WO1996034406A1 - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device Download PDF

Info

Publication number
WO1996034406A1
WO1996034406A1 PCT/JP1995/000841 JP9500841W WO9634406A1 WO 1996034406 A1 WO1996034406 A1 WO 1996034406A1 JP 9500841 W JP9500841 W JP 9500841W WO 9634406 A1 WO9634406 A1 WO 9634406A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
semiconductor wafer
semiconductor
circuit device
integrated circuit
Prior art date
Application number
PCT/JP1995/000841
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Komoriya
Shunji Nagatsuka
Shinji Kuniyoshi
Hisashi Maejima
Nobuyuki Iriki
Takeshi Kato
Masayuki Hiranuma
Takashi Hiroi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/000841 priority Critical patent/WO1996034406A1/en
Publication of WO1996034406A1 publication Critical patent/WO1996034406A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Definitions

  • the present invention relates to a technology for manufacturing a semiconductor integrated circuit device, and more particularly to a technology effective when applied to measures against a product defect caused by a surface shape of a semiconductor wafer in a manufacturing process of a semiconductor integrated circuit device.
  • Semiconductor integrated circuit devices are manufactured by forming circuit patterns on semiconductor wafers.
  • the basic manufacturing process includes a film forming process such as thermal oxidation, CVD, and sputtering, a fine process such as resist coating, exposure, development, and etching, and an impurity doping process such as ion implantation.
  • microfabrication technology is particularly important. Among them, particularly high accuracy of the photosensitive process is an important technical problem.
  • the circuit pattern is printed on a semiconductor wafer by changing the exposure amount in the column direction and the focal position in the row direction as shown in FIG.
  • FIGS. 19 and 20 show the relationship between the dimensions, exposure, and focus position.
  • Figure 20 shows the relationship between the appearance, the exposure, and the focal position S.
  • the characteristics shown in FIGS. 19 and 20 vary depending on the shape of the pattern, the reflectivity on the semiconductor wafer, the uneven shape, and the like, and therefore differ depending on the location. For this reason, select a place where the allowable range of the exposure amount and the focus position is the smallest. It is necessary to select and set conditions.
  • the measurement is further simplified. For this reason, when the reflectance, the uneven shape, and the like on the semiconductor layer fluctuate, short-circuits, breaks (halation), and other defects occur in places where the allowable range is small. In the aluminum wiring process with high reflectivity on the semiconductor wafer and the polysilicon gate process, defects are particularly likely to occur. Generally, it is desirable that the unevenness on the semiconductor X is nearly flat. For this reason, a glass film is formed on a semiconductor wafer and flattened.
  • a method in which boron glass is formed on a semiconductor substrate by CVD and heat treatment is performed to reflow the glass film, or a method in which liquid glass is spin-coated and then heat treatment is performed to sinter the glass film. is there.
  • the glass film forming conditions such as impurity concentration, forming temperature, viscosity of the film forming material, and number of rotations of the film forming, the unevenness of the unevenness tends to change, and a technique for managing the change in the uneven shape is important.
  • the reflectance on the semiconductor substrate be low.
  • Aluminum, polysilicon, titanium, molybdenum, etc. for wiring are formed by sputtering or CVD, but the reflectance tends to change depending on the film formation conditions, and technology to manage this change in reflectance is important. .
  • Another object of the present invention is to provide a technique capable of accurately measuring fluctuations in the reflectance and unevenness of a semiconductor wafer and providing feedback to a manufacturing process.
  • Still another object of the present invention is to provide a technique capable of preventing defects such as halation shots and the like and improving the yield in the manufacturing process of a semiconductor integrated circuit device.
  • the present invention provides a method for irradiating inspection light onto a semiconductor X having irregularities and measuring the light intensity distribution at a spatial position distant from the pattern surface to determine the radius of curvature of the irregularities on the semiconductor wafer. Calculating the area to identify the area where the allowable range of the exposure amount and the focus position is small, and determining the management value of the exposure condition based on the area where the allowable range is small;
  • a method of manufacturing a semiconductor integrated circuit device including the steps of:
  • the present invention also provides a planarizing film for planarizing a semiconductor wafer having an uneven shape.
  • a method for manufacturing a semiconductor integrated circuit device including a step of forming a semiconductor device, a method for irradiating inspection light onto a semiconductor substrate having an uneven shape, measuring a light intensity distribution at a spatial position distant from a pattern surface, and Determining the curvature radius and area of the irregularities on the wafer and the reflectance, and determining the correlation with the conditions for forming the flattening film; and measuring the surface of the semiconductor wafer on which the flattening film was formed during the manufacturing process. Correcting the formation condition of the flattening film based on the correspondence relationship.
  • the present invention also provides a method of irradiating exposure light onto a resist-coated semiconductor wafer having irregularities, measuring a light intensity distribution at a spatial position distant from the pattern surface, and measuring the curvature of the irregularities on the semiconductor wafer.
  • a semiconductor integrated circuit including: a step of determining a radius, an area, and a surface reflectivity of exposure light, determining a correlation with an exposure S that causes an exposure defect, and a step of correcting an exposure amount during an exposure process based on the correlation. This is a method for manufacturing a circuit device.
  • the present invention also provides a method of irradiating inspection light on a semiconductor wafer having an uneven shape, measuring a light intensity distribution at a spatial position distant from the pattern surface, and measuring a radius of curvature and a surface of the uneven shape on the semiconductor wafer X.
  • FIG. 1 is a conceptual diagram showing an example of the principle of a method for measuring the uneven shape of a semiconductor integrated circuit used in the method of manufacturing a semiconductor integrated circuit device according to the present invention.
  • FIG. FIG. 3 is a conceptual diagram showing an example of the principle of a method of measuring the unevenness of a semiconductor wafer used in the method.
  • FIG. 3 is a method of measuring the unevenness of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit S of the present invention.
  • FIG. 4 is a conceptual diagram showing an example of the principle of the present invention.
  • FIG. 4 is a conceptual diagram showing an example of the principle of a method for measuring the uneven shape of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device of the present invention.
  • FIG. 1 is a conceptual diagram showing an example of the principle of a method for measuring the uneven shape of a semiconductor integrated circuit used in the method of manufacturing a semiconductor integrated circuit device according to the present invention.
  • FIG. 3 is a conceptual diagram showing an example of
  • FIG. 6 is a diagram showing an example of the operation of the method for measuring the uneven shape of a semiconductor wafer used in the method for manufacturing a semiconductor integrated circuit device.
  • FIG. 6 is a diagram showing the unevenness of the semiconductor wafer used in the method for manufacturing a semiconductor integrated circuit device according to the present invention.
  • FIG. 7 is a diagram showing an example of the configuration of a device S for measuring the reflectance and the unevenness on a semiconductor wafer used in a method of manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention.
  • FIG. 8 is a conceptual diagram showing an example of an ultra-low magnification objective lens in the optical system of FIG. 7
  • FIG. 9 is a plan view showing an example of an illumination ⁇ switching mechanism in the optical system of FIG.
  • FIG. 10 is a perspective view showing an example of an autofocus stripe pattern in the optical system of FIG. 7,
  • FIG. 11 is a perspective view showing an example of a continuously variable illuminance mechanism in the optical system of FIG. 7, and
  • FIG. 13 is a plan view showing an example of a wavelength switching mechanism in the optical system of FIG. 7.
  • FIG. 13 is a flowchart showing an example of the operation of the method for manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention. Is one of the relationships between the film formation conditions of the glass film and the reflectivity and unevenness of the semiconductor wafer.
  • FIG. 15 is a diagram showing an example of the relationship between the exposure dose and the reflectance and the unevenness of the semiconductor wafer.
  • FIG. 16 is a semiconductor integrated circuit device according to another embodiment of the present invention.
  • FIG. 17 is a conceptual diagram showing another example of the configuration of an apparatus for measuring the reflectance and the uneven shape on the semiconductor substrate X used in the manufacturing method of the semiconductor device.
  • FIG. 17 is used in the manufacturing process of the semiconductor integrated circuit device.
  • FIG. 18 is a conceptual diagram showing an example of a reduced projection exposure apparatus S.
  • FIG. 18 is a plan view showing an example of a dummy wafer used for setting exposure conditions in a method of manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention.
  • 9 for reduced projection exposure Diagram showing an example of the relationship between the exposure dose and the focal position »and the dimensions of the lithographic pattern.
  • FIGS. 21A and 21B are a cross-sectional view and a plan view showing an example of the structure of a semiconductor wafer to which a method of manufacturing a semiconductor integrated circuit device S according to an embodiment of the present invention is applied. .
  • FIG. 1 is a conceptual diagram showing an example of the principle of a method of measuring the uneven shape of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device of the present invention.
  • FIG. 2 is a method of manufacturing a semiconductor integrated circuit device S of the present invention.
  • FIG. 3 is a conceptual diagram showing an example of the principle of a method of measuring the unevenness of a semiconductor wafer used in the present invention.
  • FIG. 3 is an example of the principle of a method of measuring the unevenness of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device of the present invention.
  • FIG. 1 is a conceptual diagram showing an example of the principle of a method of measuring the uneven shape of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device of the present invention.
  • FIG. 2 is a method of manufacturing a semiconductor integrated circuit device S of the present invention.
  • FIG. 3 is a conceptual diagram showing an example of the principle of a method of measuring the unevenness of a semiconductor wafer used in the
  • FIG. 4 is a conceptual diagram showing an example of the principle of a method of measuring the uneven shape of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device S of the present invention
  • FIG. 5 is a semiconductor integrated circuit of the present invention.
  • FIG. 6 is a diagram showing an example of the operation of the method for measuring the unevenness of the semiconductor wafer used in the method of manufacturing the circuit device S.
  • FIG. 6 is a diagram illustrating the unevenness of the semiconductor wafer used in the method of manufacturing the semiconductor integrated circuit device of the present invention. Of measurement method It is a diagram showing an example of.
  • the cross-sectional shape (profile) of the resist applied to the semiconductor wafer after development is determined by the three-dimensional light intensity distribution of the circuit pattern projected by the reduction projection optical system.
  • the allowable range of the exposure amount and the focal position can be obtained by measuring the reflectance and the uneven shape on the semiconductor wafer. But fi can also find small places.
  • the method uses the reflectance and the radius of curvature and area of the unevenness on the semiconductor wafer obtained by the above method. Impurity concentration or formation temperature or film material viscosity or By correcting and controlling glass film formation conditions such as the number of rotations of film formation, fluctuations in reflectivity and irregularities on the semiconductor wafer can be reduced.
  • the maximum intensity and spatial position are obtained.
  • the radius of curvature and area of the uneven shape on the semiconductor wafer and the surface reflectivity with respect to the exposure light and correcting and controlling the exposure amount of the projection exposure apparatus, defects such as harshness and short can be prevented.
  • the three-dimensional light intensity distribution of the circuit pattern projected by the reduction projection optical system can be calculated accurately by simulation, taking into account the reflectivity and unevenness of the semiconductor substrate. Not appropriate because it costs too much.
  • Figure 1 shows the principle of the means for measuring the three-dimensional light intensity distribution of a circuit pattern.
  • the mask pattern 74 is illuminated with illumination light 74a having the same wavelength as the exposure light that exposes the resist.
  • the mask pattern 74 is projected onto the semiconductor wafer 21 having the uneven shape via the half mirror 73 and the projection lens 72.
  • the semiconductor wafer 21 can move up and down, and is set at the best focus position of the projected image.
  • the reflected light 74 b reflected on the semiconductor wafer 21 having the uneven shape forms a three-dimensional light intensity distribution.
  • a detector 71 is set at a position where a three-dimensional spatial light intensity measurement point forms an image via a projection lens 72.
  • the detector 71 can move up and down, and can focus on an arbitrary three-dimensional spatial position.
  • the three-dimensional light intensity distribution of the circuit pattern projected by the reduction projection optical system can be measured.
  • the mask pattern 74 is not necessarily required in order to quickly find a place where the tolerance 15 of the exposure amount and the focal position is smaller than ft in a short time.
  • the vertical movement may be performed by either the semiconductor wafer 21 or the detector 71.
  • FIG. 2 shows a principle diagram of the means for establishing the reflectance and the unevenness on the semiconductor wafer 21.
  • the illumination school 80 is illuminated with illumination light 80a having the same wavelength as the exposure light that exposes the resist.
  • the illuminating light 80a is radiated as a parallel light beam (Koehler illumination) onto the semiconductor substrate 21 having an uneven shape via a condenser lens 75, a half mirror 73, and a projection lens 72.
  • the light reflected on the semiconductor wafer 21 having the irregular shape forms a three-dimensional light intensity distribution.
  • a detector 71 is set at a position where a three-dimensional spatial light intensity measurement point is imaged via a projection lens 72.
  • the semiconductor wafer 21 can move up and down, and can focus on an arbitrary three-dimensional spatial position S.
  • Figure 3 shows an example of the positional relationship. In Figure 3,
  • FIG. 4 shows the relationship between the reflection angle of the reflected light and the focal position when the semiconductor substrate 21 has a convex shape. The same relational expression as in FIG. 3 holds.
  • FIG. 5 shows the intensity distribution of reflected light in the focal direction when the semiconductor wafer 21 is concave
  • FIG. 6 shows the intensity distribution of reflected light in the focal direction when the semiconductor wafer 21 is convex
  • the standard focus position is a position where the pattern surface of the semiconductor wafer 21 is focused, and the position with the maximum light intensity is in the plus direction.
  • the position of the maximum light intensity—the standard focal position is the concave radius of curvature 1 Z 2, which coincides with the focal position of the concave mirror.
  • the maximum light intensity is proportional to the surface of the concave mirror. Therefore, by measuring the position and the maximum value of the maximum light intensity, the radius of curvature of the concave shape can be obtained from the distance between the standard focal position S and the position of the maximum light intensity. Can be requested.
  • the position where the light intensity is maximum is in the negative direction. Similarly, by shaving the position where the light intensity is maximum and the maximum value, the curvature of the convex shape is obtained. The radius and surface ridge can be determined.
  • the unevenness of the semiconductor wafer 21 can be known. This makes it possible to predict in a short time a place where the allowable range of the exposure amount and the focus position is the smallest, and it is possible to determine control values such as the exposure conditions in the manufacturing process and the conditions for forming a thin film for planarization. It can be realized quickly.
  • a sampling inspection is performed on the surface of the semiconductor wafer 21 for irregularities, and when the photo resist is applied, the exposure condition of the photo resist is changed. It is possible to perform fine adjustment and optimal control. Further, based on the inspection result in a state in which the photo resist is not applied, for example, the conditions for forming a thin film for flattening the unevenness of the semiconductor wafer 21 are controlled, and if necessary, a normal Process control, such as selectively switching from a photo resist to a multilayer resist process with less occurrence of exposure failure due to irregularities, becomes possible.
  • FIG. 7 shows a semiconductor integrated circuit device manufacturing method according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing an example of the configuration of an apparatus for measuring the reflectance and the uneven shape on a semiconductor wafer.
  • the inspection light 7 a emitted from a light source 7 such as an Hg lamp, for example, i-line (wavelength 365 nm) and e-ray (wavelength 546 nm) 7 a is a condenser lens 8.
  • the shutter mechanism 4, the wavelength switching mechanism 3, the illumination intensity variable mechanism 2, the illumination sigma switching mechanism 1 (illumination center-of-gravity point adjustment mechanism), the relay lens 9, the auto focus ⁇ pattern 5, and the mirror 10, the relay lens 11, the half mirror 12, the magnification switching mechanism 6, and the objective lens 20 irradiate the surface of the semiconductor substrate 21.
  • the reflected light 7b reflected from the semiconductor substrate 21 is incident on a detector 16 such as a TV camera for detecting a pattern image via a half mirror 12, a mirror 14 and a relay lens 15.
  • the semiconductor wafer 21 is mounted on a 0 stage 34, which is rotatable around the optical axis of the inspection light 7a applied to the semiconductor substrate 21.
  • the 0 stage 34 is a light source of the inspection light 7a.
