JPH06341629A - Method and device for controlling air ratio in fluidized-bed furnace - Google Patents

Method and device for controlling air ratio in fluidized-bed furnace

Info

Publication number
JPH06341629A
JPH06341629A JP15619893A JP15619893A JPH06341629A JP H06341629 A JPH06341629 A JP H06341629A JP 15619893 A JP15619893 A JP 15619893A JP 15619893 A JP15619893 A JP 15619893A JP H06341629 A JPH06341629 A JP H06341629A
Authority
JP
Japan
Prior art keywords
air
ratio
fluidized bed
flow rate
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15619893A
Other languages
Japanese (ja)
Other versions
JP3713718B2 (en
Inventor
Yuichi Miyamoto
裕一 宮本
Masato Hayashi
正人 林
Hidetaka Miyazaki
英隆 宮崎
Hiroshi Fujiyama
博 藤山
Eiichiro Nanbu
栄一郎 南部
Norio Toyoshima
則雄 豊嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP15619893A priority Critical patent/JP3713718B2/en
Publication of JPH06341629A publication Critical patent/JPH06341629A/en
Application granted granted Critical
Publication of JP3713718B2 publication Critical patent/JP3713718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To suppress the generation of CO and dust by a method wherein on the basis of the estimated values of the air ratio in the fluidized bed and that in the freeboard the ratio in which the air for combustion is distributed to the inside of the fluidized bed and the freeboard and the flow rate of the air for combustion are controlled. CONSTITUTION:A means of calculating the ratio of combustion in the fluidized bed 30 calculates the ratio of combustion in the fluidized bed K from the temperature of the fed air, the temperature of the fluidized bed, the temperature of the discharged gases at the outlet of the furnace, the flow rate of the primary air, and the flow rate of the secondary air, all for the combustion of materials in a fluidized-bed furnace. A means of calculating the air ratio in the fluidized bed 32 estimates the air ratio in the fluidized bed lambdaB from the ratio of combustion in the fluidized bed K and the flow rate of the primary air. A means of calculating the air ratio in the freeboard 14 estimates the air ratio in the freeboard lambdaF from the flow rate of the primary air and that of the secondary air. On the basis of the air ratio in the fluidized bed lambdaB and the air ratio in the freeboard lambdaF a means of controlling the air ratio 36 controls the ratio in which the air for combustion is distributed to the inside of the fluidized bed and the freeboard and the flow rate of the air for combustion. As a result, the operation is rendered free from a localized shortage of air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流動層を備えた燃焼炉
(以下、流動床炉という)における空気比制御方法及び
装置、詳しくは、廃棄物等の被処理物を燃焼・焼却する
流動床炉において、流動層へ供給する一次空気量と、フ
リーボード部へ供給する二次空気量とを適正に制御する
方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling an air ratio in a combustion furnace having a fluidized bed (hereinafter referred to as a fluidized bed furnace), and more specifically, a method for burning and incinerating wastes and other materials TECHNICAL FIELD The present invention relates to a method and apparatus for appropriately controlling the amount of primary air supplied to a fluidized bed and the amount of secondary air supplied to a freeboard section in a bed furnace.

【0002】[0002]

【従来の技術】従来から、炉出口排ガス温度、水噴射水
量、ごみカロリー、ごみ焼却量、排ガスO2 濃度等のプ
ラント計測データにより、炉内の燃焼の過大、過小を捉
え、それによる燃焼用の空気比の制御を行い、焼却炉全
体としての空気不足を抑制する制御方法が知られてい
る。
2. Description of the Related Art Conventionally, by using plant measurement data such as furnace exhaust gas temperature, water injection water amount, waste calorie, waste incineration amount, exhaust gas O 2 concentration, etc., it is possible to detect whether combustion inside the furnace is excessive or excessive, and to use it for combustion A control method is known in which the air ratio is controlled to suppress air shortage in the incinerator as a whole.

