JPH06342635A - Image display device - Google Patents

Image display device

Info

Publication number
JPH06342635A
JPH06342635A JP15265593A JP15265593A JPH06342635A JP H06342635 A JPH06342635 A JP H06342635A JP 15265593 A JP15265593 A JP 15265593A JP 15265593 A JP15265593 A JP 15265593A JP H06342635 A JPH06342635 A JP H06342635A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
electron
image display
element substrate
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15265593A
Other languages
Japanese (ja)
Inventor
Shinichi Kawate
信一 河手
Yasue Sato
安栄 佐藤
Yoshikazu Sakano
嘉和 坂野
Kumiko Kaneko
久美子 金子
Yasuko Tomita
康子 富田
Yoshiyuki Osada
芳幸 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15265593A priority Critical patent/JPH06342635A/en
Publication of JPH06342635A publication Critical patent/JPH06342635A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members

Abstract

PURPOSE:To improve atmospheric pressure-proofness, to prevent deformation breakage of anti atmospheric pressure support member, so as to improve reliability by increasing the arrangement density of the support member in the center part, in vacuum atmosphere between an element substrate and a face plate. CONSTITUTION:An image display device comprises an element substrate 11 of blue plate glass, on which a plurality of electron emission elements each consisting of element electrodes 12, 13 and a thin film 14, are loaded, and a face plate 17, for which a phosphor 16 having a metal back is provided on the surface of a blue plate glass sheet 15. A plurality of columnar anti- atmospheric pressure support members 18 are provided in the vacuum atmosphere between the substrate 11 and the plate 17, and the arrangement density of the member 18 is increased in the center part. By increasing the arrangement density of the anti-atmospheric pressure support member in the center part of the vacuum region and thereby improving the atmospheric pressure resistance, the deformation or loss of the support member due to atmospheric pressure during vacuum discharging process and the like, is prevented, and the reliability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子放出素子を用いた
画像表示装置に関し、特に素子基板とフェースプレート
との間に耐大気圧支持部材を設けた画像表示装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image display device using an electron-emitting device, and more particularly to an image display device provided with an atmospheric pressure resistant support member between an element substrate and a face plate.

【0002】[0002]

【従来の技術】従来より電子放出素子を用いた画像表示
装置には、ブランン管を用いたもののほか、フェースプ
レートと素子基板に挟まれた真空パネル内において、電
子放出素子から放出される電子ビームを加速して、蛍光
体に照射し、蛍光体を発光させて画像を表示する薄型の
画像表示装置が提案されている。
2. Description of the Related Art Conventionally, image display devices using electron-emitting devices include those using a Brun tube, and electron beams emitted from electron-emitting devices in a vacuum panel sandwiched between a face plate and a device substrate. There has been proposed a thin image display device that accelerates light, irradiates the phosphor, and causes the phosphor to emit light to display an image.

【0003】電子放出素子を複数個設けた画像表示装置
においては、画像表示装置を構成する外周器内部を減圧
下に保ち、かつフェースプレートと素子基板の厚さを薄
くして軽量化を図るため、フェースプレートと素子基板
の間に耐大気圧支持部材を用いる。
In an image display device provided with a plurality of electron-emitting devices, in order to keep the inside of the peripheral device constituting the image display device under reduced pressure and to reduce the thickness by reducing the thickness of the face plate and the device substrate. An atmospheric pressure resistant support member is used between the face plate and the element substrate.

【0004】上記耐大気圧支持部材の配置法としては、
例えば、Ivor Brodie,”Advanced
tech.:flat cold−cathod C
RTs”, Information Displa
y,,17(1989)に記載がある。これは例えば
画像表示装置において、装置上面図である図10
(a),(b)に示すように、耐大気圧支持部材18と
して四角柱型の支持部材が格子点状に、あるいは円柱型
の支持部材が千鳥状に、すなわち全面に等しい分布密度
で配置されていた。
As a method of arranging the above atmospheric pressure resistant support member,
For example, Ivor Brodie, "Advanced
tech. : Flat cold-cathod C
RTs ", Information Display
y, 1 , 17 (1989). This is a top view of the image display device, for example, as shown in FIG.
As shown in (a) and (b), as the atmospheric pressure resistant support members 18, square columnar type support members are arranged in a lattice point shape, or columnar type support members are arranged in a staggered manner, that is, with an equal distribution density over the entire surface. It had been.

【0005】また、電子放出素子を複数個設けた素子基
板を用いた画像表示装置の断面図の一例として、本出願
人により技術開示されている特開平2−299136の
画像表示装置に前述の四角柱型の支持部材を格子点状に
等しい分布密度で配置したものを図11に示す。図11
において、11は青板ガラスからなる素子基板、12及
び13は素子電極、14は電子放出部を含む薄膜、17
は青板ガラス15の表面にメタルバックを有する蛍光体
16を設けたフェースプレート、18は四角柱型の耐大
気圧支持部材、19は外枠である。図11の画像表示装
置の内部は排気管(図示せず)を通して圧力を約1×1
-6torrの真空度に排気された後、排気管が封じ切
られている。本装置は、素子電極12及び13に電圧を
印加することで電子放出素子より電子をビーム状に放出
させ、該電子を蛍光体16に印加された正の高電圧によ
って加速させて蛍光体16に衝突させ、これを発光させ
ることによって画像を得るものである。本図では図示し
ていないが、上記電子ビームの軌道を制御するためにグ
リッド等の制御電極が適宜設けられる。
As an example of a sectional view of an image display device using an element substrate provided with a plurality of electron-emitting devices, the image display device disclosed in Japanese Patent Application Laid-Open No. 2-299136 of the present applicant is disclosed in the above-mentioned four. FIG. 11 shows a prism-shaped support member arranged in a lattice point shape with an equal distribution density. Figure 11
11 is an element substrate made of soda lime glass, 12 and 13 are element electrodes, 14 is a thin film including an electron emitting portion, 17
Is a face plate in which the phosphor 16 having a metal back is provided on the surface of the blue plate glass 15, 18 is a quadrangular prism type atmospheric pressure resistant support member, and 19 is an outer frame. The inside of the image display device of FIG. 11 has a pressure of about 1 × 1 through an exhaust pipe (not shown).
After being evacuated to a vacuum degree of 0 -6 torr, the exhaust pipe is closed. This device causes a voltage to be applied to the device electrodes 12 and 13 to cause the electron-emitting device to emit electrons in a beam shape, and the electrons are accelerated by the positive high voltage applied to the phosphor 16 to cause the phosphor 16 to emit light. An image is obtained by colliding and causing this to emit light. Although not shown in the figure, a control electrode such as a grid is appropriately provided to control the trajectory of the electron beam.

【0006】次に電子放出素子について述べる。従来、
電子放出素子として熱電子源と冷陰極電子源の2種類が
知られている。冷陰極電子源には電界放出型(以下、F
E型と略す)、金属/絶縁層/金属型(以下、MIM型
と略す)や表面伝導型電子放出素子(以下、SCE型と
略す)等がある。
Next, the electron-emitting device will be described. Conventionally,
Two types of electron emitters, a thermoelectron source and a cold cathode electron source, are known. The field emission type (hereinafter, F
E type), metal / insulating layer / metal type (hereinafter abbreviated as MIM type), surface conduction electron-emitting device (hereinafter abbreviated as SCE type), and the like.