  • Z stage 33 which can move up and down and tilt in the axial direction, supported by X stage 32, Y stage 31, which can move independently in two directions perpendicular to each other in a plane perpendicular to inspection light 7a Have been.
  • the Y stage 31, the X stage 32, the Z stage 33, the 0 stage 34, etc. are necessary to align the position of the semiconductor ⁇ ⁇ C 21, and in this embodiment, the 0 stage 34 is more than 360 degrees.
  • the semiconductor wafer 21 can be aligned with the outer shape of the orientation flat 22 notch or the like.
  • a semiconductor substrate 21 of the present embodiment forms a wiring pattern 21 b made of aluminum or the like on a semiconductor substrate 21 a, and The structure is such that 21b is covered with an insulating film 21c. Since the surface of the insulating film 21c is in an uneven state reflecting the unevenness of the underlying wiring pattern 21b, a glass film 21d using, for example, SOG is formed to alleviate this. It achieves flattening. And on this glass membrane 21d, for example, aluminum or A conductive thin film 21 e is formed.
  • the conductive thin film 21 e is turned and turned by applying a photoresist 21 f and exposing and developing, and the glass film 2 e is etched by using the photoresist 21 f as a mask. A photolithography process of forming the next wiring pattern 21 e on 1 d is performed.
  • shaping and evaluation of the uneven shape and the reflectance in a state where the glass film 21 d and the conductive thin film 21 e are applied are performed.
  • the optical systems provided on the optical path of the inspection light 7a from the light source 7 to the semiconductor wafer 21 and on the optical path of the reflected light 7b are i-line (wavelength 365 nm) and e-line (wavelength 54 6 nm) has been completely corrected for chromatic aberration. In positioning, it is desirable to use e-rays that do not expose the photo resist 21 f.
  • the objective lens 20 When positioning the semiconductor wafer 21 with respect to the outer shape of the orientation flat 22 notch, etc., the objective lens 20 needs a very low magnification lens with a magnification of about 2 times. Therefore, a special device as shown in Fig. 8 is required. In other words, since the ultra-low magnification objective lens 13 of about 2 times requires a very long distance from the chromatic aberration correcting lens 13a to the semiconductor device 21a, a plurality of mirrors 13b to 13e are required. It is necessary to lengthen the optical path length by using.
  • a low-magnification lens 17 with a magnification of the objective lens 20 of about 10 is required.
  • a high-magnification lens 18 having a magnification of about 100 times the objective lens 20 is required.
  • the present embodiment has a magnification switching mechanism 6 that switches the magnification in three stages by switching the ultra-low magnification objective lens 13, low magnification lens 17, and high magnification lens 18.
  • the optimum illumination conditions are often different for each of the above.
  • an illumination value of 0.5 to 0.6 is used.
  • the illumination ⁇ value is preferably 0.4 or less.
  • the illuminance distribution on the pupil can be detected at the same time, and the film thickness and the like can be measured.
  • the illumination ⁇ value needs to be 1 or more. It has a lighting sigma switching mechanism 1 to satisfy all of these requirements. As illustrated in FIG. 9, the illumination ⁇ switching mechanism 1 is configured with a variable aperture 1a that arbitrarily adjusts the optical path cross section ⁇ of the inspection light 7a.
  • the pattern 5 for automatic focusing provided in the illumination optical system for guiding the inspection light 7a onto the semiconductor substrate 21 has an optical axis of the inspection light 7a. It is composed of two sets of color patterns 5c and 5d arranged on two sets of transparent substrates 5a and 5b which are inserted so as to slightly deviate from the focal position S in the direction. .
  • the two sets of pel patterns 5c.5d are projected onto the semiconductor wafer 21 and the patterns 5c and 5d reflected on the semiconductor wafer 21 are detected by the detector 16.
  • the automatic focus control can be performed from the contrast of the pel pattern 5C, 5d.
  • the illumination intensity variable mechanism 2 is provided on the surface of the transparent substrate 2b in the circumferential direction as illustrated in FIG.
  • the metal thin film 2a is applied so that the film thickness (transmittance) changes continuously, and the inspection light 7a power ⁇ , the eccentric position S of the transparent substrate 2b is transmitted.
  • the inspection light 7a By rotating the inspection light 7a, the illuminance (transmittance) of the inspection light 7a can be continuously adjusted.
  • the wavelength switching mechanism 3 has a configuration in which a plurality of filters 3 b to 3 e such as neutral density filters having different wavelengths of transmitted light are arranged on a substrate 3 a. Inspection light 7a Force The inspection light 7a is set by transmitting the substrate 3a so that it passes through the center S, and rotated to match any of the filters 3b to 3e. The wavelength of a can be changed.
  • the position of the orientation flat 22 of the semiconductor wafer 21 is aligned, and the position of the semiconductor wafer 21 is adjusted using the target pattern on the semiconductor wafer 21. Measurement of unevenness and the like can be performed.
  • the ultra-low magnification objective lens 13 is selected by the magnification switching unit 6, and the Y stage 31 and the X stage are observed while the semiconductor wafer 21 is observed by the detector 16.
  • the orifice 22 is positioned so as to be positioned in a predetermined direction around the optical axis of the inspection light 7a by appropriately operating the z stage 32, the Z stage 33, and the zero stage 34.
  • the alignment mark for example, two places
  • the semiconductor laser 17 is recognized. Holds each position of 1—X—Y—0.
  • the high-magnification lens 18 is selected by the magnification switching mechanism 6 and is positioned at a target area in the semiconductor wafer 21, and the unevenness and the reflectance of the surface of the semiconductor wafer 21 are measured.
  • the radius of curvature S indicating the surface irregularities and the area of the reflection area are determined by the reflected light at the detector 16 when the Z stage 33 is moved up and down, as in the principle illustrated in FIGS. 1 and 2 described above.
  • the radius of curvature of the unevenness of the semiconductor wafer 21 is measured from the peak position of the change in the detected light amount of 7b and the distance of the focal position of the optical system for guiding the inspection light 7a to the semiconductor wafer 21 with respect to the semiconductor wafer 21; From the beak value of the detected light amount of the reflected light 7b, measure the area of the reflection area between the concave part and the convex part.
  • the reflectance and the reflectance on the semiconductor substrate 21 obtained by the above method are determined. If the glass film 21 d forming conditions such as the impurity concentration, the forming temperature, the viscosity of the film forming material, and the number of rotations of the film forming are to be corrected and controlled using the curvature radius and the area of the uneven shape, the film must be formed in advance. It is necessary to find the relationship between the condition and the reflectance or the uneven shape. As exemplified in FIG.
  • the relationship between the reflectivity and unevenness of the surface of the semiconductor layer 21 and the film forming conditions of the glass film 21 d is, for example, a quadratic curve.
  • the relationship shown in FIG. 14 is obtained by successively measuring the curvature radius, surface » and reflectance of the uneven shape by the above-described method while changing the 1d formation conditions.
  • the evaluation of the unevenness is better as the radius of curvature is larger and the shape is smaller, and the reflectance is better as the reflectance is smaller.
  • the vertical line in Fig. 14 shows the sign and value of the measured value appropriately normalized so that these evaluations are reflected comprehensively. Therefore, the optimum film forming conditions in FIG. 14 indicate the conditions for forming the glass film 21 d such that the reflectance is the smallest, the radius of curvature of the uneven shape is the largest, and the area is the smallest.
  • the correction amount of the film formation condition is obtained and the correction control of the film formation condition is performed based on the relationship between the film formation condition and the reflectance or the uneven shape obtained in advance as described above:
  • the photo resist 21 f was applied using the apparatus S in FIG. 7 described above.
  • the semiconductor wafer 21 is exposed. The curvature radius, surface type, and surface reflectivity of the exposure light are calculated.
  • the exposure S margin which causes a failure such as a halting short, is pre-shaved, and the exposure S of the projection exposure apparatus S is corrected and controlled based on the result.
  • FIG. 15 shows an example of the relationship between the amount of exposure and the reflectance of the semiconductor wafer 21 and the unevenness of the semiconductor wafer 21.
  • the vertical line in FIG. 15 shows the same evaluation of the reflectance and the uneven shape as the vertical line in FIG. Therefore, FIG. 15 indicates that the lower the reflectance, the larger the radius of curvature of the concave-convex shape, and the smaller the surface of the reflection region, the larger the exposure dose margin.
  • the state of the uneven shape in each region in the semiconductor wafer 21 is different, and the margin of the exposure amount is different. Therefore, the area where the margin is the smallest, that is, the area where the curvature radius of the unevenness is small and the surface of the reflection area is large is specified by the device S in FIG. 7, and the optimal exposure amount and focal position S in this area are managed.
  • the exposure operation of the semiconductor wafer 21 is performed with the value determined.
  • Step 200 the relationship between the formation conditions of the glass film 21d for flattening, as illustrated in FIG. At the same time, the relationship between the exposure conditions shown in Figure 15 and the reflectance and the irregularities, and the control values are obtained (Step 200). C Next, a glass film is formed on the semiconductor wafer 21 under the optimum film formation conditions. 2 Id is formed (step 201).
  • Step 202 the reflectance and the uneven shape of the semiconductor wafer 21 were measured by a sampling inspection. Yes (Step 202).
  • step 203 it is determined whether or not the reflectance and the unevenness are within the allowable range. If the reflectivity and the unevenness are within the allowable range, the glass film 21 d is formed under the current optimum film forming conditions. ( Next, if the concavo-convex shape is not within the allowable 15 range, the current optimum film formation conditions are corrected (step 204), and the photo resist 21 1 f ( In the case of the present embodiment, the formation, exposure and development of a single-layer photo resist 21 f are used as an example (Step 205). Exposure amount and focus position S are managed using the management values set based on the area with the tightest margin, which was determined in step 2. In addition, the photo resist 21 f is attached if necessary. For the semiconductor wafer 21 in the state shown in FIG. Performs a measurement of the reflectance, may be corrected exposure conditions.
  • step 206 it is checked whether or not the pattern of the photo-register 21f formed on the semiconductor substrate 21 is normal.
  • step 209 the manufacturing process of the subsequent semiconductor wafer 21 in the lot is executed under the film formation conditions corrected in step 204 (step 209).
  • step 210 Specifically, instead of the above-described single-layer photoresist 21 f, a multilayer photoresist including an anti-reflection film or the like, which is effective against failure caused by unevenness or a large reflectance. In the photolithography process after the change, the subsequent semiconductor wafer 21 in the same lot is started by the changed photolithography process (step 211).
  • the semiconductor wafer 21 having a small margin of the exposure condition, a concave-convex shape, and a reflectance.
  • the exposure condition can be corrected according to the fluctuation of the uneven shape and the reflectance.
  • the conditions for forming the glass film 21 d for planarization can be optimized from the viewpoint of the unevenness of the surface of the semiconductor wafer 21 and the reflectance, and the formation conditions can be corrected. .
  • the process is performed as follows. Although the process becomes more complicated and the throughput is reduced, it is possible to accurately switch to a process using a multilayer resist including an antireflection film that is less likely to cause defects due to the reflectance and the uneven shape, thereby improving the yield and throughput. The optimization of the balance of the birds can be realized.
  • FIG. 16 shows another example of the configuration of the device S for measuring the reflectance and the unevenness on the semiconductor wafer used in the method for manufacturing a semiconductor integrated circuit device according to another embodiment of the present invention.
  • the optical system illustrated in FIG. 16 is an optical system equivalent to a confocal microscope, and a laser, an Hg lamp, an Xe lamp, or the like is generally used as the light source 51.
  • the illumination light 51a passes through a condenser lens 52, a half mirror 53, a movable illumination lens 54, and a projection lens 55, and is spotted on a semiconductor wafer 21 mounted on a vertically movable support base. Irradiated to the bottom.
  • the movable lighting school 54 has, for example, a structure in which a number of through-holes 54a are formed in a disk 54b, and these through-holes 54a are illumination light 51a and reflected light.
  • the reflected light 51b reflected on the semiconductor wafer 21 travels in the same path as the illumination light 51a in the opposite direction, and again passes through the movable illumination stop 54, the half mirror 53, and the projection lens 56.
  • An image is formed on a detector 57 composed of an image sensor or the like.
  • the semiconductor substrate 21 When the semiconductor substrate 21 is flat, the light amount becomes maximum at the position S of the best focus, and the light S decreases even if the focus shifts above or below the semiconductor wafer 21.
  • the semiconductor wafer 21 has a concave surface, the light position becomes maximum when the focus position is above the semiconductor wafer 21, and the light amount decreases at other positions.
  • the semiconductor wafer is convex, the light amount becomes maximum when the focus position is below the semiconductor wafer, and decreases at other positions.
  • the uneven shape on the semiconductor wafer 21 can be measured. Thereby, the same effect as in the case of the first embodiment can be obtained, and the influence of interference or the like can be eliminated from the reflected light 51b, so that the light intensity of the reflected light 51b in the three-dimensional space can be improved. Measurement can be performed with high accuracy.
  • the method for manufacturing a semiconductor integrated circuit device according to the present invention is effective in countermeasures for a product defect caused by the surface roughness of the semiconductor device X in the manufacturing process of the semiconductor congestion circuit device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A semiconductor wafer (21) placed on a supporting table which is movable in the vertical direction is irradiated with light (74a) transmitted through a mask pattern (74), a half mirror (73) and projecting lens, and reflected light (74b) from the wafer passes through the lens (72) and the mirror (73) to a detector (71) which is movable in the direction of the optical axis. The detector measures the intensity distribution in a three-dimensional space near the surface of the wafer (21) to determine the radius of curvature of recesses and projections, and the area and reflectivity of the reflective region. Then, a region, where recesses and projections of smaller curvature and larger area are present, is considered to have the minimum allowance of exposure and focusing. Exposure control parameters are determined in this region and are fed back to a photolithographic process.

Description

明 細 書 半導体集積回路装置の製造方法 技術分野  Description Method of manufacturing semiconductor integrated circuit device
この発明は、 半導体集積回路装置の製造技術に関し、 待に、 半導体集積回路装 暖の製造プロセスにおける半導体ウェハの表面形状に起因する製品不良の対策等 に適用して有効な技術に関する。  The present invention relates to a technology for manufacturing a semiconductor integrated circuit device, and more particularly to a technology effective when applied to measures against a product defect caused by a surface shape of a semiconductor wafer in a manufacturing process of a semiconductor integrated circuit device.
背景技術 Background art
半導体集積回路装置は半導体ウェハ上に回路パターンを形成することより、 製 造される。 基本的な製造工程としては、 熱酸化、 C V D、 スパッタエ程等の膜付 け工程とレジス ト塗布、 感光、 現像、 エッチング等の微細加工とイオン打込み等 の不钝物ドープ工程等がある。  Semiconductor integrated circuit devices are manufactured by forming circuit patterns on semiconductor wafers. The basic manufacturing process includes a film forming process such as thermal oxidation, CVD, and sputtering, a fine process such as resist coating, exposure, development, and etching, and an impurity doping process such as ion implantation.
半導体集穣回路装置の高集植化においては、 特に微細加工技術が重要である。 その中でも特に感光工程の高精度化が重要な技術課題となつている。  For high integration of semiconductor harvesting circuit devices, microfabrication technology is particularly important. Among them, particularly high accuracy of the photosensitive process is an important technical problem.
近年、 感光工程では図 1 7に示す縮小投影露光装 Sを用いるのが一般的である。 図 1 7に示す縮小投影露光装置を用いて、 半導体ゥ ハ上に回路パターンを形成 する場合、 露光量と焦点位置を最適に設定することが非常に重要である。 なぜな ら実用的な回路パターンを半導体ウェハ上に正確に焼き付けできる露光量と焦点 位置の許容 ϊδ囲は極めて小さいからである。 このため半導体ウェハ上に回路パタ ーンを焼き付けする前には、 必ず露光量と焦点位 の許容範囲を測定し、 最適値 (管理値) を設定する条件出し作業が必要である。  In recent years, it is common to use a reduction projection exposure apparatus S shown in FIG. When a circuit pattern is formed on a semiconductor wafer using the reduction projection exposure apparatus shown in FIG. 17, it is very important to optimally set the exposure amount and the focal position. This is because the allowable 量 δ range of the exposure dose and the focal position at which a practical circuit pattern can be accurately printed on a semiconductor wafer is extremely small. For this reason, before printing a circuit pattern on a semiconductor wafer, it is necessary to measure the exposure dose and the allowable range of the focal position, and to determine the optimum value (control value).
