JPH06342746A - Simulating method for shape of resist - Google Patents

Simulating method for shape of resist

Info

Publication number
JPH06342746A
JPH06342746A JP5130336A JP13033693A JPH06342746A JP H06342746 A JPH06342746 A JP H06342746A JP 5130336 A JP5130336 A JP 5130336A JP 13033693 A JP13033693 A JP 13033693A JP H06342746 A JPH06342746 A JP H06342746A
Authority
JP
Japan
Prior art keywords
resist
light intensity
intensity distribution
light
indicates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5130336A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamashita
一博 山下
Yoshihiko Hirai
義彦 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5130336A priority Critical patent/JPH06342746A/en
Publication of JPH06342746A publication Critical patent/JPH06342746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To optimize the reflectivity of the base layer and the light absorption coefficient of a resist by a method wherein the light intensity distribution, of the image formation of the mask pattern of the light lithography using a reduced projection- exposure method, is calculated taking the effect of reaction from a substrate into consideration. CONSTITUTION:The exposure intensity distribution on a resist is indicated by the synthesis 13 of the direct incident light 11 to the resist and the light 12 reflected from the base substrate. At this time, the light intensity distribution of the reflected light 12 becomes broader due to the positional distortion of image formation. When the surface position of the resist is set on the original position of focus, the relative light intensity distribution at the position Z in the resist is indicated by the formula mentioned separately when a stage is shifted (f). (In the formula, I indicates the function which requires relative light intensity, Z indicates the position which requires light intensity, A indicates absorption coefficient, n indicates refractive index, f indicates focus positional deviation, R indicates reflectivity, d indicates thickness of resist, and X indicates position in lateral direction). Based on the light intensity distribution in the resist obtained by calculation, the inhibitor density distribution in the resist is calculated, and the resist profile after developing is calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、縮小投影露光装置を用
いた微細パターン形成におけるレジスト形状シミュレー
ション方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resist shape simulation method for forming a fine pattern using a reduction projection exposure apparatus.

【0002】[0002]

【従来の技術】現在、半導体装置等の製造方法として縮
小投影露光装置による光リソグラフィ技術が用いられて
いる。縮小投影露光方法は所定の透明部と不透明部とか
らなるマスクパターン(レチクル)を縮小投影レンズを
通して半導体基板上に塗布されたレジストに転写する方
法であるが、従来の縮小投影露光方法により形成される
レジスト形状のシミュレーション方法は図7に示すよう
に3つの工程より構成されていた。まず、第1に光強度
分布計算であり、これは露光装置を持い、マスクパター
ンの結像によるレジスト表面上の光強度分布(空間像)
をLinの式を用いて計算する。第2は露光計算である。
光強度シミュレーション計算で得られたレジスト表面上
の光強度分布に基づき、レジスト内のインヒビタ濃度分
布を計算する。第3は現像計算である。露光計算で得ら
れたレジスト内のインヒビター濃度分布を用いて現像後
のレジストプロファイルを計算するものであった。
2. Description of the Related Art At present, an optical lithography technique using a reduction projection exposure apparatus is used as a method of manufacturing a semiconductor device or the like. The reduction projection exposure method is a method of transferring a mask pattern (reticle) consisting of a predetermined transparent portion and an opaque portion onto a resist coated on a semiconductor substrate through a reduction projection lens. The method of simulating the resist shape according to the present invention was composed of three steps as shown in FIG. First, there is a light intensity distribution calculation, which has an exposure device and a light intensity distribution (spatial image) on the resist surface due to the image formation of a mask pattern.
Is calculated using the Lin equation. The second is exposure calculation.
The inhibitor concentration distribution in the resist is calculated based on the light intensity distribution on the resist surface obtained by the light intensity simulation calculation. Third is the development calculation. The resist profile after development was calculated using the inhibitor concentration distribution in the resist obtained by the exposure calculation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
レジスト形状シミュレーション方法では、縮小投影露光
におけるレジスト表面上の光強度分布を計算を行い、そ
の結果を用いて2次元または3次元的にレジストのイン
ヒビタ濃度計算を行っていた。そのため、従来のレジス
ト形状シュミレーション方法では、レジスト内の焦点位
置ずれや下地基板の反射の影響が考慮されておらず、レ
ジスト露光光強度分布が正確に計算されていないと言う
課題があった。その結果縮小投影露光装置のN.A.の
増大や露光波長が短くなり、焦点深度がレジストの厚さ
に近づいてきたとき、従来の光強度計算ではデフォーカ
ス時のレジスト形状のシミュレーション結果が実際と一
致しないという問題があった。
However, in the conventional resist shape simulation method, the light intensity distribution on the resist surface in reduction projection exposure is calculated, and the result is used to two-dimensionally or three-dimensionally inhibit the resist. The concentration was calculated. Therefore, the conventional resist shape simulation method has a problem that the resist exposure light intensity distribution is not accurately calculated because the influence of the focal position shift in the resist and the reflection of the underlying substrate is not taken into consideration. As a result, the N.V. A. When the depth of focus becomes closer to the thickness of the resist due to an increase in the exposure wavelength and the exposure wavelength becomes shorter, the conventional light intensity calculation has a problem that the simulation result of the resist shape at the time of defocus does not match the actual result.