【0007】FE型の例としては、W. P. Dyk
e & W. W. Dolan,”Field em
ission”, Advance in Elect
ron Physics, ,89(1956)や
C. A. Spindt,”Physical pr
operties of thin−film fie
ld emission cathodes with
molybdenum cones”, J. Ap
pl. Phys., 47,5248(1976)等
が知られている。
As an example of the FE type, W. P. Dyk
e & W. W. Dolan, "Field em
"Ission", Advance in Elect
ron Physics, 8 , 89 (1956) and C.I. A. Spindt, "Physical pr
operations of thin-film pie
ld emission cathodes with
mollybdenum cones ”, J. Ap.
pl. Phys. , 47 , 5248 (1976) and the like are known.

【0008】MIM型の例としては、C. A. Me
ad, ”The tunnel−emission
amplifier”, J. Appl. Phy
s.,32,646(1961)等が知られている。
As an example of the MIM type, C.I. A. Me
ad, "The tunnel-emission
ampli? er ", J. Appl. Phy
s. , 32 , 646 (1961) and the like are known.

【0009】SCE型の例としては、M. I. El
inson, Radio Eng. Electro
n Phys., 10,1290(1965)等があ
る。SCEは基板上に形成された小面積の薄膜に、膜面
に平行に電流を流すことにより、電子放出が生ずる現象
を利用するものである。
As an example of the SCE type, M. I. El
inson, Radio Eng. Electro
n Phys. , 10 , 1290 (1965) and the like. The SCE utilizes a phenomenon in which electron emission occurs when a current is passed through a thin film having a small area formed on a substrate in parallel with the film surface.

【0010】この表面伝導型電子放出素子としては、前
記エリンソン等によるSnO2薄膜を用いたもの、Au
薄膜によるもの[G. Dittmer: ”Thin
Solid Films”, 9,317(197
2)]、In23/SnO2薄膜によるもの[M. H
artwell and C. G. Fonsta
d: ”IEEE Trans. ED Con
f.”, 519,(1975)]、カーボン薄膜によ
るもの[荒木久 他:真空、第26巻、第1号、22頁
(1983)]等が報告されている。
As the surface conduction electron-emitting device, one using the SnO 2 thin film by Erinson et al.
Thin film [G. Dittmer: "Thin
Solid Films ", 9, 317 (197)
2)], by In 2 O 3 / SnO 2 thin film [M. H
artwell and C.I. G. Fonsta
d: "IEEE Trans. ED Con
f. , 519, (1975)], carbon thin films [Hiraki Araki et al .: Vacuum, Vol. 26, No. 1, page 22 (1983)] and the like.

【0011】これらの表面伝導型電子放出素子の典型的
な素子構成として前述のM.ハートウェルの素子構成を
図12に示す。同図において121は絶縁性基板であ
る。123はスパッタで形成されたH型形状金属酸化物
薄膜等からなる電子放出部形成用薄膜であり、後述のフ
ォーミングと呼ばれる通電処理により電子放出部122
が形成される。
As a typical element structure of these surface conduction electron-emitting devices, the above-mentioned M. The Hartwell device configuration is shown in FIG. In the figure, 121 is an insulating substrate. Reference numeral 123 denotes an electron emitting portion forming thin film formed of an H-shaped metal oxide thin film formed by sputtering, and the electron emitting portion 122 is formed by an energization process called forming, which will be described later.
Is formed.

【0012】従来、これらの表面伝導型電子放出素子に
おいては、電子放出を行う前に電子放出部形成用薄膜1
23を予めフォーミングと呼ばれる通電処理によって電
子放出部122を形成するのが一般的であった。即ち、
フォーミングとは前記電子放出部形成用薄膜123の両
端に電圧を印加通電し、電子放出部形成用薄膜を局所的
に破壊、変形もしくは変質せしめ、電気的に高抵抗な状
態にした電子放出部122を形成することである。な
お、電子放出部122は電子放出部形成用薄膜123の
一部に亀裂が発生し、その亀裂付近から電子放出が行わ
れる場合もある。以下フォーミングにより発生した電子
放出部を含む電子放出部形成用薄膜123を電子放出部
を含む薄膜と呼ぶ。
Conventionally, in these surface conduction electron-emitting devices, the electron-emitting portion forming thin film 1 is formed before electron emission.
It was general that the electron-emitting portion 122 was formed in advance by performing an energization process called forming on 23. That is,
The forming means that a voltage is applied to both ends of the electron emitting portion forming thin film 123 to locally destroy, deform or alter the electron emitting portion forming thin film, and the electron emitting portion 122 is brought into an electrically high resistance state. Is to form. In some cases, the electron emitting portion 122 has a crack in a part of the electron emitting portion forming thin film 123, and electrons are emitted from the vicinity of the crack. Hereinafter, the electron emitting portion forming thin film 123 including the electron emitting portion generated by forming is referred to as a thin film including the electron emitting portion.

【0013】また、本出願人により前述の特開平2−2
99136号公報に技術開示されている電子放出素子の
構成を図13に示す。同図において131は絶縁性基
板、134と135は素子電極、133は電子放出部を
含む薄膜、132は電子放出部である。電子放出部を含
む薄膜133のうち電子放出部132としては粒径が数
十Åの導電性微粒子からなり、電子放出部132以外の
電子放出部を含む薄膜133は微粒子膜からなる。な
お、ここで述べる微粒子膜とは、複数の微粒子が集合し
た膜であり、その微細構造として、微粒子が個々に分散
配置した状態のみならず、微粒子が互いに隣接、あるい
は重なり合った状態(島状も含む)の膜をさす。またこ
れとは別に電子放出部を含む薄膜133は、導電性微粒
子が分散されたカーボン薄膜等の場合がある。
Further, the above-mentioned Japanese Patent Laid-Open No. 2-2 mentioned above by the present applicant.
FIG. 13 shows the structure of an electron-emitting device technically disclosed in Japanese Patent Publication No. 99136. In the figure, 131 is an insulating substrate, 134 and 135 are device electrodes, 133 is a thin film including an electron emitting portion, and 132 is an electron emitting portion. Of the thin film 133 including the electron emitting portion, the electron emitting portion 132 is made of conductive fine particles having a particle diameter of several tens of liters, and the thin film 133 including the electron emitting portions other than the electron emitting portion 132 is made of a fine particle film. Note that the fine particle film described here is a film in which a plurality of fine particles are aggregated, and its fine structure is not only in a state in which the fine particles are individually dispersed and arranged, but also in a state in which the fine particles are adjacent to each other or overlap each other (islet-like Including) film. In addition to this, the thin film 133 including the electron emitting portion may be a carbon thin film or the like in which conductive fine particles are dispersed.

