiver. Since the pressure reduction in the liquid receiver is started by the forced injection of the supercooled liquid, the pressure reduction start delay time T l ' can be practically eliminated (T l ' = 0).

【0020】従って、開閉弁8の閉時間TOFF ' は正味
の減圧時間Tr だけで良く(TOFF ' =Tr )、開閉周
期TS ' は大幅に短縮(TS ' =Tr +TON)できる。
このため、受液器での液冷媒の吸引・落込み回数の増加
により冷媒循環能力が増大し、冷媒加熱器での燃焼量増
大させ熱搬送量(暖房に利用の場合は暖房能力)の大能
力化ができる。
Therefore, the closing time T of the on-off valve 8OFF 'Is the net
Decompression time TrJust good (TOFF '= Tr), Opening and closing
Period TS 'Is significantly shortened (TS '= Tr+ TON)it can.
Therefore, the number of times the liquid refrigerant is sucked and dropped in the receiver increases.
This increases the refrigerant circulation capacity and increases the combustion amount in the refrigerant heater.
Large amount of heat transfer (heating capacity when used for heating)
It can be empowered.

【0021】なお、液冷媒圧送器20としては微小吐出
量で良く、プランジャー型ポンプなどを応用することが
可能である。従って、駆動入力もわずかで良く、熱搬送
だけの入力としては開閉弁の入力と合わせてもわずかで
あり経済性は失なわれない。
It should be noted that the liquid refrigerant pump 20 may have a small discharge amount, and a plunger type pump or the like can be applied. Therefore, the driving input is also small, and the input of heat transfer is small even when combined with the input of the on-off valve, and the economical efficiency is not lost.

【0022】さらに、液冷媒圧送器の作動は開閉弁の閉
成と同時でなくても良く、閉成時に任意に設定でき、従
来の受液器の自然放熱による圧力低下や熱搬送系の圧力
変動等の成り行き条件により減圧開始が発生していたの
に較べて、受液器の吸引・落込み動作の制御性が向上し
きめ細かな冷媒循環量制御ができる。
Further, the operation of the liquid refrigerant pump does not have to be performed at the same time as the closing of the on-off valve, and can be arbitrarily set at the time of closing, the pressure drop due to the natural heat dissipation of the conventional receiver and the pressure of the heat transfer system. Compared to the start of depressurization due to fluctuation conditions such as fluctuations, the controllability of the suction / fall operation of the receiver is improved, and fine refrigerant circulation amount control is possible.

【0023】また、液冷媒圧送器を第2逆止弁に並列に
設けてバイパス構成とすれば、受液器内の急減圧におけ
る液冷媒の急速な流れに対し、液冷媒圧送器の流路抵抗
を考慮しなくても良く構造設計が容易となる。
Further, if the liquid refrigerant pump is provided in parallel with the second check valve to form a bypass structure, the flow path of the liquid refrigerant pump is opposed to the rapid flow of the liquid refrigerant during the rapid pressure reduction in the receiver. The structure can be designed easily without considering the resistance.

【0024】[0024]

【発明の効果】以上のように本発明の熱搬送装置は、熱
搬送部と、循環路と、受液器の液冷媒入口側に設けた液
冷媒圧送器と、開閉弁の閉成時に液冷媒圧送器を作動さ
せる制御装置を設けた構成としているので、減圧開始遅
れ時間を削除でき、開閉周期の大幅短縮による冷媒循環
能力の増大により熱搬送量の大能力化ができるという効
果がある。また、わずかな入力で液冷媒圧送器を任意に
コントロールできるから、経済性を失なわずにきめ細か
な冷媒循環量制御でき、制御性が向上するという利点も
ある。
As described above, the heat transfer device of the present invention includes a heat transfer section, a circulation path, a liquid refrigerant pumping device provided on the liquid refrigerant inlet side of a liquid receiver, and a liquid when the on-off valve is closed. Since the control device for activating the refrigerant pumping device is provided, the depressurization start delay time can be eliminated, and there is an effect that the heat transfer amount can be increased by increasing the refrigerant circulation capacity by greatly shortening the opening / closing cycle. Further, since the liquid refrigerant pump can be arbitrarily controlled with a small input, there is an advantage that the refrigerant circulation amount can be finely controlled without losing the economical efficiency and the controllability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の熱搬送装置のシステム構成
FIG. 1 is a system configuration diagram of a heat transfer device according to an embodiment of the present invention.