【0003】また、特公昭61−2843号公報には、
流動層温度と流動層に供給される燃料流量とに基づき、
流動層に供給される空気の空気比を制御する流動床炉の
燃焼制御方法が記載されている。
Further, Japanese Patent Publication No. 61-2843 discloses that
Based on the fluidized bed temperature and the fuel flow rate supplied to the fluidized bed,
A combustion control method for a fluidized bed furnace is described which controls the air ratio of the air supplied to the fluidized bed.

【0004】[0004]

【発明が解決しようとする課題】上記従来の空気制御方
法では、炉全体の空気不足を抑制するため、局部的な空
気不足によるCOやダスト等の発生という問題点があっ
た。また、排ガスO2 濃度で空気不足を検知する場合
は、時間遅れが大きく、対応に限界がある。
The conventional air control method described above has a problem in that CO and dust are generated due to local air shortage in order to suppress air shortage in the entire furnace. Further, when detecting an air shortage based on the exhaust gas O 2 concentration, there is a large time delay, and there is a limit to the response.

【0005】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、プラント計測データから、流動層
内の空気比及びフリーボード部の空気比を推算すること
により、局部的な燃焼用空気の制御を行い、COやダス
トの発生を抑制する制御方法及び装置を提供することに
ある。また、本発明の他の目的は、ガス温度、空気流量
等の検知における時間遅れが小さい計測データに、動特
性解析式とカルマンフィルターによる信号処理を行い、
信頼性が高く、かつ、分析遅れを伴わない制御方法及び
装置を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to estimate a local combustion by estimating an air ratio in a fluidized bed and an air ratio in a freeboard part from plant measurement data. An object of the present invention is to provide a control method and device for controlling the production air and suppressing the generation of CO and dust. Another object of the present invention is to measure the gas temperature, the time delay in detecting the air flow rate, etc. with a small time delay, perform signal processing with a dynamic characteristic analysis formula and a Kalman filter,
An object of the present invention is to provide a control method and device that are highly reliable and that do not involve analysis delay.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の流動床炉における空気比制御方法は、流
動床炉で被処理物を燃焼させるに際し、層内燃焼割合を
プラント計測データから捉えることにより、流動層内の
空気比及びフリーボード部の空気比を推算し、これらの
推算値による燃焼用空気の流動層内及びフリーボード部
への配分比及び流量の制御を行うことを特徴としてい
る。上記の方法において、プラント計測データとして、
供給空気温度、流動層温度、炉出口排ガス温度、一次空
気流量及び二次空気流量を用いることが望ましい。
In order to achieve the above object, the method for controlling the air ratio in a fluidized bed furnace of the present invention is a plant measurement of the in-bed combustion ratio when burning an object to be treated in the fluidized bed furnace. By estimating from the data, the air ratio in the fluidized bed and the air ratio in the freeboard section, and controlling the distribution ratio and flow rate of the combustion air in the fluidized bed and the freeboard section based on these estimated values Is characterized by. In the above method, as the plant measurement data,
It is desirable to use the supply air temperature, fluidized bed temperature, furnace outlet exhaust gas temperature, primary air flow rate and secondary air flow rate.