【0004】従って本発明は、下地基板反射率、レジス
トの光吸収係数の最適化ができ、レジストの解像性能を
向上させることが可能となるレジスト形状シミュレーシ
ョン方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a resist shape simulation method capable of optimizing the reflectance of the underlying substrate and the light absorption coefficient of the resist and improving the resolution performance of the resist.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明のレジスト形状シミュレーション方法は、縮
小投影露光方法を用いた光リソグラフィ工程において、
マスクパターンの結像による光強度分布(空間像)を計
算する際に、基板からの反射の効果をいれてレジスト内
露光光強度分布を計算するものである。
In order to solve the above-mentioned problems, a resist shape simulation method of the present invention is provided in a photolithography process using a reduction projection exposure method.
When calculating the light intensity distribution (aerial image) by image formation of the mask pattern, the effect of reflection from the substrate is added to calculate the exposure light intensity distribution in the resist.

【0006】[0006]

【作用】本発明は上記した構成によって、基板からの反
射の効果をいれたレジスト内光強度シミュレーションを
用いることにより下地基板反射率、レジストの光吸収係
数の最適化ができ、レジストの解像性能を向上させるこ
とが可能となる。
With the above-described structure, the present invention can optimize the reflectance of the underlying substrate and the light absorption coefficient of the resist by using the light intensity simulation in the resist in which the effect of the reflection from the substrate is taken into consideration, and the resolution performance of the resist can be improved. It becomes possible to improve.

【0007】[0007]

【実施例】以下本発明の一実施例の縮小投影投影露光法
におけるレジスト形状シミュレーション方法について、
図面を参照しながら説明する。
EXAMPLES A resist shape simulation method in a reduced projection projection exposure method according to an example of the present invention will be described below.
A description will be given with reference to the drawings.

【0008】縮小投影露光方法を用いた光リソグラフィ
におけるレジスト形状シミュレーションの工程は光強度
分布計算、インヒビター濃度計算、現像計算の3つの工
程により構成されている。第1に光強度分布計算であ
り、本発明では下地基板の反射率を考慮してマスクパタ
ーンの結像によるレジスト表面上の光強度分布(空間
像)を計算する。
The process of resist shape simulation in photolithography using the reduced projection exposure method is composed of three processes of light intensity distribution calculation, inhibitor concentration calculation, and development calculation. The first is a light intensity distribution calculation. In the present invention, the light intensity distribution (spatial image) on the resist surface by the image formation of the mask pattern is calculated in consideration of the reflectance of the underlying substrate.