この条件出し作業は、 図 1 8に示す様に列方向に露光量、 行方向に焦点位置を 変化させ回路パターンを半導体ウェハ上に焼き付けし、 現像処理する。  In this condition setting work, the circuit pattern is printed on a semiconductor wafer by changing the exposure amount in the column direction and the focal position in the row direction as shown in FIG.
上記現像処理後ウェハ上の回路パターンの寸法や外観を走査型電子顕微鏡 (S Ε Μ ) を用いて測定する。 寸法と露光量と焦点位置の関係を図 1 9に示す。 外観 と露光量と焦点位 Sの関係を図 2 0に示す。 図 1 9や図 2 0に示す特性は、 パ夕 ーンの形状、 半導体ウェハ上の反射率や凹凸形状等により異なるため、 場所によ つて異なってく る。 このため最も露光量と焦点位置の許容範囲が小さい場所を選 択して条件設定する必要がある。 After the development processing, the dimensions and appearance of the circuit pattern on the wafer are measured using a scanning electron microscope (S Ε Μ). Fig. 19 shows the relationship between the dimensions, exposure, and focus position. Figure 20 shows the relationship between the appearance, the exposure, and the focal position S. The characteristics shown in FIGS. 19 and 20 vary depending on the shape of the pattern, the reflectivity on the semiconductor wafer, the uneven shape, and the like, and therefore differ depending on the location. For this reason, select a place where the allowable range of the exposure amount and the focus position is the smallest. It is necessary to select and set conditions.
しかしながら、 S E Mで全回路パターンについて観察、 測定する作業量と所要 時間は膨大であり、 実際的には数箇所の測定で条件設定をしている。 このため最 も露光量と焦点位置の許容範囲が小さい場所を見逃すことが多い。  However, the amount of work and the time required to observe and measure all circuit patterns in SEM are enormous, and in practice, the conditions are set by measuring several places. For this reason, a place where the allowable range of the exposure amount and the focal position is the smallest is often overlooked.
条件設定を完了した後の量産では、 測定はさらに簡略化される。 このため、 半 導体ゥ ハ上の反射率や凹凸形状等が変動した埸合、 許容範囲が小さい場所でシ ョー 卜や断線 (ハレーション) 等の不良が発生する。 半導体ウェハ上の反射率が 高いアルミ配線工程ゃポリシリコンのゲ一ト工程で特に不良が発生しやすい。 一般的に半導体ゥ Xハ上の凹凸形伏は平坦に近いのが望ましい。 このため半導 体ウェハ上にガラス膜を形成し平坦化を行っている。 ^えば C V Dにより半導体 ゥヱハ上にボロンガラスを形成し、 加熱処理することによりガラス膜をリフロー する方法、 または液状のガラスをスピン塗布した後、 加熱処理することによりガ ラス膜を燒結させる方法等がある。 しかしながら不純物濃度、 形成温度、 成膜材 料の粘度、 成膜の回転数等のガラス膜形成条件により、 凹凸形伏が変化しやすく、 凹凸形状の変化を管理する技術が重要となる。  In mass production after completing the condition setting, the measurement is further simplified. For this reason, when the reflectance, the uneven shape, and the like on the semiconductor layer fluctuate, short-circuits, breaks (halation), and other defects occur in places where the allowable range is small. In the aluminum wiring process with high reflectivity on the semiconductor wafer and the polysilicon gate process, defects are particularly likely to occur. Generally, it is desirable that the unevenness on the semiconductor X is nearly flat. For this reason, a glass film is formed on a semiconductor wafer and flattened. For example, a method in which boron glass is formed on a semiconductor substrate by CVD and heat treatment is performed to reflow the glass film, or a method in which liquid glass is spin-coated and then heat treatment is performed to sinter the glass film. is there. However, depending on the glass film forming conditions such as impurity concentration, forming temperature, viscosity of the film forming material, and number of rotations of the film forming, the unevenness of the unevenness tends to change, and a technique for managing the change in the uneven shape is important.
また、 一般的に半導体ゥヱハ上の反射率は低いのが望ましい。 配線のためのァ ルミゃポリシリコンゃチタンゃモリブデン等はスパッタ法ゃ C V Dにより形成さ れるが、 成膜成条件により反射率が変化しやすく、 この反射率の変化も管理する 技術が重要となる。  In general, it is desirable that the reflectance on the semiconductor substrate be low. Aluminum, polysilicon, titanium, molybdenum, etc. for wiring are formed by sputtering or CVD, but the reflectance tends to change depending on the film formation conditions, and technology to manage this change in reflectance is important. .
なお、 金属表面等におけるハレーション領域等を検出する技術としては、 待開 平 6— 1 1 8 0 2 3号公報に開示される技術が知られている。 この技術では、 対 象物の高輝度領域を、 当該領域の画像データに対応する仮想画像データを用いた 演算処理によって、 抽出する方法が開示されている。  As a technique for detecting a halation region or the like on a metal surface or the like, a technique disclosed in Japanese Unexamined Patent Application Publication No. Hei 6-118203 is known. This technique discloses a method of extracting a high-luminance region of a target object by an arithmetic process using virtual image data corresponding to image data of the region.
前述のような従来の半導体集積回路装 Sの製造技術を総合すると、 安定して半 導体ゥヱハ上に回路パターンを形成するためには、  When the manufacturing technology of the conventional semiconductor integrated circuit device S as described above is integrated, in order to stably form a circuit pattern on the semiconductor
( 1 ) 露光量と焦点位置の許容範囲が最も小さい埸所を短時間で発見する必要が ある。  (1) It is necessary to find a place where the allowable range of the exposure amount and the focal position is the smallest in a short time.
( 2 ) 半導体ウェハ上の反射率や凹凸形状等の変動を低減する必要がある。  (2) It is necessary to reduce fluctuations in the reflectivity, irregularities, and the like on the semiconductor wafer.
( 3 ) ハレーショ ンゃショ一ト等の不良を防止する必要がある。 等の技術的課題がある。 (3) It is necessary to prevent defects such as haration shots. And other technical issues.
前述の ( 1 ) の課題については、 前記特開平 6 - 1 1 8 0 2 3号公報の技術で 解決しょうとする場合、 計算量が膨大で長時間が必要となり、 量産工程への適用 は困難である。  If the above-mentioned problem (1) is to be solved by the technique disclosed in Japanese Patent Application Laid-Open No. 6-118023, the amount of calculation is enormous and a long time is required, and it is difficult to apply the method to a mass production process. It is.
また、 前記 ( 2 ) については、 凹凸形状を迅速かつ正確に評価する技術が不可 欠であるが、 前記特開平 6 - 1 1 8 0 2 3号公報の技術で測定しょうとする場合, やはり、 計算量が膨大で長時間が必要となり、 量産工程への適用は困難である。 さらに、 前記 ( 2 ) および ( 3 ) の課題については、 たとえば、 反射防止膜を 通常のフォ トレジス ト膜に形成する多層レジス ト技術を用いて半導体ウェハの下 地からの露光光の反射の影響を低減することで解決することが考えられるが、 多 眉レジス トはプロセスを必要以上に複雑にするので、 製造プロセスに一律に適用 すると、 コス 卜高やスループッ 卜の低下を招く という別の問題を生じる。  Regarding the above (2), a technique for quickly and accurately evaluating the uneven shape is indispensable. However, when the technique of Japanese Patent Application Laid-Open No. 6-118023 is to be measured, The amount of calculation is enormous and requires a long time, making it difficult to apply to mass production processes. Further, with respect to the above-mentioned problems (2) and (3), for example, the influence of the reflection of exposure light from under the semiconductor wafer by using a multilayer resist technology in which an anti-reflection film is formed on a normal photo resist film. This can be solved by reducing the cost, but the multiple eyebrow registry makes the process unnecessarily complicated, so applying it uniformly to the manufacturing process will result in another problem that cost and throughput will decrease. Is generated.
本発明の目的は、 半導体ウェハ上における露光量と焦点位置の許容範囲が最も 小さい場所を短時間で発見して製造プロセスの管理にフィ一ドバックすることが 可能な枝術を提供することにある。  SUMMARY OF THE INVENTION It is an object of the present invention to provide a branching technique capable of finding a place on a semiconductor wafer where an allowable range of an exposure amount and a focus position is the smallest in a short time and feeding back to control of a manufacturing process. .
本発明の他の目的は、 半導体ゥ ハ上の反射率や凹凸形伏等の変動を正確に測 定して製造プロセスにフィ一ドバックすることが可能な技術を提供することにあ る。  Another object of the present invention is to provide a technique capable of accurately measuring fluctuations in the reflectance and unevenness of a semiconductor wafer and providing feedback to a manufacturing process.
本発明のさらに他の目的は、 ハレーションゃショ一ト等の不良を未然に防止し て、 半導体集植回路装置の製造プロセスにおける歩留りを向上させることが可能 な技術を提供することにある。  Still another object of the present invention is to provide a technique capable of preventing defects such as halation shots and the like and improving the yield in the manufacturing process of a semiconductor integrated circuit device.
発明の開示 Disclosure of the invention
本発明は、 凹凸形伏を有する半導体ゥ Xハ上に検査光を照射し、 パターン面か ら離れた空間位置の光強度分布を測定して、 半導体ウェハ上の凹凸形伏の曲率半 径と面積を求めることにより、 露光量と焦点位置の許容範囲が小さい領域を特定 し、 許容範囲が小さい領域を基準として露光条件の管理値を決定するステップと、 管理値を用いて半導体ウェハの露光処理を行うステツプとを含む半導体集積回路 装置の製造方法である。  The present invention provides a method for irradiating inspection light onto a semiconductor X having irregularities and measuring the light intensity distribution at a spatial position distant from the pattern surface to determine the radius of curvature of the irregularities on the semiconductor wafer. Calculating the area to identify the area where the allowable range of the exposure amount and the focus position is small, and determining the management value of the exposure condition based on the area where the allowable range is small; A method of manufacturing a semiconductor integrated circuit device including the steps of:
また、 本発明は、 凹凸形状を有する半導体ウェハ上に平坦化のための平坦化膜 を形成する工程を含む半導体集積回路装置の製造方法において、 凹凸形状を有す る半導体ゥ ハ上に検査光を照射し、 パターン面から離れた空間位置の光強度分 布を測定して、 半導体ウェハ上の凹凸形状の曲率半径および面積と反射率を求め、 平坦化膜の形成条件との相関関係を決定するステップと、 製造工程中に平坦化膜 が形成された半導体ウェハの表面を測定し、 対応関係に基づいて平坦化膜の形成 条件を補正するステップとを含む半導体集稜回路装置の製造方法である。 The present invention also provides a planarizing film for planarizing a semiconductor wafer having an uneven shape. In a method for manufacturing a semiconductor integrated circuit device including a step of forming a semiconductor device, a method for irradiating inspection light onto a semiconductor substrate having an uneven shape, measuring a light intensity distribution at a spatial position distant from a pattern surface, and Determining the curvature radius and area of the irregularities on the wafer and the reflectance, and determining the correlation with the conditions for forming the flattening film; and measuring the surface of the semiconductor wafer on which the flattening film was formed during the manufacturing process. Correcting the formation condition of the flattening film based on the correspondence relationship.
また、 本発明は、 レジス トを塗布した凹凸形伏を有する半導体ウェハ上に露光 光を照射し、 パターン面から離れた空間位 の光強度分布を測定して半導体ゥ ハ上の凹凸形状の曲率半径および面積と露光光における表面反射率を求め、 露光 不良を発生させる露光 Sとの相関関係を決定するステップと、 相関関係に基づい て露光工程中における露光量を補正するステツプとを含む半導体集積回路装置の 製造方法である。  The present invention also provides a method of irradiating exposure light onto a resist-coated semiconductor wafer having irregularities, measuring a light intensity distribution at a spatial position distant from the pattern surface, and measuring the curvature of the irregularities on the semiconductor wafer. A semiconductor integrated circuit including: a step of determining a radius, an area, and a surface reflectivity of exposure light, determining a correlation with an exposure S that causes an exposure defect, and a step of correcting an exposure amount during an exposure process based on the correlation. This is a method for manufacturing a circuit device.