【0007】本発明の流動床炉における空気比制御装置
は、図1に示すように、流動床炉で被処理物を燃焼させ
る際のプラント計測データを入力し、流動層内の燃焼割
合Kを計算する層内燃焼割合計算手段30と、この層内
燃焼割合計算手段30から得た層内燃焼割合Kと上記プ
ラント計測データのうちの一次空気流量Ga 1 とを入力
して流動層内の空気比λB を推算する層内空気比計算手
段32と、上記プラント計測データのうちの一次空気流
量Ga 1 及び二次空気流量Ga 2を入力してフリーボー
ド部における空気比λF を推算するフリーボード空気比
計算手段34と、層内空気比λB とフリーボード空気比
λF とを入力して燃焼用空気の流動層内及びフリーボー
ド部への配分比及び流量を制御する空気比制御手段36
とを備えたことを特徴としている。上記の装置におい
て、プラント計測データが、供給空気温度、流動層温
度、炉出口排ガス温度、一次空気流量及び二次空気流量
を用いることが望ましい。
As shown in FIG. 1, the air ratio control device for a fluidized bed furnace of the present invention inputs plant measurement data when burning an object to be treated in the fluidized bed furnace, and calculates the combustion ratio K in the fluidized bed. The in-layer combustion rate calculation means 30 for calculating, the in-layer combustion rate K obtained from this in-layer combustion rate calculation means 30, and the primary air flow rate G a 1 of the plant measurement data are input and the inside of the fluidized bed is calculated. The in-layer air ratio calculating means 32 for estimating the air ratio λ B and the primary air flow rate G a 1 and the secondary air flow rate G a 2 of the plant measurement data are input to determine the air ratio λ F in the freeboard portion. Freeboard air ratio calculating means 34 for estimating, and air for inputting the in-layer air ratio λ B and the freeboard air ratio λ F to control the distribution ratio and flow rate of combustion air in the fluidized bed and in the freeboard portion. Ratio control means 36
It is characterized by having and. In the above apparatus, it is desirable that the plant measurement data uses the supply air temperature, the fluidized bed temperature, the furnace outlet exhaust gas temperature, the primary air flow rate, and the secondary air flow rate.

【0008】[0008]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。図1は、本発
明の方法及び装置の一実施例を示す系統図、図2は、流
動床炉10を示す概略図である。図2において、12は
流動層、14は空気分散板、16はフリーボード部、1
8は一次空気入口、20は二次空気入口、22は排ガス
出口、24は被処理物入口、26は風箱である。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible. FIG. 1 is a system diagram showing an embodiment of the method and apparatus of the present invention, and FIG. 2 is a schematic diagram showing a fluidized bed furnace 10. In FIG. 2, 12 is a fluidized bed, 14 is an air dispersion plate, 16 is a freeboard section, 1
8 is a primary air inlet, 20 is a secondary air inlet, 22 is an exhaust gas outlet, 24 is an object inlet, and 26 is a wind box.

【0009】図2に示す流動床炉が流動床ごみ焼却炉で
ある場合の作用について説明する。一次空気によって激
しく混合・攪拌している流動媒体(例えば、珪砂)から
なる流動層12に投入されたごみは、層内に巻き込ま
れ、その熱によって短時間に燃焼し、さらに、フリーボ
ード部16で二次空気により燃焼を完結する。また、不
燃物は層内を沈降し、焼却残渣として流動媒体とともに
不燃物抜出管(図示略)から抜き出される。本発明者ら
は、上記の流動床ごみ焼却炉の特徴を考慮して数学モデ
ルを作成し、ごみの量をファジィ推論して動特性シミュ
レーション結果と実機データとが一致することを確認し
た。
The operation when the fluidized bed furnace shown in FIG. 2 is a fluidized bed refuse incinerator will be described. The dust thrown into the fluidized bed 12 made of a fluidized medium (for example, silica sand) that is vigorously mixed and stirred by the primary air is caught in the bed and burned in a short time by the heat, and further, the freeboard portion 16 Then, the combustion is completed by the secondary air. Further, the incombustibles settle in the bed and are extracted as incineration residues together with the fluidized medium from an incombustibles extraction pipe (not shown). The present inventors created a mathematical model in consideration of the characteristics of the fluidized bed refuse incinerator described above, and fuzzy inferred the amount of refuse, and confirmed that the dynamic characteristic simulation result and the actual machine data match.

【0010】図2に示すように、ごみ供給量をGR kg/
H 、このごみの理論空気量をA Nm3 /kg、層内燃焼割
合をK、フリーボード燃焼割合を1−K、一次空気流量
をGa 1 Nm3 /H 、二次空気流量をGa 2 Nm3 /H 、フ
リーボード部温度をTF ℃、流動層温度をTB ℃、排ガ
ス温度をTg ℃、供給空気温度をTa ℃とすると、層内
燃焼割合Kは数式1で表わされる。
As shown in FIG. 2, the amount of waste supplied is G R kg /
H, theoretical air amount of this waste is A Nm 3 / kg, in-bed combustion ratio is K, freeboard combustion ratio is 1-K, primary air flow rate is G a 1 Nm 3 / H, secondary air flow rate is G a 2 Nm 3 / H, freeboard temperature T F ℃, fluidized bed temperature T B ℃, exhaust gas temperature T g ℃, and supply air temperature T a ℃, the in-bed combustion ratio K is expressed by Equation 1. Be done.