【0009】図1は縮小投影露光法における下地反射の
レジスト露光強度分布への影響を示すモデルについての
概略説明図である。レジストへの露光光強度分布は、レ
ジストへの直接入射光11と下地基板からの反射光12
の合成13で表される。このとき反射光12は、結像位
置ずれのため、光強度分布がブロードになっている。レ
ジストの表面位置をフォーカスの原点位置とすると、レ
ジスト中の位置zでの相対光強度分布は、ステージがf
移動した時、(数1)で表される。単色光を仮定すると
(数2)のLinの計算式で与えられる。
FIG. 1 is a schematic explanatory view of a model showing the influence of the underlayer reflection on the resist exposure intensity distribution in the reduced projection exposure method. The intensity distribution of exposure light on the resist is determined by the direct incident light 11 on the resist and the reflected light 12 from the base substrate.
Is represented by Synthesis 13. At this time, the reflected light 12 has a broad light intensity distribution due to the shift of the image forming position. When the surface position of the resist is the origin position of the focus, the relative light intensity distribution at the position z in the resist is f
When moving, it is represented by (Equation 1). Assuming monochromatic light, it is given by the Lin calculation formula of (Equation 2).

【0010】[0010]

【数1】 [Equation 1]

【0011】[0011]

【数2】 [Equation 2]

【0012】光源が円形一様である場合、相互強度関数
0は(数3)で表される。光学系の収差として焦点誤
差のみ考慮する場合、光学系の透過率関数Kは(数4)
で表される。
When the light source is circular and uniform, the mutual intensity function B 0 is expressed by (Equation 3). When only the focus error is considered as the aberration of the optical system, the transmittance function K of the optical system is (Equation 4)
It is represented by.

【0013】[0013]

【数3】 [Equation 3]

【0014】[0014]

【数4】 [Equation 4]

【0015】図2は実際に(数1)を用いて、マスク1
4を使用した場合の光強度分布を求めて同一光強度の等
高線をプロットしたものである。
In FIG. 2, the mask 1 is actually formed by using (Equation 1).
4 is a plot of contour lines of the same light intensity obtained by obtaining the light intensity distribution when 4 is used.

【0016】光強度シミュレーション計算で得られたレ
ジスト内の光強度分布に基づき、レジスト内のインヒビ
タ濃度分布を計算する。そして露光計算で得られたレジ
スト内のインヒビター濃度分布を用いてDillのモデ
ル(IEEE.Trans.Electron Dev
ices,ED−22,No.7,p.440〜p.46
4,1975)により現像後のレジストプロファイルを
計算する。
Based on the light intensity distribution in the resist obtained by the light intensity simulation calculation, the inhibitor concentration distribution in the resist is calculated. Then, by using the inhibitor concentration distribution in the resist obtained by the exposure calculation, the model of Dill (IEEE. Trans. Electron Dev
ices, ED-22, No. 7, p. 440-p. 46
4, 1975) to calculate the resist profile after development.

【0017】本発明の実施例では、光強度シミュレーシ
ョン計算で得られたレジスト表面上の光強度分布に基づ
き、レジスト内のインヒビタ濃度分布を計算し、露光計
算で得られたレジスト内のインヒビター濃度分布を用い
て現像後のレジストプロファイルを計算したが、化学増
幅型レジストなどのようにレジスト膜の光学パラメータ
の測定が困難な場合は、特願平3ー184765「フォ
トレジストの形状の予測方法」に記載されているように
露光量をかえてレジストの現像速度を実験値により求
め、下地基板の反射の効果をとりいれて計算したレジス
ト内露光光強度分布と前記現像速度組み合わせて現像後
のレジストのプロファイルを計算することも可能であ
る。
In the embodiment of the present invention, the inhibitor concentration distribution in the resist is calculated based on the light intensity distribution on the resist surface obtained by the light intensity simulation calculation, and the inhibitor concentration distribution in the resist obtained by the exposure calculation is calculated. The resist profile after development was calculated using, but if it is difficult to measure the optical parameters of the resist film, such as with chemically amplified resists, refer to Japanese Patent Application No. 3-184765 "Method for predicting photoresist shape". As described, the development rate of the resist is determined by changing the exposure amount by an experimental value, and the exposure light intensity distribution in the resist calculated by taking into account the effect of the reflection of the underlying substrate and the development rate are combined to show the profile of the resist after development. It is also possible to calculate