【0014】[0014]

【発明が解決しようとする課題】電子放出素子を複数個
設けた画像表示装置においては、画像表示装置を構成す
る外周器内部を約1×10-6torr程度の真空度に保
つ必要があることから、先述の様に、フェースプレート
と素子基板の間に耐大気圧支持部材を構成する必要があ
る。従来耐大気圧支持部材は、図10(a),(b)に
示したように柱状等の支持部材が格子点状や千鳥状等の
様に等しい分布密度で配置されていた。このため、素子
基板に電子放出素子を複数個設けた画像表示装置におい
ては、真空ポンプによって大気圧から減圧する真空排気
工程の際に、最大たわみの発生するフェースプレート及
び素子基板で真空雰囲気となる領域の中央部分付近に大
きな荷重がかかる。特に大型の画像表示装置や耐大気圧
支持部材の分布密度が低い場合には、不均一な荷重が耐
大気圧支持部材にかかり、許容応力を越え、耐大気圧支
持部材に変形や欠け又は破壊が生じて信頼性が低下し、
最悪の場合画像表示装置全体が破壊されてしまうことも
あった。
In an image display device provided with a plurality of electron-emitting devices, it is necessary to maintain a vacuum degree of about 1 × 10 -6 torr inside the peripheral device constituting the image display device. Therefore, as described above, it is necessary to configure the atmospheric pressure resistant support member between the face plate and the element substrate. As shown in FIGS. 10A and 10B, the conventional atmospheric pressure resistant support member has columnar support members arranged in an equal distribution density such as a lattice point shape or a staggered shape. Therefore, in the image display device in which a plurality of electron-emitting devices are provided on the element substrate, a vacuum atmosphere is created in the face plate and the element substrate where the maximum deflection occurs during the vacuum exhaust step of reducing the atmospheric pressure by the vacuum pump. A large load is applied near the center of the area. Especially when the distribution density of a large-sized image display device or atmospheric pressure resistant support member is low, uneven load is applied to the atmospheric pressure resistant support member, exceeds the allowable stress, and the atmospheric pressure resistant support member is deformed, chipped or destroyed. Occurs and reliability decreases,
In the worst case, the entire image display device may be destroyed.

【0015】本発明は、上述の従来技術が有する問題点
に鑑みてなされたもので、上述の問題点を除去し、安全
で信頼性の高い画像表示装置を提供することを目的とす
る。
The present invention has been made in view of the problems of the above-mentioned conventional technique, and an object of the present invention is to eliminate the above problems and provide a safe and highly reliable image display device.

【0016】[0016]

【課題を解決するための手段及び作用】上記目的を達成
すべく成された本発明は、電子放出素子を複数搭載した
素子基板と、該素子基板に対向配置され電子放出素子か
ら放出される電子ビームの照射により発光する蛍光体を
搭載したフェースプレートと、該素子基板と該フェース
プレート間の真空雰囲気内に個別に独立して配置される
複数の耐大気圧支持部材を具備する画像表示装置であっ
て、真空雰囲気と接する上記素子基板あるいはフェース
プレート面内領域での上記耐大気圧支持部材の分布密度
において、該面内領域の中央部を中央部以外よりも高い
分布密度としたことを特徴とする画像表示装置である。
SUMMARY OF THE INVENTION The present invention, which has been made to achieve the above object, provides an element substrate on which a plurality of electron-emitting devices are mounted, and electrons emitted from the electron-emitting devices which are arranged so as to face the element substrate. An image display device comprising: a face plate on which a phosphor that emits light when irradiated with a beam is mounted; and a plurality of atmospheric pressure resistant supporting members that are individually and independently arranged in a vacuum atmosphere between the element substrate and the face plate. In the distribution density of the atmospheric pressure resistant support member in the in-plane region of the element substrate or face plate in contact with the vacuum atmosphere, the central portion of the in-plane region has a higher distribution density than the central region. Is an image display device.

【0017】本発明によれば、真空雰囲気となる領域の
中央部における耐大気圧支持部材の配置密度を高くし、
大気圧耐性を向上させることで、真空排気工程等の際に
大気圧による耐大気圧支持部材の変形,欠け又は破壊を
防止し、安全で信頼性の高い画像表示装置を提供するこ
とができる。
According to the present invention, the arrangement density of the atmospheric pressure resistant supporting members is increased in the central portion of the region having the vacuum atmosphere,
By improving the atmospheric pressure resistance, it is possible to prevent the atmospheric pressure resistant supporting member from being deformed, chipped or destroyed due to the atmospheric pressure during a vacuum evacuation process or the like, and it is possible to provide a safe and highly reliable image display device.

【0018】以下図面を参考にして本発明の好ましい実
施態様を詳細に説明する。
Preferred embodiments of the present invention will be described in detail below with reference to the drawings.

【0019】図1は電子放出素子として図13に示した
ような表面伝導型電子放出素子を用いた本発明の画像表
示装置の一例を示す断面図である。尚、図1は画像表示
装置の真空雰囲気となる領域の中央部を含み各プレート
に垂直な面における断面で示している。
FIG. 1 is a sectional view showing an example of the image display device of the present invention using the surface conduction electron-emitting device as shown in FIG. 13 as the electron-emitting device. Note that FIG. 1 is a cross-sectional view taken along a plane perpendicular to each plate, including the central portion of a region of the image display device in a vacuum atmosphere.

【0020】図1において、11は青板ガラスからなる
素子基板、12及び13は素子電極、14は電子放出部
を含む薄膜、17は青板ガラス15の表面にメタルバッ
クを有する蛍光体16を設けたフェースプレート、18
は円柱状の耐大気圧支持部材、19は外枠である。図1
に示す様に、耐大気圧支持部材18の前記中央部におけ
る配置密度を、中央部以外の配置密度よりも高くするの
が、本発明の最も特徴とするところである。
In FIG. 1, 11 is an element substrate made of soda lime glass, 12 and 13 are element electrodes, 14 is a thin film including an electron emitting portion, and 17 is a soda lime glass 15 on which a phosphor 16 having a metal back is provided. Face plate, 18
Is a columnar atmospheric pressure resistant support member, and 19 is an outer frame. Figure 1
As shown in, the most characteristic feature of the present invention is to make the arrangement density of the atmospheric pressure resistant support members 18 in the central portion higher than the arrangement density of the portions other than the central portion.

【0021】耐大気圧支持部材18としては、感光性ガ
ラス等の絶縁材が用いられ、エッチング法や機械研磨法
等により、円柱型、角柱型や十字型等に加工される。配
置密度をより高くする領域及び分布密度は、耐大気圧支
持部材の材質,形状及び素子基板やフェースプレートの
厚さ,面積によって適宜設定する。
As the atmospheric pressure resistant supporting member 18, an insulating material such as photosensitive glass is used, and it is processed into a cylindrical shape, a prismatic shape, a cross shape or the like by an etching method or a mechanical polishing method. The region where the arrangement density is increased and the distribution density are appropriately set depending on the material and shape of the atmospheric pressure resistant supporting member and the thickness and area of the element substrate and face plate.