【0011】[0011]

【数1】 [Equation 1]

【0012】また、層内空気比λB は数式2で表わされ
る。
Further, the in-layer air ratio λ B is expressed by Equation 2.

【0013】[0013]

【数2】 [Equation 2]

【0014】また、フリーボード空気比λF は数式3で
表わされる。
Further, the freeboard air ratio λ F is expressed by Equation 3.

【0015】[0015]

【数3】 [Equation 3]

【0016】また、ごみ供給量は、給じん装置回転数と
給じん装置電流とを入力したファジィ推論にて求まる。
上記の数式において、 Gg B =KGR (V0 −A0 +1.24ω)+Ga 1 /ηB g F =GR (V0 −A0 +1.24ω)+(Ga 1 +Ga 2 )/〔(1− K)ηP +KηB 〕 ただし、 K:層内燃焼割合 TB :層温度(℃) Tg :炉出口ガス温度(℃) Ta :空気温度(℃) Ga 1 :1次空気流量(Nm3 /H ) Ga 2 :2次空気流量(Nm3 /H ) Cp g :ガス比熱(kcal/Nm3 ℃) Cp a :空気比熱(kcal/Nm3 ℃) Gg B :層排ガス量(Nm3 /H ) Gg F :炉出口排ガス量(Nm3 /H ) Hu :ごみ低位発熱量(kcal/kg) GR :ごみ供給量(kg/H ) ηB :層内燃焼効率 ηF :フリーボード燃焼効率 CB :層物質比熱(kcal/kg℃) WB :層物質重量(kg) V0 :理論排ガス量(Nm3 /kg) A0 :理論空気量(Nm3 /kg) ω:ごみ単位量中水分
Further, the amount of refuse supply can be obtained by fuzzy inference in which the rotation speed of the dust feeder and the current of the dust feeder are input.
In the above formula, G g B = K G R (V 0 −A 0 +1.24 ω) + G a 1 / η B G g F = G R (V 0 −A 0 +1.24 ω) + (G a 1 + G a 2) / [(1- K) η P + Kη B ] However, K: intralayer combustion ratio T B: bed temperature (° C.) T g: furnace exit gas temperature (° C.) T a: air temperature (° C.) G a 1 : Primary air flow rate (Nm 3 / H) G a 2 : Secondary air flow rate (Nm 3 / H) C pg : Gas specific heat (kcal / Nm 3 ° C) C pa : Air specific heat (kcal / Nm 3 ° C) G g B: layers quantity of exhaust gas (Nm 3 / H) G g F: the furnace exit exhaust gas amount (Nm 3 / H) H u : garbage lower heating value (kcal / kg) G R: waste supply rate (kg / H) η B : In-bed combustion efficiency η F : Freeboard combustion efficiency CB: Bed material specific heat (kcal / kg ° C) WB: Bed material weight (kg) V 0 : Theoretical exhaust gas amount (Nm 3 / kg) A 0 : Theoretical air amount (Nm 3 / kg) ω: Waste unit amount Medium water content