また、 本発明は、 凹凸形状を有する半導体ウェハ上に検査光を照射し、 パター ン面から離れた空間位置の光強度分布を測定して、 半導体ゥ Xハ上の凹凸形状の 曲率半径と面穂を求めることにより、 露光量と焦点位 Sの許容範囲が小さい領域 を特定し、 許容範囲が小さい領域を基準として露光条件の管理値を決定するステ ッブと、 凹凸形伏を有する半導体ウェハ上に検査光を照射し、 パターン面から離 れた空間位 Sの光強度分布を測定して、 半導体ゥ ハ上の凹凸形状の曲率半 ίϊお よび面穣と反射率を求め、 半導体ゥ ハ上に平坦化のための平坦化膜の形成条件 との相関関係を決定するステップと、 最適の平坦化膜の形成条件を用いて平坦化 のための平坦化膜の形成を行うステツプと、 半導体ゥ Xハの反射率および凹凸形 状の曲率半径および面 ¾を測定するステップと、 測定された半導体ゥ Xハの反射 率および凹凸形状の曲率半 Sおよび面穣が許容範囲から逸脱した場合には、 相関 関係に基づいて現在の平坦化膜の形成条件を補正するステップと、 半導体ゥ ハ が含まれるロッ ト内で先行する半導体ウェハに対して管理値を用いて露光および 現像処理を施すステップと、 露光および現像処理によって形成されたフォ 卜レジ ス トパターンを検査するステップと、 フォ ト レジス 卜パターンの検査結果が正常 の埸合、 フォ トレジス 卜パターンをマスクとするエッチングを実行するステツプ と、 エッチングによって得られたエッチングパターンを検査するステップと、 フ ォ トレジス トパターンの検査およびエッチングパターンの検査の少なく とも一方 において異常と判定された場合に、 多層フォ 卜レジス 卜を用いるプロセスに変更 するステップとを含む半導体集積回路装置の製造方法である。 The present invention also provides a method of irradiating inspection light on a semiconductor wafer having an uneven shape, measuring a light intensity distribution at a spatial position distant from the pattern surface, and measuring a radius of curvature and a surface of the uneven shape on the semiconductor wafer X. The step of identifying the area where the exposure amount and the focal position S are within a small allowable range by finding the ears, and determining the control value of the exposure condition based on the area where the allowable range is small, and a semiconductor wafer having unevenness Irradiate the inspection light on the top, measure the light intensity distribution at the spatial position S away from the pattern surface, and determine the half-curvature and surface roughness and reflectance of the uneven shape on the semiconductor. Determining a correlation with a flattening film formation condition for flattening on the upper surface; forming a flattening film for flattening using an optimum flattening film formation condition;ゥ X c reflectance and uneven curvature half Measuring the reflectivity of the semiconductor ゥ X and the half-S curvature and the surface roughness of the uneven shape outside the allowable range, based on the correlation. Correcting the formation conditions; performing exposure and development processing on the preceding semiconductor wafer in the lot including the semiconductor wafer using the control values; and controlling the photo resist formed by the exposure and development processing. Inspecting the photoresist pattern; if the inspection result of the photoresist pattern is normal, performing an etching using the photoresist pattern as a mask; and inspecting the etching pattern obtained by the etching. , If at least one of the inspection of the photoresist pattern and the inspection of the etching pattern is determined to be abnormal, a step of changing to a process using a multilayer photoresist is provided.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の半導体集 ¾回路装置の製造方法に用いられる半導体ゥ ハの 凹凸形状の測定方法の原理の一例を示す概念図、 図 2は、 本発明の半導体集積回 路装置の製造方法に用いられる半導体ウェハの凹凸形状の測定方法の原理の一例 を示す概念図、 図 3は、 本発明の半導体集 «回路装 Sの製造方法に用いられる半 導体ウェハの凹凸形伏の測定方法の原理の一例を示す概念図、 図 4は、 本発明の 半導体集積回路装置の製造方法に用いられる半導体ウェハの凹凸形状の測定方法 の原理の一例を示す概念図、 図 5は、 本発明の半導体集積回路装置の製造方法に 用いられる半導体ウェハの凹凸形状の測定方法の作用の一例を示す線図、 図 6は、 本発明の半導体集積回路装置の製造方法に用いられる半導体ウェハの凹凸形伏の 測定方法の作用の一例を示す線図、 図 7は、 本発明の一実施例である半導体集積 回路装置の製造方法に用いられる、 半導体ウェハ上の反射率や凹凸形状を測定す る装 Sの構成の一例を示す斜視図、 図 8は、 図 7の光学系における超低倍対物レ ンズの一例を示す概念図、 図 9は、 図 7の光学系における照明 σ切替機構の一例 を示す平面図、 図 1 0は、 図 7の光学系における自動焦点用縞パターンの一例を 示す斜視図、 図 1 1 は、 図 7の光学系における照度連続可変機構の一例を示す斜 視図、 図 1 2は、 図 7の光学系における波長切替機構の一例を示す平面図、 図 1 3は、 本発明の一実施例である半導体集積回路装置の製造方法の作用の一例を示 すフローチャー ト、 図 1 4は、 ガラス膜の膜形成条件と半導体ウェハの反射率お よび凹凸形状との闋係の一例を示す線図、 図 1 5は、 露光量と半導体ウェハの反 射率および凹凸形状との関係の一例を示す線図、 図 1 6は、 本発明の他の実施例 である半導体集積回路装置の製造方法に用いられる、 半導体ゥ Xハ上の反射率や 凹凸形状を測定する装置の構成の他の例を示す概念図、 図 1 7は、 半導体集 «回 路装置の製造プロセスに用いられる縮小投影露光装 Sの一例を示す概念図、 図 1 8は、 本発明の一実施例である半導体集 ¾回路装置の製造方法における露光条件 出しに用いられるダミーウェハの一例を示す平面図、 図 1 9は、 縮小投影露光に おける露光量および焦点位 »と耘写パターンの寸法との関係の一例を示す線図、 図 2 0は、 縮小投影露光における露光量および焦点位 と転写パターンの外観と の関係の一例を示す概念図、 図 2 1の ( a ) および (b ) は、 本発明の一実施例 である半導体集積回路装 Sの製造方法が適用される半導体ウェハの構造の一例を 示す断面図および平面図である。 FIG. 1 is a conceptual diagram showing an example of the principle of a method for measuring the uneven shape of a semiconductor integrated circuit used in the method of manufacturing a semiconductor integrated circuit device according to the present invention. FIG. FIG. 3 is a conceptual diagram showing an example of the principle of a method of measuring the unevenness of a semiconductor wafer used in the method. FIG. 3 is a method of measuring the unevenness of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit S of the present invention. FIG. 4 is a conceptual diagram showing an example of the principle of the present invention. FIG. 4 is a conceptual diagram showing an example of the principle of a method for measuring the uneven shape of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device of the present invention. FIG. 6 is a diagram showing an example of the operation of the method for measuring the uneven shape of a semiconductor wafer used in the method for manufacturing a semiconductor integrated circuit device. FIG. 6 is a diagram showing the unevenness of the semiconductor wafer used in the method for manufacturing a semiconductor integrated circuit device according to the present invention. Of measurement method FIG. 7 is a diagram showing an example of the configuration of a device S for measuring the reflectance and the unevenness on a semiconductor wafer used in a method of manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention. FIG. 8 is a conceptual diagram showing an example of an ultra-low magnification objective lens in the optical system of FIG. 7, FIG. 9 is a plan view showing an example of an illumination σ switching mechanism in the optical system of FIG. 10 is a perspective view showing an example of an autofocus stripe pattern in the optical system of FIG. 7, FIG. 11 is a perspective view showing an example of a continuously variable illuminance mechanism in the optical system of FIG. 7, and FIG. FIG. 13 is a plan view showing an example of a wavelength switching mechanism in the optical system of FIG. 7. FIG. 13 is a flowchart showing an example of the operation of the method for manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention. Is one of the relationships between the film formation conditions of the glass film and the reflectivity and unevenness of the semiconductor wafer. FIG. 15 is a diagram showing an example of the relationship between the exposure dose and the reflectance and the unevenness of the semiconductor wafer. FIG. 16 is a semiconductor integrated circuit device according to another embodiment of the present invention. FIG. 17 is a conceptual diagram showing another example of the configuration of an apparatus for measuring the reflectance and the uneven shape on the semiconductor substrate X used in the manufacturing method of the semiconductor device. FIG. 17 is used in the manufacturing process of the semiconductor integrated circuit device. FIG. 18 is a conceptual diagram showing an example of a reduced projection exposure apparatus S. FIG. 18 is a plan view showing an example of a dummy wafer used for setting exposure conditions in a method of manufacturing a semiconductor integrated circuit device according to an embodiment of the present invention. 9 for reduced projection exposure Diagram showing an example of the relationship between the exposure dose and the focal position »and the dimensions of the lithographic pattern. Figure 20 is a concept showing an example of the relationship between the exposure dose and the focal position and the appearance of the transfer pattern in reduced projection exposure. FIGS. 21A and 21B are a cross-sectional view and a plan view showing an example of the structure of a semiconductor wafer to which a method of manufacturing a semiconductor integrated circuit device S according to an embodiment of the present invention is applied. .
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 図 1 は、 本発明の半導体集積回路装置の製造方法に用いられる半導体ウェハの 凹凸形状の測定方法の原理の一例を示す概念図、 図 2は、 本発明の半導体集積回 路装 Sの製造方法に用いられる半導体ウェハの凹凸形状の測定方法の原理の一例 を示す概念図、 図 3は、 本発明の半導体集積回路装置の製造方法に用いられる半 導体ウェハの凹凸形状の測定方法の原理の一例を示す概念図、 図 4は、 本発明の 半導体集積回路装 Sの製造方法に用いられる半導体ゥ ハの凹凸形状の測定方法 の原理の一例を示す概念図、 図 5は、 本発明の半導体集積回路装 Sの製造方法に 用いられる半導体ウェハの凹凸形伏の測定方法の作用の一例を示す線図、 図 6は、 本発明の半導体集積回路装置の製造方法に用いられる半導体ゥ ハの凹凸形状の 測定方法の作用の一例を示す線図である。  The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a conceptual diagram showing an example of the principle of a method of measuring the uneven shape of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device of the present invention. FIG. 2 is a method of manufacturing a semiconductor integrated circuit device S of the present invention. FIG. 3 is a conceptual diagram showing an example of the principle of a method of measuring the unevenness of a semiconductor wafer used in the present invention. FIG. 3 is an example of the principle of a method of measuring the unevenness of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device of the present invention. FIG. 4 is a conceptual diagram showing an example of the principle of a method of measuring the uneven shape of a semiconductor wafer used in the method of manufacturing a semiconductor integrated circuit device S of the present invention, and FIG. 5 is a semiconductor integrated circuit of the present invention. FIG. 6 is a diagram showing an example of the operation of the method for measuring the unevenness of the semiconductor wafer used in the method of manufacturing the circuit device S. FIG. 6 is a diagram illustrating the unevenness of the semiconductor wafer used in the method of manufacturing the semiconductor integrated circuit device of the present invention. Of measurement method It is a diagram showing an example of.
まず、 図 1および図 2を用いて、 本発明における 3次元的な反射光の強度分布 の測定方法の原理の一例を説明する。  First, an example of the principle of a method for measuring the three-dimensional intensity distribution of reflected light according to the present invention will be described with reference to FIGS.
露光量と焦点位 Sの許容範囲が最も小さい場所と半導体ウェハ上の反射率や凹 凸形伏とは、 密接な関係がある。 半導体ウェハ上に塗布されたレジス トの現像後 の断面形状 (プロファイル) は縮小投影光学系によって投影された回路パターン の 3次元的な光強度分布によって決定付けられる。  There is a close relationship between the exposure and the location where the allowable range of the focal position S is the smallest, and the reflectivity and the concave / convex shape on the semiconductor wafer. The cross-sectional shape (profile) of the resist applied to the semiconductor wafer after development is determined by the three-dimensional light intensity distribution of the circuit pattern projected by the reduction projection optical system.
この 3次元的な光強度分布は半導体ゥェハ上の反射率や凹凸形状により強く影 響されるため、 半導体ゥ ハ上の反射率や凹凸形状を測定することにより、 露光 量と焦点位置の許容範囲が fiも小さい場所を発見することができる。  Since the three-dimensional light intensity distribution is strongly affected by the reflectance and the uneven shape on the semiconductor wafer, the allowable range of the exposure amount and the focal position can be obtained by measuring the reflectance and the uneven shape on the semiconductor wafer. But fi can also find small places.
凹凸形状を有する半導体ゥ ハ上に平坦化のためのガラス膜を形成する半導体 製造方法において、 前記の方法で求めた、 半導体ゥ ハ上の反射率や凹凸形状の 曲率半径と面積を用いて、 不純物濃度または形成温度または成膜材料の粘度また は成膜の回転数等のガラス膜形成条件を補正制御することにより、 半導体ウェハ 上の反射率や凹凸形伏の変動を低滅することができる。 In a semiconductor manufacturing method for forming a glass film for flattening on a semiconductor wafer having an uneven shape, the method uses the reflectance and the radius of curvature and area of the unevenness on the semiconductor wafer obtained by the above method. Impurity concentration or formation temperature or film material viscosity or By correcting and controlling glass film formation conditions such as the number of rotations of film formation, fluctuations in reflectivity and irregularities on the semiconductor wafer can be reduced.
レジス トを塗布した凹凸形伏を有する半導体ゥ Xハ上に露光光を照射し、 パタ ーン面から離れた空間位置の光強度分布を刺定し、 最大強度と空間位置を求める ことにより、 半導体ウェハ上の凹凸形状の曲率半径と面積と露光光における表面 反射率を求め、 これより投影露光装置の露光量を補正制御することにより、 ハレ ーシヨ ンやショー ト等の不良を防止できる。  By irradiating exposure light onto the resist-applied semiconductor ハ X c and piercing the light intensity distribution at a spatial position distant from the pattern surface, the maximum intensity and spatial position are obtained. By determining the radius of curvature and area of the uneven shape on the semiconductor wafer and the surface reflectivity with respect to the exposure light, and correcting and controlling the exposure amount of the projection exposure apparatus, defects such as harshness and short can be prevented.
縮小投影光学系によって投影された回路パターンの 3次元的な光強度分布は、 半導体ゥ ハ上の反射率や凹凸形伏を考慮すると、 シミ ュレーショ ンで正確に求 めるのは計算に時間がかかりすぎるため適切ではない。  The three-dimensional light intensity distribution of the circuit pattern projected by the reduction projection optical system can be calculated accurately by simulation, taking into account the reflectivity and unevenness of the semiconductor substrate. Not appropriate because it costs too much.
回路パターンの 3次元的な光強度分布を測定する手段の原理図を図 1 に示す。 図 1 において、 マスクパターン 7 4は、 レジス トを感光する露光光と同じ波長の 照明光 7 4 aで照明される。 マスクパターン 7 4は、 ハーフ ミ ラー 7 3および投 影レンズ 7 2を介して凹凸形伏を有する半導体ウェハ 2 1上に投影される。 ここ で半導体ウェハ 2 1 は上下動が可能であり、 投影像のべス トフォーカス位置に設 定される。  Figure 1 shows the principle of the means for measuring the three-dimensional light intensity distribution of a circuit pattern. In FIG. 1, the mask pattern 74 is illuminated with illumination light 74a having the same wavelength as the exposure light that exposes the resist. The mask pattern 74 is projected onto the semiconductor wafer 21 having the uneven shape via the half mirror 73 and the projection lens 72. Here, the semiconductor wafer 21 can move up and down, and is set at the best focus position of the projected image.
凹凸形伏を有する半導体ゥュハ 2 1上で反射した反射光 7 4 bは 3次元的な光 強度分布を形成する。 図 1 において、 3次元空間光強度測定点が投影レンズ 7 2 を介して結像する位置に検出器 7 1を設定する。 ここで検出器 7 1 は上下動が可 能であり、 任意の 3次元空間位匱に焦点を合わせることができる。  The reflected light 74 b reflected on the semiconductor wafer 21 having the uneven shape forms a three-dimensional light intensity distribution. In FIG. 1, a detector 71 is set at a position where a three-dimensional spatial light intensity measurement point forms an image via a projection lens 72. Here, the detector 71 can move up and down, and can focus on an arbitrary three-dimensional spatial position.
以上の構成によれば、 縮小投影光学系によって投影された回路パターンの 3次 元的な光強度分布の測定ができる。  According to the above configuration, the three-dimensional light intensity distribution of the circuit pattern projected by the reduction projection optical system can be measured.
なお後で説明するように、 露光量と焦点位置の許容 15囲が ftも小さい場所を短 時間で発見するためには、 必ずしもマスクパターン 7 4は必要が無い。 この場合、 上下動は半導体ウェハ 2 1か検出器 7 1のいずれかで良い。  As will be described later, the mask pattern 74 is not necessarily required in order to quickly find a place where the tolerance 15 of the exposure amount and the focal position is smaller than ft in a short time. In this case, the vertical movement may be performed by either the semiconductor wafer 21 or the detector 71.
露光量と焦点位 Sの許容 Ϊ5囲が最も小さい埸所と半導体ウェハ 2 1上の反射率 や凹凸形状とは密接な関係があり、 半導体ゥ ハ 2 1上の反射率や凹凸形状を測 定できれば、 露光量と焦点位置の許容範囲が最も小さい場所を予測することが可 能である。 この場合、 前記図 1の回路パターンの 3次元的な光強度分布を測定する手段が 全て必要では無い。 半導体ウェハ 2 1上の反射率や凹凸形伏を制定する手段の原 理図を図 2に示す。 図 2において、 照明校り 8 0は、 レジス トを感光する露光光 と同じ波長の照明光 8 0 aで照明される。 照明光 8 0 aは、 コンデンサレンズ 7 5、 ハーフミラー 7 3、 投影レンズ 7 2を介して凹凸形状を有する半導体ゥヱハ 2 1上に平行光束 (ケーラ照明) で照射される。 There is a close relationship between the exposure amount and the allowable position of the focal position S (the area with the smallest 5) and the reflectance and the unevenness on the semiconductor wafer 21. If possible, it is possible to predict the place where the allowable range of the exposure amount and the focus position is the smallest. In this case, all means for measuring the three-dimensional light intensity distribution of the circuit pattern of FIG. 1 are not required. FIG. 2 shows a principle diagram of the means for establishing the reflectance and the unevenness on the semiconductor wafer 21. In FIG. 2, the illumination school 80 is illuminated with illumination light 80a having the same wavelength as the exposure light that exposes the resist. The illuminating light 80a is radiated as a parallel light beam (Koehler illumination) onto the semiconductor substrate 21 having an uneven shape via a condenser lens 75, a half mirror 73, and a projection lens 72.
凹凸形状を有する半導体ウェハ 2 1上で反射した光は 3次元的な光強度分布を 形成する。 図 2において、 3次元空間光強度測定点が投影レンズ 7 2を介して桔 像する位置に検出器 7 1を設定する。 ここで半導体ウェハ 2 1は上下動が可能で あり、 任意の 3次元空間位 Sに焦点を合わせることができる。  The light reflected on the semiconductor wafer 21 having the irregular shape forms a three-dimensional light intensity distribution. In FIG. 2, a detector 71 is set at a position where a three-dimensional spatial light intensity measurement point is imaged via a projection lens 72. Here, the semiconductor wafer 21 can move up and down, and can focus on an arbitrary three-dimensional spatial position S.