【0022】耐大気圧支持部材の配置例として、基本的
に格子点状に配置したものを図2(a)に、基本的に千
鳥状に配置したものを図2(b)にそれぞれ示す。図2
(a)では、円柱型耐大気圧支持部材を用いて、真空雰
囲気と接する素子基板面内領域の中心に位置する耐大気
圧支持部材の近傍に更に4個の耐大気圧支持部材を設け
て、中央部の分布密度が中央部以外の分布密度よりも高
くなる様に配置する。この場合には、中央部の配置密度
が中央部以下の配置密度の5倍になる。図2(b)で
は、十字型耐大気圧支持部材を用いて、中心には耐大気
圧支持部材を設けずに、中心近傍に4個の耐大気圧支持
部材を設けて、中央部の分布密度が中央部以外の分布密
度よりも高くなる様に配置する。この場合には、中央部
の配置密度が中央部以外の配置密度の4倍になる。上記
2列では中心部近傍のみで耐大気圧支持部材の数を増や
したが、図2(c),(d)のように基本的に格子点の
中心部の複数箇所の近傍で耐大気圧支持部材の数を増や
す場合もある。
As an arrangement example of the atmospheric pressure resistant supporting members, those arranged basically in a lattice point are shown in FIG. 2 (a), and those arranged basically in a staggered manner are shown in FIG. 2 (b). Figure 2
In (a), a columnar atmospheric pressure resistant supporting member is used, and four atmospheric pressure resistant supporting members are further provided in the vicinity of the atmospheric pressure resistant supporting member located at the center of the in-plane region of the element substrate in contact with the vacuum atmosphere. , The distribution density in the central part is higher than that in the parts other than the central part. In this case, the arrangement density in the central portion is 5 times the arrangement density in the central portion and below. In FIG. 2B, a cross-shaped atmospheric pressure resistant support member is used, four atmospheric pressure resistant support members are provided in the vicinity of the center without providing the atmospheric pressure resistant support member at the center, and the distribution of the central portion is distributed. Arrange so that the density is higher than the distribution density other than in the central part. In this case, the arrangement density of the central portion is four times the arrangement density of the portions other than the central portion. In the above two rows, the number of atmospheric pressure resistant supporting members is increased only in the vicinity of the central portion, but as shown in FIGS. 2C and 2D, basically, the atmospheric pressure resistant supporting members are provided in the vicinity of a plurality of central portions of the lattice points. In some cases, the number of support members may be increased.

【0023】さらに、図2(a)〜(d)には個別に独
立した耐大気圧支持部材として1点づつ示したが、この
1点が複数個の耐大気圧支持部材からなる1ユニットで
ある場合もある。
Further, in FIG. 2A to FIG. 2D, each one point is shown as an independent atmospheric pressure resistant support member, but this one point is one unit composed of a plurality of atmospheric pressure resistant support members. Sometimes there is.

【0024】次に、表面伝導型電子放出素子の製造方法
を図13及び図14に基づいて説明する。
Next, a method of manufacturing the surface conduction electron-emitting device will be described with reference to FIGS.

【0025】図13において、電子放出部を含む薄膜1
33を構成する材料の具体例を挙げるならばPd,R
u,Ag,Au,Ti,In,Cu,Cr,Fe,Z
n,Sn,Ta,W,Pb等の金属、PdO,Sn
2,In23,PbO,Sb23等の酸化物、Hf
2,ZrB2,LaB6,CeB6,YB4,GdB4等の
硼化物、TiC,ZrC,HfC,TaC,SiC,W
C等の炭化物、TiN,ZrN,HfN等の窒化物、S
i,Ge等の半導体、カーボン、AgMg、NiCu等
である。そして電子放出部を含む薄膜133は真空蒸着
法、スパッタ法、化学的気相堆積法、分散塗布法、ディ
ッピング法、スピンナー法等によって形成される。電子
放出部132を有する表面伝導型電子放出素子の製造方
法としては、様々な方法が考えられるが、その一例を図
14により工程順に従って具体的に説明する。
In FIG. 13, a thin film 1 including an electron emitting portion.
If the specific examples of the materials constituting 33 are given, Pd, R
u, Ag, Au, Ti, In, Cu, Cr, Fe, Z
n, Sn, Ta, W, Pb and other metals, PdO, Sn
O 2, In 2 O 3, PbO, oxides such as Sb 2 O 3, Hf
Borides of B 2 , ZrB 2 , LaB 6 , CeB 6 , YB 4 , GdB 4, etc., TiC, ZrC, HfC, TaC, SiC, W
Carbides such as C, nitrides such as TiN, ZrN and HfN, S
Examples thereof include semiconductors such as i and Ge, carbon, AgMg, and NiCu. Then, the thin film 133 including the electron emitting portion is formed by a vacuum deposition method, a sputtering method, a chemical vapor deposition method, a dispersion coating method, a dipping method, a spinner method, or the like. Various methods can be considered as a method of manufacturing the surface conduction electron-emitting device having the electron-emitting portion 132, and one example thereof will be specifically described in the order of steps with reference to FIG.

【0026】絶縁性基板131を洗剤,純水および有
機溶剤により十分に洗浄後、真空蒸着技術,フォトリソ
グラフィー技術により該絶縁性基板131の面上に素子
電極134,135を形成する(図14(a))。
After the insulating substrate 131 is thoroughly washed with a detergent, pure water and an organic solvent, element electrodes 134 and 135 are formed on the surface of the insulating substrate 131 by the vacuum deposition technique and the photolithography technique (FIG. 14 ( a)).

【0027】絶縁性基板131上に設けられた素子電
極134,135との間に、素子電極134,135を
形成した絶縁性基板上に有機金属溶液を塗布して放置す
ることにより、有機金属薄膜を形成する。この後、有機
金属薄膜を加熱焼成処理し、リフトオフ,エッチング等
によりパターニングし、電子放出部形成用薄膜133を
形成する(図14(b))。
The organic metal thin film is formed by applying an organic metal solution on the insulating substrate on which the element electrodes 134 and 135 are formed between the element electrodes 134 and 135 provided on the insulating substrate 131 and leaving the solution. To form. After that, the organic metal thin film is heated and baked, and is patterned by lift-off, etching, etc. to form the electron emission portion forming thin film 133 (FIG. 14B).

【0028】つづいて、フォーミングと呼ばれる通電
処理を、圧力を約1×10-6torr以下の真空度で、
素子電極134,135間に電圧を不図示の電源により
印加し施すと、電子放出部形成用薄膜133の部位に構
造の変化した電子放出部132が形成される(図14
(c))。この電子放出部132は、上記通電処理によ
り電子放出部形成用薄膜133を局所的に破壊、変形も
しくは変質せしめることにより構造の変化した部位であ
る。かかる電子放出部132は導電性微粒子で構成され
ていることを本出願人らは観察している。なお、予め導
電性微粒子を分散して構成した表面伝導型電子放出素子
においては、前記の基本的な素子構成の基本的な製造方
法のうち一部を変更しても構成できる。また、本明細書
では図14(b)の段階で、まだ電子放出部が形成され
ていないものも便宜的に電子放出素子と呼ぶことにす
る。
Subsequently, an energization treatment called forming is performed at a vacuum degree of a pressure of about 1 × 10 -6 torr or less.
When a voltage is applied between the device electrodes 134 and 135 by a power source (not shown), an electron emitting portion 132 having a changed structure is formed at the site of the electron emitting portion forming thin film 133 (FIG. 14).
(C)). The electron emitting portion 132 is a portion whose structure is changed by locally destroying, deforming, or deteriorating the electron emitting portion forming thin film 133 by the energization process. The applicants have observed that the electron emitting portion 132 is made of conductive fine particles. In addition, the surface conduction electron-emitting device in which the conductive fine particles are dispersed in advance can be configured by partially changing the basic manufacturing method of the basic device structure. In addition, in the present specification, a device in which an electron emitting portion is not yet formed at the stage of FIG. 14B will be referred to as an electron emitting device for convenience.