【0017】つぎに、図1に基づいて本発明の制御装置
の一実施例を説明する。30は層内燃焼割合計算手段
で、流動床炉で被処理物を燃焼させる際のプラント計測
データ、例えば、供給空気温度Ta ℃、流動層温度TB
℃、炉出口排ガス温度Tg ℃、一次空気流量Ga 1 Nm3
/H 及び二次空気流量Ga 2 Nm3 /H をインプットし、
層内燃焼割合Kを計算する。32は層内空気比計算手段
で、層内燃焼割合K及び一次空気流量Ga 1 とをインプ
ットして層内空気比λB を推算する。34はフリーボー
ド空気比計算手段14で、一次空気流量Ga 1 及び二次
空気流量Ga 2 をインプットしてフリーボード空気比λ
F を推算する。
Next, one embodiment of the control device of the present invention will be described with reference to FIG. Reference numeral 30 denotes an in-bed combustion ratio calculation means, which is plant measurement data when burning an object to be processed in a fluidized bed furnace, for example, supply air temperature T a ° C and fluidized bed temperature T B.
℃, furnace outlet exhaust gas temperature T g ℃, primary air flow rate G a 1 Nm 3
/ H and the secondary air flow rate G a 2 Nm 3 / H,
The in-layer combustion ratio K is calculated. Reference numeral 32 denotes an in-layer air ratio calculating means, which inputs the in-layer combustion ratio K and the primary air flow rate G a 1 to estimate the in-layer air ratio λ B. Reference numeral 34 is a freeboard air ratio calculation means 14, which inputs the primary air flow rate G a 1 and the secondary air flow rate G a 2 to input the freeboard air ratio λ.
Estimate F.

【0018】36は空気比制御手段で、層内空気比λB
及びフリーボード空気比λF をインプットして燃焼用空
気の流動層内及びフリーボード部への配分比及び流量を
制御する。40はファジィ推論手段で、給じん電流及び
給じん装置回転数をインプットしてファジィ推論し、推
論結果を層内空気比計算手段32及びフリーボード空気
比計算手段34へインプットする。
Reference numeral 36 denotes an air ratio control means, which is an in-layer air ratio λ B
And the freeboard air ratio λ F is input to control the distribution ratio and flow rate of combustion air in the fluidized bed and to the freeboard section. Reference numeral 40 is a fuzzy inference means, which inputs the dust supply current and the rotation speed of the dust supply device to perform fuzzy inference, and inputs the inference result to the in-layer air ratio calculation means 32 and the freeboard air ratio calculation means 34.

【0019】42はごみ・空気基本演算手段で、焼却量
及び発熱量をインプットし、演算結果を空気比制御手段
36及び発生熱制御手段44へインプットする。46は
発生熱計算手段で、供給空気温度Ta 、炉出口排ガス温
度Tg 、一次空気流量Ga 1及び二次空気流量Ga 2
インプットし、計算結果を発生熱制御手段44へインプ
ットする。
Reference numeral 42 denotes a refuse / air basic calculation means, which inputs the incineration amount and the heat generation amount, and inputs the calculation result to the air ratio control means 36 and the generated heat control means 44. A generated heat calculation means 46 inputs the supply air temperature T a , the furnace outlet exhaust gas temperature T g , the primary air flow rate G a 1 and the secondary air flow rate G a 2 and inputs the calculation result to the generated heat control means 44. .