【0018】上記特願平3ー184765号記載の方法
を概略すると以下の通りである。まず、レジスト表面の
反射強度を計算し、それを実測で得た反射強度と現像速
度との関係のデータにあてはめて、露光量に対するレジ
ストの溶解速度分布を求める。そして、露光量を変えた
レジストの深さ方向に対するレジストの溶解速度のグラ
フを作成する。その次に、レジストの深さ方向の特定の
位置における溶解速度を、前記のレジストの深さ方向の
溶解速度分布曲線から求める。このようにして、順次レ
ジストの各部分での溶解速度データを求めて、2次元の
溶解速度分布表を作成する。さらに、その溶解速度分布
表に従い、その分布が現像開始後どの程度時間経過する
と消失するかを順次求めて、2次元の現像時間分布図を
作成する。そして、この図で予測したい形状を得るとき
の現像時間に相当する時間のところを等高線で結ぶこと
により形状を求めることができる。
The method described in Japanese Patent Application No. 3-184765 is outlined as follows. First, the reflection intensity on the resist surface is calculated, and it is applied to the data of the relation between the reflection intensity and the development rate obtained by actual measurement to obtain the dissolution rate distribution of the resist with respect to the exposure amount. Then, a graph of the dissolution rate of the resist with respect to the depth direction of the resist in which the exposure amount is changed is created. Then, the dissolution rate at a specific position in the depth direction of the resist is obtained from the dissolution rate distribution curve in the depth direction of the resist. In this way, the dissolution rate data in each part of the resist is sequentially obtained, and a two-dimensional dissolution rate distribution table is created. Further, according to the dissolution rate distribution table, it is sequentially determined how long the distribution disappears after the start of development, and a two-dimensional development time distribution chart is created. Then, the shape can be obtained by connecting the time points corresponding to the developing time for obtaining the shape to be predicted in this figure with contour lines.

【0019】以下に下地反射の効果を取り入れた場合の
下地反射やレジストの光吸収係数がレジストの解像性に
及ぼす影響を調べたものである。
The effects of the underlayer reflection and the light absorption coefficient of the resist on the resolution of the resist when the effect of the underlayer reflection is incorporated are examined below.

【0020】図3および図4は下地反射率が0および5
0%の場合のフォーカス位置に対する本発明のレジスト
形状シミュレーション方法により計算したレジスト内光
露光光強度分布を示している。図3および図4の縦軸及
び横軸は図2と同一のものを使用している。図3および
図4に於て、それぞれデフォーカス量をf=-0.5〜+1.2
5μm、f=-0.5〜+1.5μmの各場合を示す。また図5
はポジ型化学増幅型レジストを用いた場合のシミュレー
ションに対応した実験結果であり、基板としての下地反
射率がシミュレーション条件とほぼ等しいSi(50
%)および反射防止膜(10%)を用いた場合のレジス
トパターンのSEM写真を示している。+デフォーカス
での露光光強度の等高線は、レジスト上部の露光量が大
きく、レジストパターンの膜べりが発生することを示し
ていて、実験での結果とも一致している。同様に−フォ
ーカスではレジスト底部で露光エネルギーの低下が見ら
れ、レジストパターンがショートすることを示してお
り、これも実験と一致していることが確かめられた。
In FIGS. 3 and 4, the background reflectance is 0 and 5.
The exposure light intensity distribution in the resist calculated by the resist shape simulation method of the present invention with respect to the focus position in the case of 0% is shown. The vertical and horizontal axes in FIGS. 3 and 4 are the same as those in FIG. In FIGS. 3 and 4, the defocus amount is f = -0.5 to +1.2, respectively.
Each case of 5 μm and f = −0.5 to +1.5 μm is shown. Also in FIG.
Is an experimental result corresponding to the simulation when a positive chemically amplified resist is used, and the Si (50
%) And an antireflection film (10%) are used to show SEM photographs of resist patterns. The contour line of the exposure light intensity at + defocus shows that the exposure amount on the resist is large and the film slip of the resist pattern occurs, which is also in agreement with the result of the experiment. Similarly, at −focus, a decrease in exposure energy was observed at the bottom of the resist, indicating that the resist pattern was short-circuited, which was also confirmed to be in agreement with the experiment.