【0029】[0029]

【実施例】以下実施例を挙げ、本発明を更に詳述する。The present invention will be described in more detail with reference to the following examples.

【0030】なお、以下の実施例では、電子放出素子を
複数個設けた素子基板を用いた画像表示装置について説
明するが、外周器(パネル)内部を減圧下に保つ必要が
あり、かつフェースプレートとバックプレート(素子基
板)の間に耐大気圧支持部材を構成する必要がある外周
器であればどのようなものに対しても本発明の応用が可
能であることは言うまでもない。
In the following embodiments, an image display device using an element substrate provided with a plurality of electron-emitting devices will be described. However, it is necessary to keep the inside of the peripheral device (panel) under reduced pressure and the face plate. It goes without saying that the present invention can be applied to any peripheral device as long as it requires an atmospheric pressure resistant support member between the back plate (element substrate).

【0031】実施例1 第1の実施例として、円柱型の耐大気圧支持部材を基本
的に格子点状に配置し、更に素子基板で真空雰囲気と接
する領域の中央部の分布密度が、中央部以外の分布密度
よりも高くなる様に配置した画像表示装置について説明
する。尚、本実施例では素子基板で真空雰囲気と接する
領域の中央部と素子基板の中央部は一致する。
Example 1 As a first example, cylindrical atmospheric pressure resistant supporting members are basically arranged in a lattice point shape, and the distribution density of the central portion of the region in contact with the vacuum atmosphere in the element substrate is the center. An image display device arranged so as to have a higher distribution density than other parts will be described. In this embodiment, the central portion of the element substrate, which is in contact with the vacuum atmosphere, coincides with the central portion of the element substrate.

【0032】以下に本実施例の画像表示装置の作製方法
を 電子放出素子を複数個設けた素子基板の作製方法 耐大気圧支持部材の配置方法 画像表示装置の作製方法 の順番で説明する。
A method of manufacturing the image display device of this embodiment will be described below in the order of a method of manufacturing an element substrate provided with a plurality of electron-emitting devices, a method of disposing an atmospheric pressure resistant supporting member, and a method of manufacturing an image display device.

【0033】電子放出素子を複数個設けた素子基板の
作製方法 図13及び図14に示した構造の単一の電子放出素子を
多数個形成した素子基板の作製方法について説明する。
本実施例の素子基板の上面図を図3に、また図3の部分
拡大図を図4に示す。図3及び図4において、11は青
板ガラス、12及び13は図13に示した素子の素子電
極134,135と同じ素子電極、14は図13に示し
た素子の電子放出部を含む薄膜133と同じ電子放出部
を含む薄膜である。図3及び図4に示す様に、図14
(b)の段階の電子放出素子を素子電極の隙間なく、す
なわち、一対の素子電極が平行な一組のライン状になる
様に多数列形成した。図4において、電子放出部形成用
薄膜14の形成される素子電極12,13の間隔L1は
3μm、電子放出部形成用薄膜14の長さL2は400
μm、幅W2は300μm、間隔S1は200μm、平
行な一組の素子電極の幅S2は1mm、隣り合うライン
状の素子電極の間隔S3は0.5mmである。なお、素
子電極12,13にはNiを用い、電子放出部形成用薄
膜14は、有機パラジウム(奥野製薬(株)製、ccp
−4230)含有溶液を塗布した後、300℃で10分
間の加熱処理をした酸化パラジウム(PdO)微粒子
(平均粒径:70Å)からなる微粒子膜を用いた。更
に、素子に電力を供給するための取り出し電極(図示せ
ず)を形成した。
A method of manufacturing an element substrate having a plurality of electron-emitting devices will be described. A method of manufacturing an element substrate having a large number of single electron-emitting devices having the structures shown in FIGS. 13 and 14 will be described.
A top view of the element substrate of this embodiment is shown in FIG. 3, and a partially enlarged view of FIG. 3 is shown in FIG. 3 and 4, 11 is soda lime glass, 12 and 13 are the same device electrodes as the device electrodes 134 and 135 of the device shown in FIG. 13, and 14 is a thin film 133 including the electron-emitting portion of the device shown in FIG. It is a thin film including the same electron emitting portion. As shown in FIG. 3 and FIG.
A large number of electron-emitting devices in the stage (b) were formed without gaps between the device electrodes, that is, so that a pair of device electrodes form a set of parallel lines. In FIG. 4, the distance L1 between the device electrodes 12 and 13 on which the electron emission portion forming thin film 14 is formed is 3 μm, and the length L2 of the electron emission portion forming thin film 14 is 400.
μm, width W2 is 300 μm, space S1 is 200 μm, width S2 of a pair of parallel device electrodes is 1 mm, and space S3 between adjacent linear device electrodes is 0.5 mm. In addition, Ni is used for the device electrodes 12 and 13, and the electron emission portion forming thin film 14 is made of organic palladium (manufactured by Okuno Chemical Industries Co., ccp).
-4230) containing solution was applied and then heat-treated at 300 ° C. for 10 minutes to use a fine particle film made of palladium oxide (PdO) fine particles (average particle diameter: 70 Å). Further, an extraction electrode (not shown) for supplying electric power to the device was formed.

【0034】耐大気圧支持部材の配置方法 以上のようにして作製した素子基板に耐大気圧支持部材
を以下の様に配置した。耐大気圧支持部材として、感光
性ガラスをエッチング法により、直径0.4mm、高さ
3mmの円柱型に加工したものを用い、図2(a)及び
図5に示すように、基本的に4.5mmピッチ(図2
(a)のA)で格子点状に、更に素子基板の中央部に
は、中心(図5中の+印)から上下左右各1.5mmの
4箇所に配置し、素子基板上に固定した。
Arrangement Method of Atmospheric Pressure Resistant Support Member The atmospheric pressure resistant support member was disposed as follows on the element substrate manufactured as described above. As the atmospheric pressure resistant supporting member, a photosensitive glass processed into a cylindrical shape having a diameter of 0.4 mm and a height of 3 mm by an etching method is used, and as shown in FIGS. 0.5 mm pitch (Fig. 2
In (A) of (a), it is arranged in a lattice shape, and further, in the central portion of the element substrate, it is arranged at four positions of 1.5 mm vertically and horizontally from the center (+ mark in FIG. 5) and fixed on the element substrate. .