【0020】つぎに、図1に基づいて本発明の方法を説
明する。プラント計測データ(実機データ)のうち、一
次空気流量Ga 1 、二次空気流量Ga 2 、1次空気温度
a、流動層温度TB 及び炉出口排ガス温度Tg の各値
を用いて、層内燃焼割合Kを計算する。また、このK、
給じん装置電流Iと給じん装置の回転数とを入力してフ
ァジィ推論したごみ供給量GR 及び実測Ga 1 から層内
空気比λB を計算する。また、給じん装置電流Iと回転
数とを入力してファジィ推論した値GR 、実測Ga 1
及び実測Ga 2 からフリーボード空気比λF を計算す
る。上記λB 、λF を制御するとともに、燃焼用空気の
流動層内及びフリーボード部への流量Ga 1 ,Ga 2
設定する。図1において、Qs は全投入ごみの発燃量
を、λB s は層内空気比設定値を、λF s はフリーボー
ド空気設定値を表している。なお、本実施例における制
御方法は、図1において一点鎖線で囲まれた部分の構成
により行われる。
Next, the method of the present invention will be described with reference to FIG. Of the plant measurement data (actual machine data), the primary air flow rate G a 1 , the secondary air flow rate G a 2 , the primary air temperature T a , the fluidized bed temperature T B, and the furnace outlet exhaust gas temperature T g are used. , The in-layer combustion ratio K is calculated. Also, this K,
The in-layer air ratio λ B is calculated from the dust supply amount G R fuzzy inferred by inputting the dust supply device current I and the rotation speed of the dust supply device and the measured G a 1 . Further, a fuzzy inference value G R by inputting the dust supply device current I and the number of revolutions, an actual measurement G a 1 ,
And the freeboard air ratio λ F is calculated from the measured G a 2 . In addition to controlling λ B and λ F , the flow rates G a 1 and G a 2 of the combustion air in the fluidized bed and to the freeboard section are set. In FIG. 1, Q s represents the amount of combustion of all input waste, λ B s represents the in-layer air ratio set value, and λ F s represents the freeboard air set value. The control method in this embodiment is performed by the configuration of the portion surrounded by the alternate long and short dash line in FIG.

【0021】上記の制御方法においては、計測信号の遅
れ補償のために、カルマンフィルターによる状態推定手
法を活用し、パラメータ推定を行っている。そして、求
めた層内燃焼割合Kを用いて、層内空気比λB 及びフリ
ーボード空気比λF を算出することができ、これらの値
により、最適な一次空気流量Ga 1 及び最適な二次空気
流量Ga 2 を設定することができる。
In the above control method, the parameter estimation is performed by utilizing the state estimation method using the Kalman filter in order to compensate the delay of the measurement signal. Then, the in-layer combustion ratio K thus obtained can be used to calculate the in-layer air ratio λ B and the freeboard air ratio λ F. Based on these values, the optimum primary air flow rate G a 1 and the optimum The next air flow rate G a 2 can be set.

【0022】[0022]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 層内燃焼割合をプラント計測データから捉える
ことにより、流動層内空気比λB 及びフリーボード空気
比λF を推算し、これらにより燃焼用空気の配分比を制
御するので、局部的な空気不足を解消し、COやダスト
の発生を防ぐことができる。 (2) プラント計測データとして、空気温度、流動層
温度、排ガス温度、一次空気流量及び二次空気流量を用
いる場合は、信頼性が高く、かつ、O2 濃度制御等の場
合のような分析遅れを伴うことはない。 (3) 従来から用いられている自動燃焼制御機構を大
幅に変更することなく、本発明の方法を実施できるよう
に構成することができる。
Since the present invention is configured as described above, it has the following effects. (1) By capturing the in-bed combustion ratio from the plant measurement data, the fluidized bed air ratio λ B and the freeboard air ratio λ F are estimated, and the distribution ratio of the combustion air is controlled by these. The lack of air can be eliminated and the generation of CO and dust can be prevented. (2) When the air temperature, fluidized bed temperature, exhaust gas temperature, primary air flow rate and secondary air flow rate are used as plant measurement data, there is high reliability and analysis delay as in the case of O 2 concentration control, etc. It is not accompanied by. (3) The method of the present invention can be implemented without significantly changing the conventional automatic combustion control mechanism.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の流動床炉における空気比制御方法及び
装置の一実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of an air ratio control method and apparatus in a fluidized bed furnace of the present invention.

【図2】流動床炉の略示的説明図である。FIG. 2 is a schematic explanatory view of a fluidized bed furnace.

【符号の説明】[Explanation of symbols]

10 流動床炉 12 流動層 16 フリーボード部 18 一次空気入口 20 二次空気入口 24 被処理物入口 30 層内燃焼割合計算手段 32 層内空気比計算手段 34 フリーボード空気比計算手段 36 空気比制御手段 10 Fluidized Bed Furnace 12 Fluidized Bed 16 Freeboard Section 18 Primary Air Inlet 20 Secondary Air Inlet 24 Workpiece Inlet 30 In-Layer Combustion Ratio Calculation Means 32 In-Layer Air Ratio Calculation Means 34 Freeboard Air Ratio Calculation Means 36 Air Ratio Control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 英隆 兵庫県明石市川崎町1番1号 川崎重工業 株式会社明石工場内 (72)発明者 藤山 博 大阪市北区天神橋2丁目5番25号 川崎重 工業株式会社大阪設計事務所内 (72)発明者 南部 栄一郎 大阪市北区天神橋2丁目5番25号 川崎重 工業株式会社大阪設計事務所内 (72)発明者 豊嶋 則雄 大阪市北区天神橋2丁目5番25号 川崎重 工業株式会社大阪設計事務所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidetaka Miyazaki No. 1-1 Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd. Akashi factory (72) Hiroshi Fujiyama 2-5-25 Tenjinbashi, Kita-ku, Osaka Kawasaki Heavy Industries Ltd. Osaka Design Office (72) Inventor Eiichiro Nanbu 2-5-25 Tenjinbashi, Kita-ku, Osaka Kawasaki Heavy Industries Ltd. Osaka Design Office (72) Inventor Norio Toyoshima 2-5 Tenjinbashi, Kita-ku, Osaka City No. 25 Kawasaki Heavy Industries Ltd. Osaka Design Office

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流動床炉で被処理物を燃焼させるに際
し、層内燃焼割合をプラント計測データから捉えること
により、流動層内の空気比及びフリーボード部の空気比
を推算し、これらの推算値による燃焼用空気の流動層内
及びフリーボード部への配分比及び流量の制御を行うこ
とを特徴とする流動床炉における空気比制御方法。
1. When burning an object to be treated in a fluidized bed furnace, the air ratio in the fluidized bed and the air ratio in the freeboard part are estimated by capturing the in-bed combustion ratio from plant measurement data, and these estimations are made. A method for controlling an air ratio in a fluidized bed furnace, comprising controlling a distribution ratio and a flow rate of combustion air in a fluidized bed and to a freeboard section according to a value.
【請求項2】 プラント計測データが、供給空気温度、
流動層温度、炉出口排ガス温度、一次空気流量及び二次
空気流量であることを特徴とする請求項1記載の流動床
炉における空気比制御方法。
2. The plant measurement data includes supply air temperature,
The air ratio control method in a fluidized bed furnace according to claim 1, wherein the fluidized bed temperature, furnace outlet exhaust gas temperature, primary air flow rate, and secondary air flow rate are used.
【請求項3】 流動床炉で被処理物を燃焼させる際のプ
ラント計測データを入力し、流動層内の燃焼割合(K)
を計算する層内燃焼割合計算手段(30)と、 この層内燃焼割合計算手段(30)から得た層内燃焼割
合(K)と上記プラント計測データのうちの一次空気流
量(Ga 1 )とを入力して流動層内の空気比(λB )を
推算する層内空気比計算手段(32)と、 上記プラント計測データのうちの一次空気流量
(Ga 1 )及び二次空気流量(Ga 2 )を入力してフリ
ーボード部における空気比(λF )を推算するフリーボ
ード空気比計算手段(34)と、 層内空気比(λB )とフリーボード空気比(λF )とを
入力して燃焼用空気の流動層内及びフリーボード部への
配分比及び流量を制御する空気比制御手段(36)とを
備えたことを特徴とする流動床炉における空気比制御装
置。
3. The combustion rate (K) in the fluidized bed is input by inputting plant measurement data when burning the material to be treated in the fluidized bed furnace.
In-layer combustion ratio calculating means (30) for calculating, and in-layer combustion ratio (K) obtained from this in-layer combustion ratio calculating means (30) and the primary air flow rate (G a 1 ) of the plant measurement data And the in-bed air ratio calculating means (32) for estimating the air ratio (λ B ) in the fluidized bed, and the primary air flow rate (G a 1 ) and the secondary air flow rate (G a 1 ) in the plant measurement data ( Free board air ratio calculation means (34) for inputting G a 2 ) to estimate the air ratio (λ F ) in the free board portion, and the in-layer air ratio (λ B ) and free board air ratio (λ F ) And an air ratio control means (36) for controlling the distribution ratio and flow rate of combustion air in the fluidized bed and to the freeboard section.
【請求項4】 プラント計測データが、供給空気温度、
流動層温度、炉出口排ガス温度、一次空気流量及び二次
空気流量であることをを特徴とする請求項3記載の流動
床炉における空気比制御装置。
4. The plant measurement data is a supply air temperature,
The air ratio control device in a fluidized bed furnace according to claim 3, wherein the temperature is a fluidized bed temperature, a furnace outlet exhaust gas temperature, a primary air flow rate, and a secondary air flow rate.
JP15619893A 1993-06-01 1993-06-01 Method and apparatus for controlling the air ratio in a fluidized bed furnace Expired - Lifetime JP3713718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15619893A JP3713718B2 (en) 1993-06-01 1993-06-01 Method and apparatus for controlling the air ratio in a fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15619893A JP3713718B2 (en) 1993-06-01 1993-06-01 Method and apparatus for controlling the air ratio in a fluidized bed furnace