【0021】さらに図6は本発明のレジスト形状シミュ
レーション方法により得られた下地基板反射率、および
レジスト吸収係数の違いによるレジスト内露光強度分布
を示している。太線は予想仕上がりレジストパターン形
状を示す。この結果、本レジスト形状シミュレーション
方法により、レジスト吸収係数が0.3-0.5(1/μm)のとき
は下地反射率は25%以上必要であることが求まる。
Further, FIG. 6 shows the exposure intensity distribution within the resist due to the difference in the underlying substrate reflectance and the resist absorption coefficient obtained by the resist shape simulation method of the present invention. The thick line shows the expected resist pattern shape. As a result, according to the present resist shape simulation method, it is found that the background reflectance needs to be 25% or more when the resist absorption coefficient is 0.3-0.5 (1 / μm).

【0022】[0022]

【発明の効果】以上のように本発明は 基板からの反射
の効果をいれたレジスト内光強度シミュレーションを用
いることにより下地基板反射率、レジストの光吸収係数
の最適化ができ、レジストの解像性能を向上させること
が可能となる。
As described above, the present invention can optimize the reflectance of the underlying substrate and the light absorption coefficient of the resist by using the light intensity simulation in the resist in which the effect of the reflection from the substrate is taken into consideration, and the resolution of the resist It is possible to improve the performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の縮小投影露光法における下地反射のレ
ジスト露光強度分布への影響を示すモデルについての概
略説明図
FIG. 1 is a schematic explanatory view of a model showing an influence of a background reflection on a resist exposure intensity distribution in a reduction projection exposure method of the present invention.

【図2】本発明のレジスト形状シミュレーション方法に
より計算した同一光強度の等高線をプロットした図
FIG. 2 is a diagram in which contour lines of the same light intensity calculated by the resist shape simulation method of the present invention are plotted.

【図3】本発明のレジスト形状シミュレーション方法に
より計算した下地反射率が0%の場合のフォーカス位置
に対するレジスト内光露光光強度分布を示した図
FIG. 3 is a diagram showing the in-resist light exposure light intensity distribution with respect to the focus position when the underlayer reflectance calculated by the resist shape simulation method of the present invention is 0%.

【図4】本発明のレジスト形状シミュレーション方法に
より計算した下地反射率が50%の場合のフォーカス位
置に対するレジスト内光露光光強度分布を示した図
FIG. 4 is a diagram showing an in-resist light exposure light intensity distribution with respect to a focus position in the case where the background reflectance calculated by the resist shape simulation method of the present invention is 50%.

【図5】本発明のシミュレーションに対応した実験結果
を示した図
FIG. 5 is a diagram showing experimental results corresponding to the simulation of the present invention.

【図6】本発明のレジスト形状シミュレーション方法に
より得られた下地基板反射率、およびレジスト吸収係数
の違いによるレジスト内露光強度分布を示した図
FIG. 6 is a diagram showing an in-resist exposure intensity distribution due to a difference in an underlying substrate reflectance and a resist absorption coefficient obtained by a resist shape simulation method of the present invention.

【図7】従来の縮小投影露光方法により形成されるレジ
スト形状のシミュレーション方法を示した図
FIG. 7 is a diagram showing a method of simulating a resist shape formed by a conventional reduction projection exposure method.