以上の構成によれば、 半導体ゥ ハ 2 1上の反射率や凹凸形状の測定ができる c 半導体ゥ ハ 2 1が凹形伏の場合の反射光 7 4 a. 8 0 aの反射角度と焦点位置 の関係の一例を図 3に示す。 図 3において、 According to the above configuration, it is possible to measure the reflectance and the uneven shape on the semiconductor layer 21 c . The reflected light 7 4 a. Figure 3 shows an example of the positional relationship. In Figure 3,
X = R s i η θ  X = R s i η θ
Z = R ( 1 - c ο s β)  Z = R (1-c ο s β)
F - Z = X/ t a n (20)  F-Z = X / t a n (20)
の関係がある。 従って焦点 (F) は、 There is a relationship. Therefore, the focus (F) is
F = R ( l - c o s ^ + s ί η θ/t a n (20) )  F = R (l-cos ^ + s η η θ / t a n (20))
角度 0が十分小さい場合の焦点 (F) は、 When the angle 0 is small enough, the focus (F) is
F = R/2  F = R / 2
となる。 Becomes
半導体ゥ ハ 2 1が凸形伏の場合の反射光の反射角度と焦点位置の関係を図 4 に示す。 図 3と同様の関係式が成立する。  FIG. 4 shows the relationship between the reflection angle of the reflected light and the focal position when the semiconductor substrate 21 has a convex shape. The same relational expression as in FIG. 3 holds.
X = R s i η θ  X = R s i η θ
Z=R ( l - c o s 0)  Z = R (l-c os 0)
Ζ - F =Χ/ t a n (20)  Ζ-F = Χ / t a n (20)
の関係がある。 従って焦点 (F) は、 There is a relationship. Therefore, the focus (F) is
F =R ( 1一 c o s 0 - s i η 0/ t a n (20) ) 角度 0が十分小さい場合、 焦点 (F) は、 F = - R / 2 F = R (1 cos 0-si η 0 / tan (20)) If the angle 0 is small enough, the focal point (F) becomes F =-R / 2
となる。 この場合、 虚像ができる。 Becomes In this case, a virtual image is formed.
半導体ウェハ 2 1が凹形状の場合の焦点方向の反射光の強度分布を図 5に示す ( また、 半導体ウェハ 2 1が凸形状の場合の焦点方向の反射光の強度分布を図 6に 示す。 FIG. 5 shows the intensity distribution of reflected light in the focal direction when the semiconductor wafer 21 is concave ( FIG. 6 shows the intensity distribution of reflected light in the focal direction when the semiconductor wafer 21 is convex).
半導体ウェハ 2 1が凹形状の場合の図 5において、 標準焦点位置とは、 半導体 ウェハ 2 1のパターン面表面に焦点が合った位置であり、 光強度最大の位置はプ ラス方向となる。 光強度最大の位置一標準焦点位置は凹形状の曲率半径の 1 Z 2 であり、 凹面ミ ラーの焦点位置と一致する。 また、 光強度の最大値は凹面ミ ラー の面穣に比例する。 従って、 光強度最大の位置と最大値を測定することにより、 標準焦点位 Sと光強度最大の位置との距離から凹形状の曲率半径を求めることが でき、 光強度の最大値の光量から面積を求めることができる。  In FIG. 5 when the semiconductor wafer 21 has a concave shape, the standard focus position is a position where the pattern surface of the semiconductor wafer 21 is focused, and the position with the maximum light intensity is in the plus direction. The position of the maximum light intensity—the standard focal position is the concave radius of curvature 1 Z 2, which coincides with the focal position of the concave mirror. The maximum light intensity is proportional to the surface of the concave mirror. Therefore, by measuring the position and the maximum value of the maximum light intensity, the radius of curvature of the concave shape can be obtained from the distance between the standard focal position S and the position of the maximum light intensity. Can be requested.
半導体ウェハ 2 1が凸形伏の場合の図 6においては、 光強度最大の位置はマイ ナス方向となるが、 同様に光強度最大の位置と最大値を剃定することにより、 凸 形状の曲率半径と面稜を求めることができる。  In FIG. 6 where the semiconductor wafer 21 has a convex shape, the position where the light intensity is maximum is in the negative direction. Similarly, by shaving the position where the light intensity is maximum and the maximum value, the curvature of the convex shape is obtained. The radius and surface ridge can be determined.
以上説明した本発明の剷定原理により、 半導体ウェハ 2 1の凹凸形伏を知るこ とができる。 これにより、 露光量と焦点位隱の許容範囲が最も小さい埸所を短時 間に予測することが可能となり、 製造プロセスにおける露光条件や平坦化のため の薄膜の形成条件等の管理値決定を迅速に実現できる。  According to the above-described measurement principle of the present invention, the unevenness of the semiconductor wafer 21 can be known. This makes it possible to predict in a short time a place where the allowable range of the exposure amount and the focus position is the smallest, and it is possible to determine control values such as the exposure conditions in the manufacturing process and the conditions for forming a thin film for planarization. It can be realized quickly.
また、 製造プロセス中に随時、 半導体ウェハ 2 1表面の凹凸形伏に関する抜き 取り検査を実施し、 フォ ト レジス トが塗布された状態の埸合には、 当該フオ ト レ ジス トの露光条件を微調整して最適に制御することが可能となる。 また、 フォ ト レジス 卜が塗布されない伏態での検査結果に基づいて、 たとえば、 半導体ウェハ 2 1の凹凸を平坦化するための薄膜の形成条件を制御したり、 必要に応じて、 通 常のフォ ト レジス トから、 凹凸に起因する露光不良の発生が少ない多層レジス 卜 プロセスに選択的に切り換える等のプロセス制御が可能となる。  In addition, at any time during the manufacturing process, a sampling inspection is performed on the surface of the semiconductor wafer 21 for irregularities, and when the photo resist is applied, the exposure condition of the photo resist is changed. It is possible to perform fine adjustment and optimal control. Further, based on the inspection result in a state in which the photo resist is not applied, for example, the conditions for forming a thin film for flattening the unevenness of the semiconductor wafer 21 are controlled, and if necessary, a normal Process control, such as selectively switching from a photo resist to a multilayer resist process with less occurrence of exposure failure due to irregularities, becomes possible.
次に、 上述の原理を用いた本発明の半導体集積回路装置の製造方法をより具体 的に説明する。  Next, a method for manufacturing a semiconductor integrated circuit device of the present invention using the above principle will be described more specifically.
図 7は、 本発明の一実施例である半導体集 »回路装置の製造方法に用いられる、 半導体ウェハ上の反射率や凹凸形状を測定する装置の構成の一例を示す斜視図で ある。 FIG. 7 shows a semiconductor integrated circuit device manufacturing method according to an embodiment of the present invention. FIG. 3 is a perspective view showing an example of the configuration of an apparatus for measuring the reflectance and the uneven shape on a semiconductor wafer.
前述の図 2の半導体ゥ ハ上の反射率や凹凸形状を測定する手段の原理図と比 校すると、 半導体ゥヱハのオリフラゃノ ツチ等の外形に対しての位置合わせ、 夕 ーゲッ トパターンを使用しての位置合わせ等に必要な機構が付加されている。 図 7において、 H gランプ等の光源 7から放射される、 たとえば i線 (波長 3 6 5 n m ) と e線 (波長 5 4 6 n m ) 等の紫外線の検査光 7 aは、 コンデンサレ ンズ 8を介して収束された後、 シャ ツタ機構 4、 波長切替機構 3、 照度連铳可変 機構 2、 照明 σ切替機構 1 (照明重心点調整機構) 、 リ レーレンズ 9、 自動焦点 用镇パターン 5、 ミラー 1 0、 リ レーレンズ 1 1、 ハーフミラー 1 2、 倍率切替 機構 6、 対物レンズ 2 0を介して、 半導体ゥヱハ 2 1の表面に照射される。 半導体ゥヱハ 2 1から反射された反射光 7 bは、 ハーフ ミ ラー 1 2、 ミラー 1 4、 リ レーレンズ 1 5を介してパターン画像検出用 T Vカメラ等の検出器 1 6に 入射する。  Compared with the principle diagram of the means for measuring the reflectivity and uneven shape on the semiconductor wafer shown in Fig. 2 above, alignment with the external shape of the semiconductor wafer orifice notch, etc., and the use of evening target patterns A mechanism necessary for the positioning and the like is added. In FIG. 7, the inspection light 7 a emitted from a light source 7 such as an Hg lamp, for example, i-line (wavelength 365 nm) and e-ray (wavelength 546 nm) 7 a is a condenser lens 8. After being converged through the camera, the shutter mechanism 4, the wavelength switching mechanism 3, the illumination intensity variable mechanism 2, the illumination sigma switching mechanism 1 (illumination center-of-gravity point adjustment mechanism), the relay lens 9, the auto focus 镇 pattern 5, and the mirror 10, the relay lens 11, the half mirror 12, the magnification switching mechanism 6, and the objective lens 20 irradiate the surface of the semiconductor substrate 21. The reflected light 7b reflected from the semiconductor substrate 21 is incident on a detector 16 such as a TV camera for detecting a pattern image via a half mirror 12, a mirror 14 and a relay lens 15.
半導体ウェハ 2 1 は、 半導体ゥ ハ 2 1に照射される検査光 7 aの光軸の周り に回転可能な 0ステージ 3 4に載 Sされ、 この 0ステージ 3 4は、 検査光 7 aの 光軸方向の上下動ゃチル卜動作が可能な Zステージ 3 3、 検査光 7 aに直交する 平面内の互いに直交する 2方向にそれぞれ独立に移動可能な Xステージ 3 2、 Y ステージ 3 1 によって支持されている。  The semiconductor wafer 21 is mounted on a 0 stage 34, which is rotatable around the optical axis of the inspection light 7a applied to the semiconductor substrate 21. The 0 stage 34 is a light source of the inspection light 7a. Z stage 33, which can move up and down and tilt in the axial direction, supported by X stage 32, Y stage 31, which can move independently in two directions perpendicular to each other in a plane perpendicular to inspection light 7a Have been.
Yステージ 3 1、 Xステージ 3 2、 Zステージ 3 3、 0ステージ 3 4等は半導 体ゥヱハ 2 1の位 S合わせに必要であり、 本実施例では 0ステージ 3 4は 3 6 0 度以上の回転が可能であり、 半導体ウェハ 2 1のオリフラ 2 2ゃノ ツチ等の外形 に対しての位 S合わせを行なうことができる。  The Y stage 31, the X stage 32, the Z stage 33, the 0 stage 34, etc. are necessary to align the position of the semiconductor ゥ ヱ C 21, and in this embodiment, the 0 stage 34 is more than 360 degrees. The semiconductor wafer 21 can be aligned with the outer shape of the orientation flat 22 notch or the like.
本実施例の半導体ゥヱハ 2 1 は、 たとえば、 図 2 1に例示されるように、 半導 体基板 2 1 aの上に、 アルミニウム等からなる配線パターン 2 1 bを形成し、 こ の配線パターン 2 1 bを絶縁膜 2 1 cで覆った構造となっている。 絶縁膜 2 1 c の表面は、 下地の配線パターン 2 1 bの凹凸を反映した凹凸状態となるため、 こ れを锾和すべく、 たとえば S O G等を用いたガラス膜 2 1 dを形成して平坦化を 実現している。 そして、 このガラス膜 2 1 dの上に、 たとえば、 アルミニウムか らなる導体薄膜 2 1 eを形成している。 For example, as shown in FIG. 21, a semiconductor substrate 21 of the present embodiment forms a wiring pattern 21 b made of aluminum or the like on a semiconductor substrate 21 a, and The structure is such that 21b is covered with an insulating film 21c. Since the surface of the insulating film 21c is in an uneven state reflecting the unevenness of the underlying wiring pattern 21b, a glass film 21d using, for example, SOG is formed to alleviate this. It achieves flattening. And on this glass membrane 21d, for example, aluminum or A conductive thin film 21 e is formed.
この導体薄膜 2 1 eを、 フォ ト レジス ト 2 1 f の被着および露光現像によって ノ、'ターンニングし、 このフオ ト レジス ト 2 1 f をマスクと したエッチングによつ て、 ガラス膜 2 1 dの上に次の配線パターン 2 1 eを形成する、 というフォ ト リ ソグラフィ プロセスが行われる。  The conductive thin film 21 e is turned and turned by applying a photoresist 21 f and exposing and developing, and the glass film 2 e is etched by using the photoresist 21 f as a mask. A photolithography process of forming the next wiring pattern 21 e on 1 d is performed.
本実施例の場合、 ガラス膜 2 1 dや、 導体薄膜 2 1 eを被着した状態における 凹凸形状や反射率の剃定および評価を行う。 前述の光源 7から半導体ウェハ 2 1 に至る検査光 7 aの光路上、 および反射光 7 bの光路上に設けられた光学系は i 線 (波長 3 6 5 n m ) と e線 (波長 5 4 6 n m ) に対して、 完全に色収差補正が 実施されている。 位置合わせ等においては、 フォ ト レジス ト 2 1 f を感光しない e線を用いるのが望ましい。  In the case of the present embodiment, shaping and evaluation of the uneven shape and the reflectance in a state where the glass film 21 d and the conductive thin film 21 e are applied are performed. The optical systems provided on the optical path of the inspection light 7a from the light source 7 to the semiconductor wafer 21 and on the optical path of the reflected light 7b are i-line (wavelength 365 nm) and e-line (wavelength 54 6 nm) has been completely corrected for chromatic aberration. In positioning, it is desirable to use e-rays that do not expose the photo resist 21 f.
半導体ウェハ 2 1のオリフラ 2 2ゃノ ツチ等の外形に対しての位置合わせを行 なう場合は、 対物レンズ 2 0の倍率は 2倍程度の非常に低倍のレンズが必要とな るが、 このため図 8に示すような特別な工夫が必要である。 すなわち、 2倍程度 の超低倍対物レンズ 1 3では、 色収差補正レンズ 1 3 aから半導体ゥヱハ 2 1 ま での距雠を非常に長く必要とするため、 複数のミラー 1 3 b〜 1 3 eを用いて光 路長を長くする必要がある。  When positioning the semiconductor wafer 21 with respect to the outer shape of the orientation flat 22 notch, etc., the objective lens 20 needs a very low magnification lens with a magnification of about 2 times. Therefore, a special device as shown in Fig. 8 is required. In other words, since the ultra-low magnification objective lens 13 of about 2 times requires a very long distance from the chromatic aberration correcting lens 13a to the semiconductor device 21a, a plurality of mirrors 13b to 13e are required. It is necessary to lengthen the optical path length by using.
半導体ゥ ハ 2 I上のターゲッ 卜パターンを使用しての位 S合わせを行なう埸 合は、 対物レンズ 2 0の倍率は 1 0倍程度の低倍レンズ 1 7が必要となる。 また、 半導体ウェハ上の反射率や凹凸形状を剃定する場合は、 対物レンズ 2 0の倍率は 1 0 0倍程度の高倍レンズ 1 8が必要となる。  When performing position alignment using a target pattern on the semiconductor device 2I, a low-magnification lens 17 with a magnification of the objective lens 20 of about 10 is required. In addition, when shaving the reflectance or the uneven shape on a semiconductor wafer, a high-magnification lens 18 having a magnification of about 100 times the objective lens 20 is required.
このため本実施例では、 超低倍対物レンズ 1 3、 低倍レンズ 1 7、 高倍レンズ 1 8を切り換えることにより、 3段階に倍率を切り換える倍率切替機構 6を有し ている。 この様な構成にすると、 同一の検出器 1 6で行なうことができるため、 装置の構造が簡単になり、 低コス トとなる。  For this reason, the present embodiment has a magnification switching mechanism 6 that switches the magnification in three stages by switching the ultra-low magnification objective lens 13, low magnification lens 17, and high magnification lens 18. With such a configuration, since the detection can be performed by the same detector 16, the structure of the apparatus is simplified and the cost is reduced.