【図2】本発明の実施例の受液器の減圧特性図FIG. 2 is a pressure reduction characteristic diagram of a liquid receiver according to an embodiment of the present invention.

【図3】従来の熱搬送装置のシステム構成図FIG. 3 is a system configuration diagram of a conventional heat transfer device.

【図4】従来の熱搬送装置での受液器の減圧特性図FIG. 4 is a decompression characteristic diagram of a liquid receiver in a conventional heat transfer device.

【符号の説明】[Explanation of symbols]

1 気液セパレータ 2 冷媒加熱器 5 受液器 6 第1逆止弁 8 開閉弁 10 放熱器 12 第2逆止弁 18 熱搬送部 19 循環路 20 液冷媒圧送器 22 制御装置 DESCRIPTION OF SYMBOLS 1 Gas-liquid separator 2 Refrigerant heater 5 Liquid receiver 6 First check valve 8 Open / close valve 10 Radiator 12 Second check valve 18 Heat transfer part 19 Circulation path 20 Liquid refrigerant pressure transmitter 22 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷媒加熱器、この冷媒加熱器の上方に配置
され、入口管と出口管とで冷媒加熱器と連通する気液セ
パレータ、この気液セパレータの上方に配置され、開閉
弁および第1逆止弁を介して前記気液セパレータと連通
する受液器を有する熱搬送部と、前記気液セパレータ,
放熱器,第2逆止弁および前記受液器を順次接続した環
状の循環路と、前記受液器の液冷媒入口側に設けた液冷
媒圧送器と、前記開閉弁の閉成時に前記液冷媒圧送器を
作動させる制御装置を設けた熱搬送装置。
1. A refrigerant heater, a gas-liquid separator which is arranged above the refrigerant heater and which communicates with the refrigerant heater through an inlet pipe and an outlet pipe, and which is arranged above the gas-liquid separator and which has an opening / closing valve and a first valve. 1. A heat transfer unit having a liquid receiver communicating with the gas-liquid separator via a check valve, the gas-liquid separator,
An annular circulation path in which a radiator, a second check valve, and the liquid receiver are sequentially connected, a liquid refrigerant pumping device provided on the liquid refrigerant inlet side of the liquid receiver, and the liquid when the on-off valve is closed. A heat transfer device provided with a control device for operating the refrigerant pump.
【請求項2】液冷媒圧送器は、第2逆止弁に並列に設け
た請求項1記載の熱搬送装置。
2. The heat transfer device according to claim 1, wherein the liquid refrigerant pump is provided in parallel with the second check valve.
JP31580691A 1991-11-29 1991-11-29 Heat transfer device Pending JPH05149559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31580691A JPH05149559A (en) 1991-11-29 1991-11-29 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31580691A JPH05149559A (en) 1991-11-29 1991-11-29 Heat transfer device

Publications (1)

Publication Number Publication Date
JPH05149559A true JPH05149559A (en) 1993-06-15

Family

ID=18069784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31580691A Pending JPH05149559A (en) 1991-11-29 1991-11-29 Heat transfer device

Country Status (1)

Country Link
JP (1) JPH05149559A (en)

Similar Documents

Publication Publication Date Title
JPH05149559A (en) Heat transfer device
JPH0634286A (en) Heat conveying apparatus
JPH0634285A (en) Heat conveying apparatus
JP2827863B2 (en) Heat transfer device
JPH06117652A (en) Heat transfer device
JP3252577B2 (en) Heat transfer device
JPH0712360A (en) Heat conveyor
JP2783025B2 (en) Heat transfer device
JPH06117653A (en) Heat transferring device
JP3252530B2 (en) Heat transfer device
JP2689663B2 (en) Heating system
JP2532628B2 (en) Heating system
JP2712589B2 (en) Air conditioning
JPH06117651A (en) Heat transfer device
JP3252529B2 (en) Heat transfer device
JP3254838B2 (en) Heat transfer device
JPH05149561A (en) Heat transfer device
JPH07174353A (en) Heat conveying device
JP3428302B2 (en) Heating and cooling machine
JP3684708B2 (en) Heating and cooling machine
JP3399025B2 (en) Heat transfer device
JPH05157262A (en) Heat transferring apparatus
JP2827809B2 (en) Heat transfer device
JP2806110B2 (en) Heat transfer device
JP2806109B2 (en) Heat transfer device