【符号の説明】[Explanation of symbols]

11 入射光 12 反射光 13 合成された光 14 マスク 11 Incident light 12 Reflected light 13 Combined light 14 Mask

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】縮小投影露光方法を用いた光リソグラフィ
工程において、マスクパターンの結像による光強度分布
(空間像)を計算する際に、基板からの反射による結像
光の影響をいれてレジスト内露光光強度分布を計算する
ことを特徴とするレジスト形状シミュレーション方法。
1. In a photolithography process using a reduced projection exposure method, when calculating a light intensity distribution (spatial image) by image formation of a mask pattern, the influence of image formation light due to reflection from a substrate is taken into account in the resist. A resist shape simulation method characterized by calculating an internal exposure light intensity distribution.
【請求項2】基板からの反射による結像光の影響をいれ
てマスクパターンの結像によるレジスト内露光光強度分
布(空間像)を計算する工程と、光強度シミュレーショ
ン計算で得られたレジスト表面上の光強度分布に基づ
き、レジスト内のインヒビタ濃度分布を計算する工程
と、露光計算で得られたレジスト内のインヒビター濃度
分布を用いて現像後のレジストプロファイルを計算する
工程とを備えたことを特徴とするレジスト形状シミュレ
ーション方法。
2. A step of calculating an exposure light intensity distribution (spatial image) in a resist by forming an image of a mask pattern by including an influence of an image forming light due to reflection from a substrate, and a resist surface obtained by light intensity simulation calculation Based on the above light intensity distribution, a step of calculating an inhibitor concentration distribution in the resist and a step of calculating a resist profile after development using the inhibitor concentration distribution in the resist obtained by the exposure calculation are provided. A characteristic resist shape simulation method.
【請求項3】基板からの反射による結像光の影響をいれ
てマスクパターンの結像によるレジスト内露光光強度分
布(空間像)を計算する工程と、露光量をかえてレジス
トの溶解速度を実験により求める工程と、前記レジスト
内の光結像強度分布と前記溶解速度を組合せることによ
り、現像後のフォトレジストの形状を予測する工程とを
備えたことを特徴とするレジスト形状シミュレーション
方法。
3. A step of calculating an in-resist exposure light intensity distribution (spatial image) by forming an image of a mask pattern by taking into account the influence of image forming light due to reflection from a substrate, and changing the exposure amount to determine the dissolution rate of the resist. A resist shape simulation method comprising: a step of obtaining by experiment; and a step of predicting a shape of a photoresist after development by combining a light imaging intensity distribution in the resist and the dissolution rate.
【請求項4】基板からの反射による結像光の影響をいれ
てレジスト形状シミュレーション法を用いることにより
下地基板反射率、レジストの光吸収係数の最適化を行う
ことを特徴とする請求項2叉は3記載のレジスト形状シ
ミュレーション方法。
4. The reflectance of the base substrate and the light absorption coefficient of the resist are optimized by using a resist shape simulation method by taking into consideration the influence of the image-forming light due to the reflection from the substrate. Is the resist shape simulation method described in 3.
【請求項5】レジストがポジ型の化学増幅型レジストで
あることを特徴とする請求項2叉は3記載のレジスト形
状シミュレーション方法。
5. The resist shape simulation method according to claim 2 or 3, wherein the resist is a positive chemically amplified resist.
JP5130336A 1993-06-01 1993-06-01 Simulating method for shape of resist Pending JPH06342746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5130336A JPH06342746A (en) 1993-06-01 1993-06-01 Simulating method for shape of resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5130336A JPH06342746A (en) 1993-06-01 1993-06-01 Simulating method for shape of resist

Publications (1)

Publication Number Publication Date
JPH06342746A true JPH06342746A (en) 1994-12-13

Family

ID=15031937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5130336A Pending JPH06342746A (en) 1993-06-01 1993-06-01 Simulating method for shape of resist

Country Status (1)