半導体ゥヱハ 2 1のオリフラ 2 2ゃノ ツチ等の外形に対しての位置合わせを行 なう埸合や、 半導体ウェハ 2 1上のターゲッ トパターンを使用しての位置合わせ を行なう埸合や、 半導体ゥ ハ 2 1上の反射率や凹凸形伏を蒯定する場合、 等の 各々において、 最適な照明条件は異なる場合が多い。 一般に位置合わせにおいては、 照明び値は 0. 5 〜0. 6が用いられるカ^ 半導体 ウェハ上の反射率や凹凸形状を測定する場合は照明 σ値が 0. 4以下が望ましい。 また本実施例では、 瞳上の照度分布を同時に検出可能とし、 膜厚等の測定も可能 である。 この埸合、 照明 σ値が 1以上が必要となる。 これらの必要条件を全て満 足するための照明 σ切替機構 1を有している。 照明 σ切替機構 1 は、 図 9に例示 されるように、 検査光 7 aの光路断面 ¾を任意に調整する可変校り 1 aで構成さ れている。 When aligning the semiconductor wafer 21 with the outer shape of the orientation flat 22 notch, etc., when aligning using the target pattern on the semiconductor wafer 21, In the case of measuring the reflectance and the unevenness on the semiconductor substrate 21, the optimum illumination conditions are often different for each of the above. Generally, in alignment, an illumination value of 0.5 to 0.6 is used. In the case of measuring the reflectance and the uneven shape on a semiconductor wafer, the illumination σ value is preferably 0.4 or less. In the present embodiment, the illuminance distribution on the pupil can be detected at the same time, and the film thickness and the like can be measured. In this case, the illumination σ value needs to be 1 or more. It has a lighting sigma switching mechanism 1 to satisfy all of these requirements. As illustrated in FIG. 9, the illumination σ switching mechanism 1 is configured with a variable aperture 1a that arbitrarily adjusts the optical path cross section の of the inspection light 7a.
また、 検査光 7 aを半導体ゥ ハ 2 1上に導く照明光学系に設けられた自動焦 点用 «8パターン 5は、 たとえば図 1 0に例示されるように、 検査光 7 aの光軸方 向に僅かに焦点位 Sからずれるように挿入されている 2組の透明基板 5 aおよび 5 bの上に配臛された 2組の镇パターン 5 cおよび镇パターン 5 dで構成されて いる。 この 2組の繽パターン 5 c . 5 dは半導体ゥヱハ 2 1 に投影され、 半導体 ウェハ 2 1上で反射された镇パターン 5 c , 5 dは検出器 1 6で検出される。 こ の繽パターン 5 C , 5 dのコントラス 卜から自動焦点制御を行なうことができる c 照度連镜可変機構 2は、 図 1 1に例示されるように、 透明基板 2 bの表面に、 周方向に膜厚 (透過率) が連梡的に変化するように金属薄膜 2 aが被着された構 成となっており、 検査光 7 a力 <、 透明基板 2 bの偏心した位 Sを透過するように 設 Sして回動させることにより、 検査光 7 aの照度 (透過率) を連铳的に調整す ることができる。  In addition, as shown in FIG. 10, for example, as shown in FIG. 10, the pattern 5 for automatic focusing provided in the illumination optical system for guiding the inspection light 7a onto the semiconductor substrate 21 has an optical axis of the inspection light 7a. It is composed of two sets of color patterns 5c and 5d arranged on two sets of transparent substrates 5a and 5b which are inserted so as to slightly deviate from the focal position S in the direction. . The two sets of pel patterns 5c.5d are projected onto the semiconductor wafer 21 and the patterns 5c and 5d reflected on the semiconductor wafer 21 are detected by the detector 16. The automatic focus control can be performed from the contrast of the pel pattern 5C, 5d. C The illumination intensity variable mechanism 2 is provided on the surface of the transparent substrate 2b in the circumferential direction as illustrated in FIG. In this configuration, the metal thin film 2a is applied so that the film thickness (transmittance) changes continuously, and the inspection light 7a power <, the eccentric position S of the transparent substrate 2b is transmitted. By rotating the inspection light 7a, the illuminance (transmittance) of the inspection light 7a can be continuously adjusted.
図 1 2に例示されるように、 波長切替機構 3は、 基板 3 aに、 透過する光の波 長が異なるニュートラルデンシティ フィルタ等の複数のフィルタ 3 b〜 3 eを配 Sした構成となっており、 検査光 7 a力 基板 3 aの儷心した位 Sを透過するよ うに設置して、 各フィルタ 3 b〜 3 eのいずれかに一致するように回動させるこ とにより、 検査光 7 aの波長を変化させることができる。  As exemplified in FIG. 12, the wavelength switching mechanism 3 has a configuration in which a plurality of filters 3 b to 3 e such as neutral density filters having different wavelengths of transmitted light are arranged on a substrate 3 a. Inspection light 7a Force The inspection light 7a is set by transmitting the substrate 3a so that it passes through the center S, and rotated to match any of the filters 3b to 3e. The wavelength of a can be changed.
以上の構成によれば、 半導体ゥヱハ 2 1のオリフラ 2 2の位 S合わせ、 半.導体 ウェハ 2 1上のターゲッ トパターンを使用しての位 S合わせ、 半導体ゥ ハ 2 1 上の反射率や凹凸形状の測定等を行なうことができる。  According to the above configuration, the position of the orientation flat 22 of the semiconductor wafer 21 is aligned, and the position of the semiconductor wafer 21 is adjusted using the target pattern on the semiconductor wafer 21. Measurement of unevenness and the like can be performed.
すなわち、 まず、 倍率切替機桷 6によって超低倍対物レンズ 1 3を選択し、 検 出器 1 6によって半導体ウェハ 2 1を観察しながら、 Yステージ 3 1 、 Xステー ジ 3 2、 Zステージ 3 3、 0ステージ 3 4を適宜動作させることによってオリフ ラ 2 2が検査光 7 aの光軸の周りの所定の方向に位置するように位置決めする。 その後、 倍率切替機構 6によって低倍レンズ 1 7に切り換えることにより、 半 導体ゥ ハ 2 1内に設けられたァライメ ン トマーク (たとえば 2箇所) を検出器 1 6によって認識することにより、 半導体ゥヱハ 2 1の X— Y— 0の各位置を持 定する。 That is, first, the ultra-low magnification objective lens 13 is selected by the magnification switching unit 6, and the Y stage 31 and the X stage are observed while the semiconductor wafer 21 is observed by the detector 16. The orifice 22 is positioned so as to be positioned in a predetermined direction around the optical axis of the inspection light 7a by appropriately operating the z stage 32, the Z stage 33, and the zero stage 34. Then, by switching to the low-magnification lens 17 by the magnification switching mechanism 6, the alignment mark (for example, two places) provided in the semiconductor 21 is recognized by the detector 16, and the semiconductor laser 17 is recognized. Holds each position of 1—X—Y—0.
その後、 倍率切替機構 6によって高倍レンズ 1 8を選択して、 半導体ウェハ 2 1内の目標領域に位置合わせし、 半導体ウェハ 2 1の表面の凹凸や反射率の測定 を行う。 表面の凹凸を示す曲率半 Sや反射領域の面積は、 前述の図 1および図 2 に例示した原理のように、 Zステージ 3 3を上下動させた時の検出器 1 6におけ る反射光 7 bの検出光量の変化のピーク位置と、 検査光 7 aを半導体ウェハ 2 1 に導く光学系の半導体ウェハ 2 1 に対する焦点位置の距雜から半導体ウェハ 2 1 の凹凸の曲率半径を測定し、 反射光 7 bの検出光量のビーク値から凹部ゃ凸部の 反射領域の面積を測定する。  After that, the high-magnification lens 18 is selected by the magnification switching mechanism 6 and is positioned at a target area in the semiconductor wafer 21, and the unevenness and the reflectance of the surface of the semiconductor wafer 21 are measured. The radius of curvature S indicating the surface irregularities and the area of the reflection area are determined by the reflected light at the detector 16 when the Z stage 33 is moved up and down, as in the principle illustrated in FIGS. 1 and 2 described above. The radius of curvature of the unevenness of the semiconductor wafer 21 is measured from the peak position of the change in the detected light amount of 7b and the distance of the focal position of the optical system for guiding the inspection light 7a to the semiconductor wafer 21 with respect to the semiconductor wafer 21; From the beak value of the detected light amount of the reflected light 7b, measure the area of the reflection area between the concave part and the convex part.
凹凸形状を有する半導体ウェハ 2 1上に平坦化のためのガラス膜 2 1 dを形成 する半導体集積回路装 gの製造方法において、 前記の方法で求めた、 半導体ゥ ハ 2 1上の反射率や凹凸形伏の曲率半径と面積を用いて、 不純物濃度、 形成温度、 成膜材料の粘度、 成膜の回転数等のガラス膜 2 1 dの形成条件を補正制御する埸 合は、 あらかじめ膜形成条件と反射率や凹凸形状との関係を求める必要がある。 図 1 4に例示されるように、 半導体ゥ ハ 2 1の表面の反射率や凹凸形伏とガ ラス膜 2 1 dの膜形成条件の関係は、 たとえば二次曲線になるので、 ガラス膜 2 1 dの形成条件を変えながら、 逐次、 上述の手法で凹凸形伏の曲率半径、 面 »お よび反射率を測定することによって図 1 4の関係を求める。 凹凸形伏の評価は、 曲率半径が大きいほど、 また、 面穰が小さいほど良であり、 また、 反射率は小さ いほど良い。 図 1 4の縱蚰は、 これらの評価が総合的に反映されるように、 測定 値の符号や値を適宜正規化して表示されている。 従って、 図 1 4の最適膜形成条 件は、 反射率が最も小さく、 凹凸形状の曲率半径が最も大きく、 面積が最も小さ くなるようなガラス膜 2 1 dの形成条件を示している。  In a method for manufacturing a semiconductor integrated circuit device g in which a glass film 21 d for planarization is formed on a semiconductor wafer 21 having an uneven shape, the reflectance and the reflectance on the semiconductor substrate 21 obtained by the above method are determined. If the glass film 21 d forming conditions such as the impurity concentration, the forming temperature, the viscosity of the film forming material, and the number of rotations of the film forming are to be corrected and controlled using the curvature radius and the area of the uneven shape, the film must be formed in advance. It is necessary to find the relationship between the condition and the reflectance or the uneven shape. As exemplified in FIG. 14, the relationship between the reflectivity and unevenness of the surface of the semiconductor layer 21 and the film forming conditions of the glass film 21 d is, for example, a quadratic curve. The relationship shown in FIG. 14 is obtained by successively measuring the curvature radius, surface », and reflectance of the uneven shape by the above-described method while changing the 1d formation conditions. The evaluation of the unevenness is better as the radius of curvature is larger and the shape is smaller, and the reflectance is better as the reflectance is smaller. The vertical line in Fig. 14 shows the sign and value of the measured value appropriately normalized so that these evaluations are reflected comprehensively. Therefore, the optimum film forming conditions in FIG. 14 indicate the conditions for forming the glass film 21 d such that the reflectance is the smallest, the radius of curvature of the uneven shape is the largest, and the area is the smallest.
半導体製造プロセスの過程で半導体ウェハ 2 1の反射率や凹凸形状が変化した 場合、 本実施例では、 前述のようにしてあらかじめ求めた膜形成条件と反射率や 凹凸形状との関係から、 膜形成条件の補正量を求めて膜形成条件を補正制御する:During the semiconductor manufacturing process, the reflectivity and unevenness of the semiconductor wafer 21 changed In this case, in the present embodiment, the correction amount of the film formation condition is obtained and the correction control of the film formation condition is performed based on the relationship between the film formation condition and the reflectance or the uneven shape obtained in advance as described above:
—方、 凹凸形状を有する半導体ウェハ 2 1上に投影露光装 を用いてパターン を転写する半導体製造プロセスにおいて、 上述の図 7の装 Sを用いて、 フオ ト レ ジス ト 2 1 f を塗布した凹凸形状を有する半導体ゥ ハ上に露光光を照射し、 パ ターン面から離れた空間位置の光強度分布を測定し、 最大強度と最大強度なる空 間位置を求めることにより、 半導体ウェハ 2 1上の凹凸形伏の曲率半径と面種と 露光光における表面反射率を求める。 On the other hand, in a semiconductor manufacturing process in which a pattern is transferred onto a semiconductor wafer 21 having an uneven shape using a projection exposure apparatus, the photo resist 21 f was applied using the apparatus S in FIG. 7 described above. By irradiating exposure light onto the semiconductor wafer having the uneven shape, measuring the light intensity distribution at a spatial position distant from the pattern surface, and determining the maximum intensity and the space position at which the maximum intensity is obtained, the semiconductor wafer 21 is exposed. The curvature radius, surface type, and surface reflectivity of the exposure light are calculated.
この測定桔果から、 ハレーショ ンゃショート等の不良が発生する露光 Sマージ ンを予剃し、 これより投影露光装 Sの露光 Sを補正制御することにより、 ハレー ションゃショ一卜等の不良を防止する。  From this measurement result, the exposure S margin, which causes a failure such as a halting short, is pre-shaved, and the exposure S of the projection exposure apparatus S is corrected and controlled based on the result. To prevent
図 1 5に露光量と、 半導体ウェハ 2 1の反射率や凹凸形伏との関係の一例を示 す。 図 1 5の縱蚰は、 図 1 4の縱蚰と同様の反射率や凹凸形状の評価を示してい る。 従って、 図 1 5は、 反射率が低いほど、 また、 凹凸形状の曲率半径が大きい ほど、 反射領域の面»が小さいほど、 露光量のマージンが大きいことを意味して いる。  FIG. 15 shows an example of the relationship between the amount of exposure and the reflectance of the semiconductor wafer 21 and the unevenness of the semiconductor wafer 21. The vertical line in FIG. 15 shows the same evaluation of the reflectance and the uneven shape as the vertical line in FIG. Therefore, FIG. 15 indicates that the lower the reflectance, the larger the radius of curvature of the concave-convex shape, and the smaller the surface of the reflection region, the larger the exposure dose margin.
また、 半導体ウェハ 2 1内の各領域で凹凸形状の状態は異なり、 露光量のマー ジンは異なる。 従って、 最もマージンが小さいところ、 すなわち、 凹凸の曲率半 径が小さく、 反射領域の面 »の大きな領域を、 図 7の装 Sによって特定し、 この 領域における最適な露光量および焦点位 Sを管理値と定めて、 当該半導体ウェハ 2 1の露光作業を行う。  In addition, the state of the uneven shape in each region in the semiconductor wafer 21 is different, and the margin of the exposure amount is different. Therefore, the area where the margin is the smallest, that is, the area where the curvature radius of the unevenness is small and the surface of the reflection area is large is specified by the device S in FIG. 7, and the optimal exposure amount and focal position S in this area are managed. The exposure operation of the semiconductor wafer 21 is performed with the value determined.
以下、 図 1 3のフローチャートによって本実施例の半導体集積回路装置の製造 方法の作用の一例を説明する。  Hereinafter, an example of the operation of the method for manufacturing a semiconductor integrated circuit device according to the present embodiment will be described with reference to the flowchart in FIG.
まず、 図 1 4に例示されるような、 平坦化のためのガラス膜 2 1 dの形成条件 と反射率および凹凸形伏との関係を求める。 同時に、 図 1 5に伊 j示される露光条 件と反射率および凹凸形状との関係、 および管理値を求める (ステップ 2 0 0 ) c 次に、 最適膜形成条件で半導体ウェハ 2 1にガラス膜 2 I dを形成する (ステ ップ 2 0 1 ) 。  First, the relationship between the formation conditions of the glass film 21d for flattening, as illustrated in FIG. At the same time, the relationship between the exposure conditions shown in Figure 15 and the reflectance and the irregularities, and the control values are obtained (Step 200). C Next, a glass film is formed on the semiconductor wafer 21 under the optimum film formation conditions. 2 Id is formed (step 201).
次に、 抜き取り検査により、 半導体ウェハ 2 1の反射率および凹凸形状を釗定 する (ステップ 2 0 2 ) 。 Next, the reflectance and the uneven shape of the semiconductor wafer 21 were measured by a sampling inspection. Yes (Step 202).