【0035】画像表示装置の作製方法 続いて、上記のように耐大気圧支持部材を固定した素子
基板を用いて、図1に示したような画像表示装置を以下
の様に作製した。外枠19の上面及び下面にフリットガ
ラスを塗布し、素子基板11の3mmの上方に、フェー
スプレート17(青板ガラス基板15の内面にメタルバ
ックと共に蛍光膜16が形成されて構成される)を外枠
19を介し配置し、大気中雰囲気で450℃で60分焼
成することで封着した。蛍光膜16は、本実施例の場合
はモノクロームであるので蛍光体のみから成る。
Method of Manufacturing Image Display Device Subsequently, an image display device as shown in FIG. 1 was manufactured as follows using the element substrate to which the atmospheric pressure resistant supporting member was fixed as described above. Frit glass is applied to the upper surface and the lower surface of the outer frame 19, and the face plate 17 (which is formed by forming the fluorescent film 16 together with the metal back on the inner surface of the blue glass substrate 15) above the element substrate 3 by 3 mm. It was placed via the frame 19 and was sealed by baking in the atmosphere at 450 ° C. for 60 minutes. Since the fluorescent film 16 is monochrome in this embodiment, it is made of only a fluorescent material.

【0036】以上のようにして作製した画像表示装置の
概略斜視図を図6に示す。図6に示す画像表示装置内の
雰囲気を、排気管(図示せず)を通じ真空ポンプにて排
気したが、約1×10-6torr程度の真空度に達して
も、耐大気圧支持部材は破壊されることなく大気圧を支
持した。
FIG. 6 is a schematic perspective view of the image display device manufactured as described above. The atmosphere in the image display device shown in FIG. 6 was exhausted by a vacuum pump through an exhaust pipe (not shown). However, even when the vacuum degree of about 1 × 10 −6 torr was reached, the atmospheric pressure resistant supporting member was It supported atmospheric pressure without being destroyed.

【0037】続いて、図10に示す画像表示装置におい
て以下に示すフォーミング処理を行った。フォーミング
処理の電圧波形を図7に示す。図7中、T1及びT2は電
圧波形のパルス幅とパルス間隔であり、本実施例ではT
1を1ミリ秒、T2を10ミリ秒とし、三角波の波高値
(フォーミング時のピーク電圧)は5Vとして、図6に
示す取り出し電極と結合した容器外の素子電極端子DR1
ないしDRmとDL1ないしDLmを通じ素子電極12,13
間に印加し、フォーミング処理を60秒間行った。この
ようにして作成された電子放出部は、パラジウム元素を
主成分とする微粒子が分散配置された状態となり、その
微粒子の平均粒径は30Åであった。
Subsequently, the following forming process was performed in the image display device shown in FIG. FIG. 7 shows the voltage waveform of the forming process. In FIG. 7, T 1 and T 2 are the pulse width and pulse interval of the voltage waveform.
1 is 1 millisecond, T 2 is 10 milliseconds, the peak value of the triangular wave (peak voltage during forming) is 5 V, and the element electrode terminal D R1 outside the container connected to the extraction electrode shown in FIG.
Through D Rm and D L1 through D Lm through the device electrodes 12, 13
The voltage was applied between them and the forming treatment was performed for 60 seconds. In the electron emitting portion thus produced, fine particles containing palladium element as a main component were dispersed and arranged, and the average particle diameter of the fine particles was 30Å.

【0038】最後に約1×10-6torr程度の真空度
で、不図示の排気管をガスバーナーで熱することで溶着
して外囲器の封止を行い、封止後の真空度を維持するた
めに、ゲッター蒸着処理を行った。これは、抵抗加熱あ
るいは高周波加熱等の加熱法により、画像表示装置内の
所定の位置(不図示)にゲッター蒸着膜を形成する処理
である。ゲッターは通常Ba等が主成分であり、該蒸着
膜の吸着作用により、内部の真空度を維持するものであ
る。
Finally, at a degree of vacuum of about 1 × 10 -6 torr, an unillustrated exhaust pipe is heated by a gas burner to weld and seal the envelope, and the degree of vacuum after sealing is adjusted. A getter deposition process was performed to maintain. This is a process of forming a getter vapor deposition film at a predetermined position (not shown) in the image display device by a heating method such as resistance heating or high frequency heating. The getter usually has Ba or the like as a main component, and maintains the internal vacuum degree by the adsorption action of the deposited film.

【0039】以上〜のようにして作製した本実施例
の画像表示装置において、図6に示した容器外の素子電
極端子DR1ないしDRmとDL1ないしDLmを通じ素子電極
12,13間に電圧を印加すると電子がビーム状に放出
し、この電子ビームは高圧端子Hvを通じメタルバック
20を介して蛍光体16に印加された正の高電圧によっ
て加速され、蛍光体16に衝突し、これを発光させるこ
とによって画像が得られた。
In the image display device of this embodiment manufactured as described above, between the device electrodes 12 and 13 through the device electrode terminals D R1 to D Rm and D L1 to D Lm outside the container shown in FIG. When a voltage is applied, electrons are emitted in a beam shape, and this electron beam is accelerated by the positive high voltage applied to the phosphor 16 via the metal back 20 through the high voltage terminal Hv and collides with the phosphor 16 and An image was obtained by emitting light.

【0040】なお、本実施例では、グリッド等の電子ビ
ーム軌道制御電極を用いなかったが、グリッド等が構成
されていても、本発明の効果に何ら変わりはない。
Although the electron beam orbit control electrodes such as the grid are not used in this embodiment, the effect of the present invention is not changed even if the grid or the like is configured.

【0041】また、本実施例では、電子源として表面伝
導型電子放出素子を用いたが、この他電界放出型、MI
M型等の電子源を用いることもできる。
In this embodiment, the surface conduction electron-emitting device was used as the electron source.
An M-type electron source or the like can also be used.

【0042】比較例1 実施例1の効果を調べるために、実施例1において、素
子基板中央部の耐大気圧支持部材の分布密度を高くしな
い(中心から上下左右各1.5mmの4点に耐大気圧支
持部材を設けないで)で、全面とも4.5mmピッチで
格子点状に耐大気圧支持部材を配置し、その他は実施例
1と全く同様に作製した画像表示装置内の雰囲気を、排
気管を通じ真空ポンプにて排気したところ、徐々に排気
を行っても、素子基板中央部の耐大気圧支持部材は、変
形や欠けを生じ、中には破壊されてしまったものもあっ
た。
Comparative Example 1 In order to examine the effect of Example 1, in Example 1, the distribution density of the atmospheric pressure resistant supporting members in the central portion of the element substrate was not increased (at four points of 1.5 mm above and below and to the left and right from the center). The atmospheric pressure resistant support member is arranged in a lattice pattern at a pitch of 4.5 mm on the entire surface (without providing the atmospheric pressure resistant support member), and otherwise the atmosphere in the image display device manufactured in exactly the same manner as in Example 1 is set. When exhausted with a vacuum pump through the exhaust pipe, even if exhausted gradually, the atmospheric pressure resistant support member in the central part of the element substrate was deformed or chipped, and some of them were destroyed. .

【0043】実施例2 第2の実施例として、十字型の耐大気圧支持部材を基本
的に千鳥状に配置し、更に素子基板中央部の分布密度
が、中央部以外の分布密度よりも高くなる様に配置した
画像表示装置について説明する。尚、本実施例では素子
基板で真空雰囲気と接する領域の中央部と素子基板の中
央部は一致する。
Example 2 As a second example, cross-shaped atmospheric pressure resistant supporting members are basically arranged in a zigzag manner, and the distribution density of the central portion of the element substrate is higher than the distribution density other than the central portion. The image display device arranged in such a manner will be described. In this embodiment, the central portion of the element substrate, which is in contact with the vacuum atmosphere, coincides with the central portion of the element substrate.

【0044】本実施例でも実施例1と同様の図3に示し
たような、電子放出素子を多数個形成した素子基板を用
いている。図3に示した素子基板に耐大気圧支持部材を
以下の様に配置した。耐大気圧支持部材として、感光性
ガラスをエッチング法により、図8に示す様に、長辺
A:2mm、短辺B:0.5mm、高さC:3mm、厚
さD:0.2mmに十字型に加工したものを用いて、図
2(b)及び図9に示すように、基本的に千鳥状(図2
(b)のB=9mm)に、更に素子基板の中央部には、
中心(図9中の+印)を除き、中心から上下左右各3m
mの4箇所に配置し、素子基板上に固定した。
Also in this embodiment, an element substrate having a large number of electron-emitting devices is used as shown in FIG. 3 similar to the first embodiment. An atmospheric pressure resistant support member was arranged on the element substrate shown in FIG. 3 as follows. As the atmospheric pressure resistant supporting member, a photosensitive glass is etched by an etching method to have a long side A of 2 mm, a short side B of 0.5 mm, a height C of 3 mm, and a thickness D of 0.2 mm, as shown in FIG. As shown in FIG. 2 (b) and FIG. 9, using a cross-shaped product, the zigzag pattern (see FIG.
(B = 9 mm in (b)), and further in the central part of the element substrate,
Except for the center (+ mark in Fig. 9), 3m vertically and horizontally from the center
It was arranged at four positions of m and fixed on the element substrate.

【0045】続いて、画像表示装置を実施例1と同様に
作製したところ、約1×10-6torr程度の真空度に
達しても、耐大気圧支持部材は破壊されることなく大気
圧を支持した。
Subsequently, when an image display apparatus was manufactured in the same manner as in Example 1, even when a vacuum degree of about 1 × 10 −6 torr was reached, the atmospheric pressure resistant supporting member was kept at atmospheric pressure without being destroyed. Supported.

【0046】以上のようにして作製した本実施例の画像
表示装置において、図6に示した容器外の素子電極端子
R1ないしDRmとDL1ないしDLmを通じ素子電極12,
13間に電圧を印加すると電子がビーム状に放出し、こ
の電子ビームは高圧端子Hvを通じメタルバック20を
介して蛍光体16に印加された正の高電圧によって加速
され、蛍光体16に衝突し、これを発光させることによ
って画像が得られた。
[0046] In the image display apparatus of this embodiment manufactured as described above, the device electrodes 12 through to D Rm and D L1 to no element electrode terminals D R1 outside container shown in FIG. 6 D Lm,
When a voltage is applied between 13, the electrons are emitted in a beam shape, and the electron beam is accelerated by the positive high voltage applied to the phosphor 16 through the metal back 20 through the high voltage terminal Hv and collides with the phosphor 16. An image was obtained by causing this to emit light.

【0047】比較例2 実施例2の効果を調べるために、実施例2において、素
子基板中央部の耐大気圧支持部材の分布密度を高くしな
い(中心から上下左右各3mmの4点に耐大気圧支持部
材を設けない)で配置した以外は、実施例2と全く同様
に作製した画像表示装置内の雰囲気を、排気管を通じ真
空ポンプにて排気したところ、徐々に排気を行っても、
素子基板中央部の耐大気圧支持部材は、変形や欠けを生
じ、中には破壊されてしまったものもあった。
Comparative Example 2 In order to examine the effect of Example 2, in Example 2, the distribution density of the atmospheric pressure resistant supporting member in the central portion of the element substrate is not increased (the resistance is increased at 4 points of 3 mm vertically and horizontally from the center). The atmosphere inside the image display device manufactured in exactly the same manner as in Example 2 except that the atmospheric pressure supporting member is not provided) is exhausted by a vacuum pump through an exhaust pipe.
The atmospheric pressure resistant supporting member in the central portion of the element substrate was deformed or chipped, and some of them were destroyed.

【0048】[0048]

【発明の効果】以上説明した様に、本発明によれば、真
空雰囲気となる領域の中央部の耐大気圧支持部材の分布
密度を高くしたことにより、大気圧耐性を向上できるた
め、真空排気工程等の際に大気圧による耐大気圧支持部
材の破壊を防止する効果があり、安全で信頼性の高い画
像表示装置を提供することができる。
As described above, according to the present invention, since the atmospheric pressure resistance can be improved by increasing the distribution density of the atmospheric pressure resistant supporting members in the central portion of the region to be the vacuum atmosphere, the vacuum exhaust can be performed. It is possible to provide a safe and highly reliable image display device, which has an effect of preventing the atmospheric pressure resistant support member from being broken by atmospheric pressure during a process or the like.

【0049】なお、本発明では、電子放出素子を複数個
設けた素子基板を用いた画像表示装置について説明した
が、耐大気圧支持部材を構成する必要のある内部を減圧
下にした外周器(パネル)であれば、どの様なものに対
しても応用可能であることは言うまでもない。
In the present invention, the image display device using the element substrate provided with a plurality of electron-emitting devices has been described. However, an outer peripheral device in which the inside of which the atmospheric pressure resistant supporting member is required to be formed is depressurized ( It goes without saying that it can be applied to any kind of panel).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の特徴を最も良く表した画像表示装置の
概略断面図である。
FIG. 1 is a schematic cross-sectional view of an image display device that best represents the features of the present invention.

【図2】本発明に係る耐大気圧支持部材の配置例を示す
図である。
FIG. 2 is a diagram showing an arrangement example of an atmospheric pressure resistant support member according to the present invention.

【図3】本発明の実施例における素子基板の上面図であ
る。
FIG. 3 is a top view of an element substrate according to an example of the present invention.

【図4】図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG.

【図5】実施例1における素子基板上への耐大気圧支持
部材の配置を示す図である。
FIG. 5 is a diagram showing an arrangement of atmospheric pressure resistant support members on an element substrate in Example 1.

【図6】本発明の実施例における画像表示装置の概略斜
視図である。
FIG. 6 is a schematic perspective view of an image display device according to an embodiment of the present invention.

【図7】フォーミング処理時の電圧パルス波形を示す図
である。
FIG. 7 is a diagram showing a voltage pulse waveform at the time of forming processing.

【図8】実施例2における耐大気圧支持部材の斜視図で
ある。
FIG. 8 is a perspective view of an atmospheric pressure resistant support member according to a second embodiment.

【図9】実施例2における素子基板上への耐大気圧支持
部材の配置を示す図である。
FIG. 9 is a diagram showing an arrangement of atmospheric pressure resistant support members on an element substrate in Example 2;

【図10】従来の耐大気圧支持部材の配置図である。FIG. 10 is a layout view of a conventional atmospheric pressure resistant support member.

【図11】従来の画像表示装置の概略断面図である。FIG. 11 is a schematic sectional view of a conventional image display device.

【図12】表面伝導型電子放出素子の概略構成図であ
る。
FIG. 12 is a schematic configuration diagram of a surface conduction electron-emitting device.

【図13】表面伝導型電子放出素子の概略構成図であ
る。
FIG. 13 is a schematic configuration diagram of a surface conduction electron-emitting device.

【図14】図13の素子の製造方法の一例を示す概略断
面図である。
FIG. 14 is a schematic cross-sectional view showing an example of a method for manufacturing the element of FIG.

【符号の説明】[Explanation of symbols]

11 素子基板 12,13 素子電極 14 電子放出部形成用薄膜(電子放出部を含む薄膜) 15 ガラス基板 16 蛍光体 17 フェースプレート 18 耐大気圧支持部材 19 外枠 20 メタルバック 121 絶縁性基板 122 電子放出部 123 電子放出部形成用薄膜(電子放出部を含む薄
膜) 131 絶縁性基板 132 電子放出部 133 電子放出部形成用薄膜(電子放出部を含む薄
膜) 134,135 素子電極
11 Element Substrate 12, 13 Element Electrode 14 Electron Emission Portion Forming Thin Film (Thin Film Including Electron Emission Portion) 15 Glass Substrate 16 Phosphor 17 Face Plate 18 Atmospheric Pressure Supporting Member 19 Outer Frame 20 Metal Back 121 Insulating Substrate 122 Electron Emitting part 123 Electron emitting part forming thin film (thin film including electron emitting part) 131 Insulating substrate 132 Electron emitting part 133 Electron emitting part forming thin film (thin film including electron emitting part) 134, 135 Element electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 久美子 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 富田 康子 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 長田 芳幸 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kumiko Kaneko 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yasuko Tomita 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Incorporated (72) Inventor Yoshiyuki Nagata 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子放出素子を複数搭載した素子基板
と、該素子基板に対向配置され電子放出素子から放出さ
れる電子ビームの照射により発光する蛍光体を搭載した
フェースプレートと、該素子基板と該フェースプレート
間の真空雰囲気内に個別に独立して配置される複数の耐
大気圧支持部材を具備する画像表示装置であって、真空
雰囲気と接する上記素子基板あるいはフェースプレート
の面内領域での上記耐大気圧支持部材の分布密度におい
て、該面内領域の中央部を中央部以外よりも高い分布密
度としたことを特徴とする画像表示装置。
1. An element substrate on which a plurality of electron-emitting devices are mounted, a face plate which is arranged to face the element substrate and which mounts a phosphor that emits light when irradiated with an electron beam emitted from the electron-emitting device, and the element substrate. An image display device comprising a plurality of atmospheric pressure resistant supporting members which are individually and independently arranged in a vacuum atmosphere between the face plates, wherein the in-plane area of the element substrate or the face plate in contact with the vacuum atmosphere is provided. In the distribution density of the atmospheric pressure resistant support member, an image display device is characterized in that a central portion of the in-plane region has a higher distribution density than that of a portion other than the central portion.
【請求項2】 前記電子放出素子として、表面伝導型電
子放出素子を用いたことを特徴とする請求項1に記載の
画像表示装置。
2. The image display device according to claim 1, wherein a surface conduction electron-emitting device is used as the electron-emitting device.
JP15265593A 1993-06-01 1993-06-01 Image display device Pending JPH06342635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15265593A JPH06342635A (en) 1993-06-01 1993-06-01 Image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15265593A JPH06342635A (en) 1993-06-01 1993-06-01 Image display device

Publications (1)

Publication Number Publication Date
JPH06342635A true JPH06342635A (en) 1994-12-13

Family

ID=15545186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15265593A Pending JPH06342635A (en) 1993-06-01 1993-06-01 Image display device

Country Status (1)

Country Link
JP (1) JPH06342635A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903768A2 (en) * 1997-09-19 1999-03-24 Matsushita Electronics Corporation Image display apparatus
US6630782B1 (en) 1997-12-01 2003-10-07 Matsushita Electric Industrial Co., Ltd. Image display apparatus having electrodes comprised of a frame and wires
JP2006156336A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Electron-emission display device having spacer
US7462088B2 (en) 1998-02-27 2008-12-09 Micron Technology, Inc. Method for making large-area FED apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903768A2 (en) * 1997-09-19 1999-03-24 Matsushita Electronics Corporation Image display apparatus
EP0903768A3 (en) * 1997-09-19 2001-04-04 Matsushita Electronics Corporation Spacer structure for a flat image display apparatus
US6320310B1 (en) 1997-09-19 2001-11-20 Matsushita Electronics Corporation Image display apparatus
EP1763059A2 (en) * 1997-09-19 2007-03-14 Matsushita Electric Industrial Co., Ltd. Image display apparatus
EP1763059A3 (en) * 1997-09-19 2007-06-06 Matsushita Electric Industrial Co., Ltd. Image display apparatus
US6630782B1 (en) 1997-12-01 2003-10-07 Matsushita Electric Industrial Co., Ltd. Image display apparatus having electrodes comprised of a frame and wires
US7462088B2 (en) 1998-02-27 2008-12-09 Micron Technology, Inc. Method for making large-area FED apparatus
JP2006156336A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Electron-emission display device having spacer

Similar Documents

Publication Publication Date Title
US5525861A (en) Display apparatus having first and second internal spaces
US6342754B1 (en) Charge-reducing film, image forming apparatus including said film and method of manufacturing said image forming apparatus
JP4046959B2 (en) Electron beam generator and image forming apparatus
US7034449B2 (en) Image display apparatus and method of manufacturing the same
US6657368B1 (en) Electron beam device, method for producing charging-suppressing member used in the electron beam device, and image forming apparatus
US6617773B1 (en) Electron-emitting device, electron source, and image-forming apparatus
JP4865169B2 (en) Manufacturing method of spacer
US6259422B1 (en) Method for producing image-forming apparatus
JP3057081B2 (en) Method for manufacturing airtight container and method for manufacturing image forming apparatus using airtight container
JPH06342635A (en) Image display device
JP3285703B2 (en) Image forming device
JP3639732B2 (en) Spacer manufacturing method and image display device manufacturing method
JP3740296B2 (en) Image forming apparatus
JP3624111B2 (en) Image forming apparatus
JP3397520B2 (en) Electron source, display panel, image forming apparatus, and manufacturing method thereof
JP3768697B2 (en) Image forming apparatus
JP3762031B2 (en) Antistatic film, antistatic substrate and display device
JP3402891B2 (en) Electron source and display panel
JP2004063264A (en) Electron beam device and manufacturing method of the same
JPH0883579A (en) Image forming device and its manufacture
JP3903053B2 (en) Manufacturing method of image forming apparatus
JP3207990B2 (en) Flat plate type image forming apparatus
JP2930275B2 (en) Method of manufacturing surface conduction electron-emitting device
JPH07104676A (en) Image forming device
JP3450565B2 (en) Method of manufacturing electron source substrate and image forming apparatus