Country Link
JP (1) JPH06342746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034406A1 (en) * 1995-04-27 1996-10-31 Hitachi, Ltd. Manufacture of semiconductor integrated circuit device
US5999720A (en) * 1997-02-06 1999-12-07 Nec Corporation Post exposure bake simulation method
KR100354277B1 (en) * 1999-02-24 2002-09-28 닛본 덴기 가부시끼가이샤 Resist profile calculation method and resist profile calculation system
CN103246173A (en) * 2012-02-03 2013-08-14 Asml荷兰有限公司 Lithography model for 3D resist profile simulations
CN103246174A (en) * 2012-02-07 2013-08-14 Asml荷兰有限公司 Substrate-topography-aware lithography modeling

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034406A1 (en) * 1995-04-27 1996-10-31 Hitachi, Ltd. Manufacture of semiconductor integrated circuit device
US5999720A (en) * 1997-02-06 1999-12-07 Nec Corporation Post exposure bake simulation method
KR100354277B1 (en) * 1999-02-24 2002-09-28 닛본 덴기 가부시끼가이샤 Resist profile calculation method and resist profile calculation system
CN103246173A (en) * 2012-02-03 2013-08-14 Asml荷兰有限公司 Lithography model for 3D resist profile simulations
JP2013162125A (en) * 2012-02-03 2013-08-19 Asml Netherlands Bv Lithography model for 3d resist profile simulations
KR101527496B1 (en) * 2012-02-03 2015-06-09 에이에스엠엘 네델란즈 비.브이. A lithography model for 3d resist profile simulations
US9235662B2 (en) 2012-02-03 2016-01-12 Asml Netherlands B.V. Lithography model for 3D resist profile simulations
CN103246174A (en) * 2012-02-07 2013-08-14 Asml荷兰有限公司 Substrate-topography-aware lithography modeling
JP2013162126A (en) * 2012-02-07 2013-08-19 Asml Netherlands Bv Substrate-topography-aware lithography modeling
CN103246174B (en) * 2012-02-07 2014-12-10 Asml荷兰有限公司 Substrate-topography-aware lithography modeling
US8918744B2 (en) 2012-02-07 2014-12-23 Asml Netherlands B.V. Substrate-topography-aware lithography modeling

Similar Documents

Publication Publication Date Title
TW567396B (en) Method for fabricating mask pattern, computer program product, method for manufacturing photomask, and method for manufacturing semiconductor device
US6961186B2 (en) Contact printing using a magnified mask image
JP4296943B2 (en) Exposure mask manufacturing method, exposure method, and three-dimensional shape manufacturing method
US8372565B2 (en) Method for optimizing source and mask to control line width roughness and image log slope
US20110207056A1 (en) Contact or proximity printing using a magnified mask image
TWI250377B (en) Exposure mask and mask pattern production method
KR920006800A (en) Mask, manufacturing method thereof, pattern formation method using the same and mask blank
JP2007158328A (en) Lithographic apparatus and device manufacturing method
JP2002189280A (en) Gray tone mask and method for producing the same
WO2017207297A1 (en) Method and appliance for predicting the imaging result obtained with a mask when a lithography process is carried out
TW200900872A (en) Method for predicting resist pattern shape, computer readable medium storing program for predicting resist pattern shape, and computer for predicting resist pattern shape
JP2007305972A (en) Method of setting exposure conditions and method of manufacturing semiconductor device
JP2002075857A (en) Resist pattern forming method
JP2000232057A (en) Simulation method for resist pattern and formation method for pattern
JP4316026B2 (en) Mask pattern manufacturing method and photomask
JP3347670B2 (en) Mask and exposure method using the same
US7807323B2 (en) Exposure condition setting method, semiconductor device manufacturing method, and exposure condition setting program
JPH06342746A (en) Simulating method for shape of resist
Neureuther et al. Factors affecting linewidth control including multiple wavelength exposure and chromatic aberration
TW200839845A (en) Lithographic device manufacturing method, lithographic cell, and computer program product
JP3273986B2 (en) Light exposure mask plate and method of manufacturing the same
JP3301557B2 (en) Method for manufacturing phase shift photomask
JPH01258419A (en) Pattern formation
WO2024138416A1 (en) Illumination compensation method
JP3173025B2 (en) Exposure method and semiconductor element manufacturing method