次に、 反射率および凹凸形伏が許容範囲内か否かを判定し (ステップ 2 0 3 ) - 許容範囲内ならば、 現在の最適膜形成条件でのガラス膜 2 1 dの形成を铳行する ( 次に、 凹凸形状が許容 15囲内でないならば、 現在の最適膜形成条件を補正し ( ステップ 2 0 4 ) 、 ロッ ト内の先行する半導体ゥヱハ 2 1 に対するフォ ト レジス 卜 2 1 f (本実施例の埸合、 一例として単層のフォ 卜レジス 卜 2 1 f を用いる) の形成、 露光および現像を行う (ステップ 2 0 5 ) 。 なお、 この露光現像処理で は、 ステップ 2 0 0において求められた、 最もマージンの厳しい領域を基に設定 された管理値を用いて露光量や焦点位 Sが管理される。 また、 必要に応じて、 フ オ ト レジス ト 2 1 f が彼着した状態の半導体ゥヱハ 2 1 に対して、 図 7に例示し た装置で凹凸形状や反射率の測定を行い、 露光条件を補正してもよい。 Next, it is determined whether or not the reflectance and the unevenness are within the allowable range (step 203). If the reflectivity and the unevenness are within the allowable range, the glass film 21 d is formed under the current optimum film forming conditions. ( Next, if the concavo-convex shape is not within the allowable 15 range, the current optimum film formation conditions are corrected (step 204), and the photo resist 21 1 f ( In the case of the present embodiment, the formation, exposure and development of a single-layer photo resist 21 f are used as an example (Step 205). Exposure amount and focus position S are managed using the management values set based on the area with the tightest margin, which was determined in step 2. In addition, the photo resist 21 f is attached if necessary. For the semiconductor wafer 21 in the state shown in FIG. Performs a measurement of the reflectance, may be corrected exposure conditions.
そして、 半導体ゥヱハ 2 1に形成されたフォ 卜レジス ト 2 1 f のパターンの形 状が正常か否かを調べる (ステップ 2 0 6 ) 。  Then, it is checked whether or not the pattern of the photo-register 21f formed on the semiconductor substrate 21 is normal (step 206).
フォ トレジス ト 2 1 f のパターンの形伏が正常である埸合には、 次の、 フォ ト レジス ト 2 1 f のパターンをマスクとするエツチングに進む (ステップ 2 0 7 ) c このエッチングで半導体ウェハ 2 1の表面に形成されたエッチングパターンが 正常か否か (ショートゃ断線等の不良の有無) を調べる (ステップ 2 0 8 ) 。 Follower The Torejisu Doo 2 1 form Fushimi of f pattern is normal埸合, follows the Photo a pattern of registry 2 1 f proceeds to etching of a mask (Step 2 0 7) c Semiconductor etching It is checked whether or not the etching pattern formed on the surface of the wafer 21 is normal (whether or not there is a defect such as a short circuit or a disconnection) (step 208).
エッチングパターンが正常の埸合には、 ステップ 2 0 4で補正された膜形成条 件で、 ロッ ト内の後続の半導体ウェハ 2 1の製造プロセスを実行する (ステップ 2 0 9 )  If the etching pattern is normal, the manufacturing process of the subsequent semiconductor wafer 21 in the lot is executed under the film formation conditions corrected in step 204 (step 209).
—方、 ステップ 2 0 6におけるフォ トレジス 卜 2 1 f のパターンの形伏の判定、 およびステップ 2 0 8におけるエッチングパターンの形状の判定の少なく とも一 方において不良と判定された埸合、 プロセスを変更する (ステップ 2 1 0 ) 。 具 体的には、 前述の単層のフォ トレジス 卜 2 1 f の代わりに、 凹凸や反射率の增大 に起因する不良発生に対して有効な、 反射防止膜等を含む多層フォ ト レジス トを 用いるフォ トリソグラフィ プロセスに変更し、 変更後のフォ 卜 リ ソグラフィ プロ セスで、 同一ロッ ト内の後続の半導体ゥヱハ 2 1を着工する (ステップ 2 1 1 ) 以上、 説明したように、 本実施例の半導体集積回路装 Sの製造方法によれば、 露光条件のマージンの小さい、 凹凸形状や反射率を有する半導体ウェハ 2 1内の 領域を特定して露光条件の管理値を決定するとともに、 凹凸形状や反射率の変動 に応じて露光条件を補正することができる。 On the other hand, if at least one of the determination of the pattern shape of the photoresist 21 f in step 206 and the determination of the shape of the etching pattern in step 208 is determined to be defective, the process is performed. Change (step 210). Specifically, instead of the above-described single-layer photoresist 21 f, a multilayer photoresist including an anti-reflection film or the like, which is effective against failure caused by unevenness or a large reflectance. In the photolithography process after the change, the subsequent semiconductor wafer 21 in the same lot is started by the changed photolithography process (step 211). According to the manufacturing method of the example semiconductor integrated circuit device S, the semiconductor wafer 21 having a small margin of the exposure condition, a concave-convex shape, and a reflectance. In addition to determining the management value of the exposure condition by specifying the region, the exposure condition can be corrected according to the fluctuation of the uneven shape and the reflectance.
また、 平坦化のためのガラス膜 2 1 dの形成条件を、 半導体ウェハ 2 1の表面 の凹凸形伏や反射率の観点から最適化することができるとともに、 形成条件の補 正が可能である。  In addition, the conditions for forming the glass film 21 d for planarization can be optimized from the viewpoint of the unevenness of the surface of the semiconductor wafer 21 and the reflectance, and the formation conditions can be corrected. .
この結果、 半導体ゥヱハ 2 1 にフォ トリソグラフィ によって形成される回路パ ターンの寸法変動誤差、 断線不良、 ショー ト不良等を低減して、 半導体集穣回路 装置の製造歩留りを向上させることができる。  As a result, it is possible to reduce a dimensional variation error, a disconnection defect, a short defect, and the like of a circuit pattern formed on the semiconductor substrate 21 by photolithography, and to improve a manufacturing yield of the semiconductor integrated circuit device.
また、 半導体ゥ ハ 2 1の表面の反射率や凹凸形伏の伏態に応じて、 たとえば 通常の単層のフォ 卜レジス ト 2 1 f ではプロセス不良が多発すると予想される場 合、 工程はより複雑になり、 スループッ 卜は低下するものの、 反射率や凹凸形状 に起因する不良の発生しにくい反射防止膜を含む多層レジス トを使用するプロセ スに的確に切り換えることが可能となり、 歩留りとスループッ 卜のバランスの最 適化を実現することができる。  If the process failure is expected to occur frequently in the normal single-layer photo resist 21 f according to the reflectivity of the surface of the semiconductor substrate 21 and the state of the irregularities, for example, the process is performed as follows. Although the process becomes more complicated and the throughput is reduced, it is possible to accurately switch to a process using a multilayer resist including an antireflection film that is less likely to cause defects due to the reflectance and the uneven shape, thereby improving the yield and throughput. The optimization of the balance of the birds can be realized.
図 1 6は、 本発明の他の実施例である半導体集植回路装匱の製造方法に用いら れる、 半導体ウェハ上の反射率や凹凸形伏を刺定する装 Sの構成の他の例を示す 概念図である。  FIG. 16 shows another example of the configuration of the device S for measuring the reflectance and the unevenness on the semiconductor wafer used in the method for manufacturing a semiconductor integrated circuit device according to another embodiment of the present invention. FIG.
この図 1 6に例示される光学系は、 共焦点顕微镜と等価な光学系であり、 光源 5 1 はレーザ、 H gランプ、 X eランブ等が一般的に用いられる。 照明光 5 1 a は、 コンデンサレンズ 5 2、 ハーフ ミ ラー 5 3、 可動照明校り 5 4、 投影レンズ 5 5を通して、 上下動可能な支持台上に載 aされた半導体ウェハ 2 1上にスポッ ト伏に照射される。 この可動照明校り 5 4は、 たとえば、 円盤 5 4 bに多数の透 孔 5 4 aを形成した構造となっており、 これらの透孔 5 4 aが照明光 5 1 a、 お よび反射光 5 1 bの光路を横切るように、 当該円盤 5 4 bを高速に回転させる動 作が行われる。 このため、 半導体ゥ Xハ 2 1の表面は、 干渉性のない照明光 5 1 aのスポッ 卜の走査によって時間的に均一な照度で照明され、 これにより、 照明 光 5 1 aの反射光 5 1 bから干渉等の影響を排除することができる。  The optical system illustrated in FIG. 16 is an optical system equivalent to a confocal microscope, and a laser, an Hg lamp, an Xe lamp, or the like is generally used as the light source 51. The illumination light 51a passes through a condenser lens 52, a half mirror 53, a movable illumination lens 54, and a projection lens 55, and is spotted on a semiconductor wafer 21 mounted on a vertically movable support base. Irradiated to the bottom. The movable lighting school 54 has, for example, a structure in which a number of through-holes 54a are formed in a disk 54b, and these through-holes 54a are illumination light 51a and reflected light. An operation of rotating the disk 54b at high speed is performed so as to cross the optical path of 51b. For this reason, the surface of the semiconductor X X 21 is illuminated with a uniform illumination over time by scanning of the spot of the illumination light 51 a having no coherence. The influence of interference or the like can be eliminated from 1b.
半導体ウェハ 2 1上で反射した反射光 5 1 bは、 照明光 5 1 aと同じ経路を逆 に進み、 再び可動照明絞り 5 4、 ハーフ ミ ラー 5 3、 投影レンズ 5 6を通して、 撮像素子等で構成される検出器 5 7に結像される。 The reflected light 51b reflected on the semiconductor wafer 21 travels in the same path as the illumination light 51a in the opposite direction, and again passes through the movable illumination stop 54, the half mirror 53, and the projection lens 56. An image is formed on a detector 57 composed of an image sensor or the like.
半導体ゥヱハ 2 1が平面の場合、 ベス トフォーカスの位 Sで光量は最大となり, フォーカスが半導体ウェハ 2 1の上にずれても、 下にずれても光 Sは低下する。 半導体ウェハ 2 1が凹面の埸合、 フォーカスの位置が半導体ウェハ 2 1の上の位 置で光置は最大となり、 その他の位置では光量は低下する。 半導体ウェハが凸面 の場合、 フォーカスの位置が半導体ウェハの下の位置で光量は最大となり、 その 他の位置では光量は低下する。  When the semiconductor substrate 21 is flat, the light amount becomes maximum at the position S of the best focus, and the light S decreases even if the focus shifts above or below the semiconductor wafer 21. When the semiconductor wafer 21 has a concave surface, the light position becomes maximum when the focus position is above the semiconductor wafer 21, and the light amount decreases at other positions. When the semiconductor wafer is convex, the light amount becomes maximum when the focus position is below the semiconductor wafer, and decreases at other positions.
上記の関係から、 半導体ウェハ 2 1上の凹凸形状を測定することができる。 こ れにより、 前記実施例 1の埸合と同様の効果が得られるとともに、 反射光 5 1 b から干渉等の影響を排除できるので、 反射光 5 1 bの 3次元空間での光強度をよ り精度よく測定することができる。  From the above relationship, the uneven shape on the semiconductor wafer 21 can be measured. Thereby, the same effect as in the case of the first embodiment can be obtained, and the influence of interference or the like can be eliminated from the reflected light 51b, so that the light intensity of the reflected light 51b in the three-dimensional space can be improved. Measurement can be performed with high accuracy.
本発明は、 上述したように構成されているために次のような効果を得ることが できる。  Since the present invention is configured as described above, the following effects can be obtained.
( 1 ) 半導体ウェハ上における露光量と焦点位置の許容 15囲が最も小さい場所を 短時間で発見して製造プロセスの管理にフィ一ドバックすることができる。  (1) It is possible to find out in a short time a place on a semiconductor wafer where the allowable range of the exposure amount and the focal position is the smallest, and to feed back to the management of the manufacturing process.
( 2 ) 半導体ウェハ上の反射率や凹凸形状等の変動を正確に剃定して製造プロセ スにフィードバックして、 製造プロセスの最適化および歩留りの向上を実現する ことができる。  (2) It is possible to accurately determine fluctuations in the reflectivity and irregularities on a semiconductor wafer and feed it back to the manufacturing process, thereby optimizing the manufacturing process and improving the yield.
( 3 ) ハレーショ ンやショート等の不良を未然に防止して、 半導体集稜回路装置 の製造プロセスにおける歩留りを向上させることができる。  (3) It is possible to prevent defects such as haration and short circuit, and to improve the yield in the manufacturing process of the semiconductor converging circuit device.
産業上の利用可能性 Industrial applicability
以上のように、 本発明の半導体集積回路装置の製造方法は、 半導体集稜回路装 置の製造プロセスにおける半導体ゥ Xハの表面形伏に起因する製品不良の対策に 有効である。  As described above, the method for manufacturing a semiconductor integrated circuit device according to the present invention is effective in countermeasures for a product defect caused by the surface roughness of the semiconductor device X in the manufacturing process of the semiconductor congestion circuit device.

Claims

請 求 の 範 囲 The scope of the claims
1 . ( a ) 凹凸形状を有する半導体ウェハ上に検査光を照射し、 パターン面から 離れた空間位置の光強度分布を測定して、 前記半導体ウェハ上の前記凹凸形伏の 曲率半径と面積を求めることにより、 露光量と焦点位置の許容範囲が小さい領域 を特定し、 前記許容 15囲が小さい領域を基準として露光条件の管理値を決定する ステップと、 1. (a) Irradiate inspection light onto a semiconductor wafer having an uneven shape, measure the light intensity distribution at a spatial position distant from the pattern surface, and determine the radius of curvature and area of the unevenness on the semiconductor wafer. Determining the exposure value and the focus position in a small allowable range, and determining the management value of the exposure condition based on the small allowable 15 range; and
( b ) 前記管理値を用いて前記半導体ウェハの露光処理を行うステツプと、 を含むことを特徴とする半導体集積回路装 Bの製造方法。  (b) a step of performing an exposure process on the semiconductor wafer using the control value.
2 . 請求の範囲 1項記載の半導体集植回路装置の製造方法において、 2. The method for manufacturing a semiconductor integrated circuit device according to claim 1,
前記半導体ゥ Xハに対する前記検査光の焦点位置と、 前記光強度分布のピーク 位置との差から前記曲率半径を求め、 前記ピーク位 Sの光強度から前記面 »を求 めることを特徴とする半導体集 «回路装置の製造方法。  Determining the radius of curvature from a difference between a focal position of the inspection light with respect to the semiconductor X and a peak position of the light intensity distribution, and determining the surface »from the light intensity at the peak position S. Semiconductor device manufacturing method.
3 . 請求の範囲 1項記載の半導体集積回路装匿の製造方法において、  3. The method for manufacturing a concealed semiconductor integrated circuit according to claim 1,
前記半導体ウェハの露光処理に用いられる露光光を、 前記光強度分布の制定の ための前記検査光として用いることを特徴とする半導体集積回路装 Sの製造方法 A method of manufacturing a semiconductor integrated circuit device S, wherein exposure light used for exposure processing of the semiconductor wafer is used as the inspection light for establishing the light intensity distribution.
4 . »求の範囲 1項記載の半導体集稼回路装置の製造方法において、 4. In the method for manufacturing a semiconductor integrated circuit device according to item 1,
前記半導体ゥ -ハの露光処理に用いられるマスクパターンを透過した前記検査 光によって照明することにより、 前記光強度分布の測定を行うことを特徴とする 半導体集穣回路装置の製造方法。  A method for manufacturing a semiconductor collecting circuit device, wherein the light intensity distribution is measured by illuminating with the inspection light that has passed through a mask pattern used for exposure processing of the semiconductor wafer.
5 . 講求の範囲 1項記載の半導体集植回路装置の製造方法において、  5. Scope of the training In the method for manufacturing a semiconductor transplanted circuit device according to item 1,
前記検査光を平行光束として前記半導体ウェハに照射するケーラ照明を用いる ことを特徴とする半導体集積回路装匿の製造方法。  A method for manufacturing a semiconductor integrated circuit, comprising using a Koehler illumination for irradiating the semiconductor wafer with the inspection light as a parallel light beam.