Publications (2)

Publication Number Publication Date
JPH06341629A true JPH06341629A (en) 1994-12-13
JP3713718B2 JP3713718B2 (en) 2005-11-09

Family

ID=15622517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15619893A Expired - Lifetime JP3713718B2 (en) 1993-06-01 1993-06-01 Method and apparatus for controlling the air ratio in a fluidized bed furnace

Country Status (1)

Country Link
JP (1) JP3713718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829683A2 (en) 1996-09-12 1998-03-18 Mitsubishi Denki Kabushiki Kaisha Combustion system and operation control method thereof
JP2007240144A (en) * 2006-03-09 2007-09-20 Abb Technology Ag Control of waste combustion process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829683A2 (en) 1996-09-12 1998-03-18 Mitsubishi Denki Kabushiki Kaisha Combustion system and operation control method thereof
US5957063A (en) * 1996-09-12 1999-09-28 Mitsubishi Denki Kabushiki Kaisha Combustion system and operation control method thereof
JP2007240144A (en) * 2006-03-09 2007-09-20 Abb Technology Ag Control of waste combustion process

Also Published As

Publication number Publication date
JP3713718B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JPH1194227A (en) Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP3030614B2 (en) Estimation method of waste layer thickness index and combustion control method of waste incinerator using the method
JPH06341629A (en) Method and device for controlling air ratio in fluidized-bed furnace
JP4256378B2 (en) Control method and control apparatus for gasifier
WO1991014915A1 (en) Method of controlling combustion in fluidized bed incinerator
JPH0240410A (en) Automatic combustion control of municipal waste incinerating furnace
JP2762054B2 (en) Combustion control method for fluidized bed incinerator
JPH0470528B2 (en)
JPS58195707A (en) Combustion control method for refuse incinerator
JP3850206B2 (en) Combustion control method and combustion control apparatus
JPS63187018A (en) Control device for fluidized bed type refuse incinerator
JPH0468533B2 (en)
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
Chong et al. Neural network models of the combustion derivatives emanating from a chain grate stoker fired boiler plant
JP2000028123A (en) Secondary combustion controller for refuse incinerator
JPH0157245B2 (en)
JP2001289401A (en) Method and apparatus for vapor flow rate control in incinerator
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JPH09273732A (en) Control method of combustion in incinerating furnace
JP3305175B2 (en) Sand bed combustion rate adjustment method for fluidized bed furnace
JPH0599411A (en) Dust incinerator
JPH06265124A (en) Method for controlling combustion of dust in dust incinerator
JP2004353944A (en) Combustion control method in refuse disposal facility and refuse disposal facility
JPH0152653B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050609

A61 First payment of annual fees (during grant procedure)

Effective date: 20050815

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080902

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080902

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080902

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110902

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110902

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120902

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20130902

EXPY Cancellation because of completion of term