6 . 請求の範囲 1項記載の半導体集 «回路装置の製造方法において、  6. The method for manufacturing a semiconductor integrated circuit device according to claim 1,
前記検査光のスポッ 卜で前記半導体ウェハを走査して照明する共焦点顕微镜光 学系を用いることを特徴とする半導体集積回路装 Sの製造方法。  A method for manufacturing a semiconductor integrated circuit device S, comprising using a confocal microscopic optical system that scans and illuminates the semiconductor wafer with a spot of the inspection light.
7 . ( a ) 凹凸形状を有する半導体ゥュハ上に平坦化のための平坦化膜を形成す る工程を含む半導体集積回路装 Sの製造方法であって、 7. (a) A method for manufacturing a semiconductor integrated circuit device S including a step of forming a flattening film for flattening on a semiconductor wafer having an uneven shape,
( b ) 凹凸形状を有する前記半導体ゥ ハ上に検査光を照射し、 パターン面か ら離れた空間位置の光強度分布を刺定して、 前記半導体ウェハ上の前記凹凸形状 の曲率半径および面穣と反射率を求め、 前記平坦化膜の形成条件との相関関係を 決定するステップと、 (b) Irradiating inspection light on the semiconductor wafer having the uneven shape, Inserting a light intensity distribution at a spatial position distant from the semiconductor wafer to obtain a radius of curvature, surface roughness, and reflectance of the uneven shape on the semiconductor wafer, and determining a correlation with a forming condition of the flattening film. When,
( C ) 製造工程中に前記平坦化膜が形成された前記半導体ゥ ハの表面を測定 し、 前記対応関係に基づいて前記平坦化膜の形成条件を補正するステップと、 を含むことを特徴とする半導体集穣回路装 Sの製造方法。  (C) measuring the surface of the semiconductor wafer on which the flattening film is formed during the manufacturing process, and correcting the formation condition of the flattening film based on the correspondence relationship. Semiconductor manufacturing circuit S
8 . 請求の範囲 7項記載の半導体集稜回路装置の製造方法において、  8. In the method for manufacturing a semiconductor congestion circuit device according to claim 7,
前記半導体ゥェハに対する前記検査光の焦点位 Sと、 前記光強度分布のピーク 位置との差から前記曲率半径を求め、 前記ピーク位 の光強度から前記面 ¾を求 めることを特徴とする半導体集穣回路装置の製造方法。  A semiconductor, wherein the radius of curvature is determined from a difference between a focal position S of the inspection light with respect to the semiconductor wafer and a peak position of the light intensity distribution, and the surface is determined from the light intensity at the peak position. Manufacturing method of harvesting circuit device.
9 . 諝求の範囲 7項記載の半導体集積回路装 の製造方法において、  9. The method for manufacturing a semiconductor integrated circuit device according to claim 7, wherein
前記平坦化膜の前記形成条件は、 不純物濃度、 形成温度、 成膜材料の粘度、 回 転塗布による成膜時の回転数、 のうちの少なく とも一つからなることを特徴とす る半導体集積回路装置の製造方法。  A semiconductor integrated circuit, wherein the formation condition of the flattening film includes at least one of an impurity concentration, a formation temperature, a viscosity of a film forming material, and a rotation speed during film formation by spin coating. A method for manufacturing a circuit device.
1 0 . S求の範囲 7項記載の半導体集積回路装 Sの製造方法において、  10. The method for manufacturing a semiconductor integrated circuit device S according to claim 7, wherein
前記半導体ウェハの露光処理に用いられる露光光を、 前記光強度分布の測定の ための前記検査光として用いることを特徴とする半導体集積回路装置の製造方法。  A method for manufacturing a semiconductor integrated circuit device, comprising: using exposure light used for exposure processing of the semiconductor wafer as the inspection light for measuring the light intensity distribution.
1 1 . 請求の範囲 7項記載の半導体集積回路装置の製造方法において、  11. The method for manufacturing a semiconductor integrated circuit device according to claim 7, wherein
前記半導体ウェハの露光処理に用いられるマスクパターンを透過した前記検査 光によって照明することにより、 前記光強度分布の測定を行うことを特徴とする 半導体集植回路装 Sの製造方法。  A method of manufacturing a semiconductor integrated circuit device S, wherein the light intensity distribution is measured by illuminating the inspection light transmitted through a mask pattern used for exposure processing of the semiconductor wafer.
1 2 . 請求の範囲 7項記載の半導体集積回路装 Sの製造方法において、  12. The method for manufacturing a semiconductor integrated circuit device S according to claim 7,
前記検査光を平行光束として前記半導体ウェハに照射するケーラ照明を用いる ことを特徴とする半導体集積回路装 Sの製造方法。  A method for manufacturing a semiconductor integrated circuit device S, wherein Koehler illumination for irradiating the semiconductor wafer with the inspection light as a parallel light beam is used.
1 3 . 請求の範囲 7項記載の半導体集積回路装 Sの製造方法において、  13. The method for manufacturing a semiconductor integrated circuit device S according to claim 7,
前記検査光のスポッ トで前記半導体ゥ Xハを走査して照明する共焦点顕微鏡光 学系を用いることを特徴とする半導体集積回路装 gの製造方法。  A method for manufacturing a semiconductor integrated circuit device g, comprising using a confocal microscope optical system that scans and illuminates the semiconductor laser X with a spot of the inspection light.
1 4 . ( a ) レジス トを塗布した凹凸形状を有する半導体ウェハ上に露光光を照 射し、 パターン面から離れた空間位 Sの光強度分布を測定して前記半導体ゥェハ 上の凹凸形伏の曲率半径および面 «と前記露光光における表面反射率を求め、 露 光不良を発生させる露光量との相関関係を決定するステップと、 14. (a) A semiconductor wafer having a concave and convex shape coated with a resist is irradiated with exposure light, and a light intensity distribution at a spatial position S away from the pattern surface is measured to measure the semiconductor wafer. Determining the correlation between the radius of curvature and the surface of the irregularities above and the surface reflectance of the exposure light, and determining the amount of exposure that causes exposure failure;
( b ) 前記相関関係に基づいて II光工程中における露光量を補正するステツプ を含むことを特徴とする半導体集積回路装置の製造方法。  (b) A method for manufacturing a semiconductor integrated circuit device, comprising a step of correcting an exposure amount during the II light process based on the correlation.
1 5 . 請求の範囲 1 4項記載の半導体集積回路装置の製造方法において、 前記半導体ゥ Xハに対する前記露光光の焦点位置と、 前記光強度分布のピーク 位置との差から前記曲率半 を求め、 前記ビーク位置の光強度から前記面稜を求 めることを特徴とする半導体集積回路装 Sの製造方法。  15. The method for manufacturing a semiconductor integrated circuit device according to claim 14, wherein the half curvature is obtained from a difference between a focal position of the exposure light with respect to the semiconductor X and a peak position of the light intensity distribution. A method of manufacturing the semiconductor integrated circuit device S, wherein the surface ridge is determined from the light intensity at the beak position.
1 6 . 請求の範囲 1 4項記載の半導体集積回路装置の製造方法において、 前記半導体ウェハの露光処理に用いられるマスクパターンを透過した前記露光 光によって照明することにより、 前記光強度分布の測定を行うことを特徴とする 半導体集 9 [回路装 の製造方法。  16. The method for manufacturing a semiconductor integrated circuit device according to claim 14, wherein the light intensity distribution is measured by illuminating with the exposure light transmitted through a mask pattern used for exposure processing of the semiconductor wafer. Semiconductor collection 9 [Circuit device manufacturing method.
1 7 . 請求の範囲 1 4項記載の半導体集積回路装 Sの製造方法において、 前記露光光を平行光束として前記半導体ウェハに照射するケーラ照明を用いる ことを特徴とする半導体集積回路装置の製造方法。  17. The method for manufacturing a semiconductor integrated circuit device S according to claim 14, wherein a Koehler illumination for irradiating the semiconductor wafer with the exposure light as a parallel light beam is used. .
1 8 . 講求の範囲 1 4項記載の半導体集欲回路装置の製造方法において、 前記露光光のスポッ トで前記半導体ウェハを走査して照明する共焦点顕微镜光 学系を用いることを特徴とする半導体集 «回路装 Sの製造方法。  18. The method of manufacturing a semiconductor convergence circuit device according to claim 14, wherein a confocal microscopy system that scans and illuminates the semiconductor wafer with a spot of the exposure light is used. Semiconductors «Circuit device S manufacturing method.
1 9 . ( a ) 凹凸形伏を有する半導体ゥ ハ上に検査光を照射し、 パターン面か ら離れた空間位 Sの光強度分布を測定して、 前記半導体ウェハ上の前記凹凸形伏 の曲率半径と面積を求めることにより、 露光量と焦点位 Sの許容範囲が小さい領 域を特定し、 前記許容範囲が小さい領域を基準として露光条件の管理値を決定す るステップと、  19. (a) Irradiation of inspection light onto a semiconductor wafer having irregularities and measurement of the light intensity distribution at a spatial position S distant from the pattern surface, and measurement of the irregularities on the semiconductor wafer. Determining a radius of curvature and an area to specify a region where the allowable range of the exposure amount and the focal position S is small, and determining a management value of the exposure condition based on the region where the allowable range is small;
( b ) 凹凸形伏を有する前記半導体ウェハ上に検査光を照射し、 パターン面か ら離れた空間位 Bの光強度分布を測定して、 前記半導体ウェハ上の前記凹凸形伏 の曲率半径および面穂と反射率を求め、 前記半導体ウェハ上に平坦化のための平 坦化膜の形成条件との相関関係を決定するステツプと、  (b) irradiating inspection light onto the semiconductor wafer having the irregularities, measuring a light intensity distribution of a spatial position B away from the pattern surface, and measuring a radius of curvature of the irregularities on the semiconductor wafer and A step of obtaining a face and a reflectance, and determining a correlation with a condition for forming a flattening film for flattening on the semiconductor wafer;
( c ) 最適の前記平坦化膜の形成条件を用いて平坦化のための前記平坦化膜の 形成を行うステツプと、 (c) using the optimum conditions for forming the planarizing film to form the planarizing film for planarization. A step of forming
( d ) 前記半導体ウェハの前記反射率および前記凹凸形状の曲率半径および面 穰を測定するステップと、  (d) measuring the radius of curvature and surface curvature of the reflectance and the unevenness of the semiconductor wafer;
( e ) 測定された前記半導体ゥ ハの前記反射率および前記凹凸形状の曲率半 径および面積が許容範囲から逸脱した場合には、 前記相関関係に基づいて現在の 前記平坦化膜の形成条件を補正するステツプと、  (e) If the measured reflectance and the radius of curvature and area of the unevenness of the semiconductor wafer deviate from an allowable range, the current conditions for forming the flattening film are determined based on the correlation. Steps to correct,
( f ) 前記半導体ゥ Xハが含まれるロッ 卜内で先行する前記半導体ウェハに対 して前記管理値を用いて露光および現像処理を施すステツプと、  (f) a step of exposing and developing the preceding semiconductor wafer in the lot containing the semiconductor X by using the control value,
( g ) 前記露光および現像処理によって形成されたフォ 卜レジス トパターンを 検査するステップと、  (g) inspecting the photo resist pattern formed by the exposure and development processing;
( h ) 前記フオ ト レジス 卜パターンの検査結果が正常の場合、 前記フオ ト レジ ス トパターンをマスクとするエッチングを実行するステップと、  (h) when the inspection result of the photo resist pattern is normal, performing etching using the photo resist pattern as a mask;
( i ) 前記前記エッチングによって得られたエッチングパターンを検査するス テツァと、  (i) a stezer for inspecting an etching pattern obtained by the etching,
( j ) 前記フオ ト レジス 卜パターンの検査および前記エッチングパターンの検 査の少なく とも一方において異常と判定された場合に、 多層フォ 卜レジストを用 いるプロセスに変更するステツプと、  (j) a step of changing to a process using a multilayer photoresist if at least one of the inspection of the photoresist pattern and the inspection of the etching pattern is determined to be abnormal;
を含むことを特徴とする半導体集積回路装置の製造方法。 A method for manufacturing a semiconductor integrated circuit device, comprising:
PCT/JP1995/000841 1995-04-27 1995-04-27 Manufacture of semiconductor integrated circuit device WO1996034406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000841 WO1996034406A1 (en) 1995-04-27 1995-04-27 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000841 WO1996034406A1 (en) 1995-04-27 1995-04-27 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO1996034406A1 true WO1996034406A1 (en) 1996-10-31

Family

ID=14125892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000841 WO1996034406A1 (en) 1995-04-27 1995-04-27 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
WO (1) WO1996034406A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140476A (en) * 1997-07-18 1999-02-12 Nikon Corp Method for selecting exposing condition and inspection device used therefor
JP2007142292A (en) * 2005-11-22 2007-06-07 Advanced Mask Inspection Technology Kk Substrate inspection apparatus
US8003076B2 (en) 1999-04-20 2011-08-23 Target Discovery, Inc. Methods for conducting metabolic analyses
JP2018519524A (en) * 2015-06-29 2018-07-19 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring height on a semiconductor wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168715A (en) * 1990-10-31 1992-06-16 Nec Yamagata Ltd Forming device for photoresist pattern
JPH06342746A (en) * 1993-06-01 1994-12-13 Matsushita Electric Ind Co Ltd Simulating method for shape of resist

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168715A (en) * 1990-10-31 1992-06-16 Nec Yamagata Ltd Forming device for photoresist pattern
JPH06342746A (en) * 1993-06-01 1994-12-13 Matsushita Electric Ind Co Ltd Simulating method for shape of resist

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140476A (en) * 1997-07-18 1999-02-12 Nikon Corp Method for selecting exposing condition and inspection device used therefor
US8003076B2 (en) 1999-04-20 2011-08-23 Target Discovery, Inc. Methods for conducting metabolic analyses
JP2007142292A (en) * 2005-11-22 2007-06-07 Advanced Mask Inspection Technology Kk Substrate inspection apparatus
JP2018519524A (en) * 2015-06-29 2018-07-19 ケーエルエー−テンカー コーポレイション Method and apparatus for measuring height on a semiconductor wafer

Similar Documents

Publication Publication Date Title
US6706456B2 (en) Method of determining exposure conditions, exposure method, device manufacturing method, and storage medium
KR101247898B1 (en) Position detection apparatus, exposure apparatus, method of manufacturing device, position detection method, and exposure method
JP3631094B2 (en) Projection exposure apparatus and device manufacturing method
TWI435182B (en) Angularly resolved scatterometer and inspection method
KR20020015972A (en) Pattern inspection apparatus, and exposure apparatus control system using same
KR20010085449A (en) Method of measuring aberration in an optical imaging system
KR20100028560A (en) Exposure method and electronic device manufacturing method
TWI771783B (en) Lithography apparatus, pattern forming method, and article manufacturing method
US6879380B2 (en) Method for evaluating lithography system, method for adjusting substrate-processing apparatus, lithography system, and exposure apparatus
TW201734435A (en) Method and device for focusing in an inspection system
US7142284B2 (en) Position detector, position detecting method, and exposure apparatus having the same
JPH11317348A (en) Projection aligner and method for manufacturing device using the same
TW201809632A (en) Variable corrector of a wave front
JP3200244B2 (en) Scanning exposure equipment
US8345221B2 (en) Aberration measurement method, exposure apparatus, and device manufacturing method
TWI656410B (en) Exposure device, exposure method, and article manufacturing method
JP2001244183A (en) Projection exposure system
KR102153482B1 (en) How to control the operation of a lithographic apparatus
US7499179B2 (en) Measurement method and apparatus, exposure apparatus, exposure method, and adjusting method
JP3710321B2 (en) Exposure amount control method, exposure apparatus, and device manufacturing method
WO1996034406A1 (en) Manufacture of semiconductor integrated circuit device
JP3673731B2 (en) Exposure apparatus and method
JP2002015992A (en) Lithographic process, evaluating method for lithography system, adjusting method for substrate-processing apparatus, lithography system, method and apparatus for exposure, and method for measuring condition of photosensitive material
JP3313932B2 (en) Projection exposure equipment
JPH0729816A (en) Projection aligner and fabrication of semiconductor element employing it

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase