JPH06340906A - Production of globular silver fine particle - Google Patents

Production of globular silver fine particle

Info

Publication number
JPH06340906A
JPH06340906A JP5131734A JP13173493A JPH06340906A JP H06340906 A JPH06340906 A JP H06340906A JP 5131734 A JP5131734 A JP 5131734A JP 13173493 A JP13173493 A JP 13173493A JP H06340906 A JPH06340906 A JP H06340906A
Authority
JP
Japan
Prior art keywords
plasma
silver
fine particles
fine particle
silver oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5131734A
Other languages
Japanese (ja)
Other versions
JP3253175B2 (en
Inventor
Osamu Machida
収 町田
Takeshi Nomura
威 野村
Hiroyasu Sumitomo
紘泰 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Denpa Koki Kk
Fuji Electronics Industry Co Ltd
Tsukishima Kikai Co Ltd
Original Assignee
Fuji Denpa Koki Kk
Fuji Electronics Industry Co Ltd
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Denpa Koki Kk, Fuji Electronics Industry Co Ltd, Tsukishima Kikai Co Ltd filed Critical Fuji Denpa Koki Kk
Priority to JP13173493A priority Critical patent/JP3253175B2/en
Publication of JPH06340906A publication Critical patent/JPH06340906A/en
Application granted granted Critical
Publication of JP3253175B2 publication Critical patent/JP3253175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To efficiently mass-produce a globular silver fine particle having a small diameter by supplying a silver oxide fine particle into a high-frequency plasma flame generated by supplying plasma into a high-frequency magnetic field, rapidly heating the particle and then rapidly cooling the particle. CONSTITUTION:A high-frequency induction coil 2 is arranged around a double quartz tube 3, and a high-frequency magnetic field is excited in the tube 3. A plasma gas is introduced from a plasma gas feed pipe 5 placed above to generate a plasma flame F, and a silver oxide fine particle is entrained by the plasma gas through the feed pipe 5 and supplied as a two-phase current. Consequently, the silver oxide fine particle is brought into contact with the tail flame B of plasma, crushed by the decomposition reaction between silver and oxygen, then immediately cooled by cooling water feed pipes 3a and 3b, melted, solidified, globurized, dropped into a recovery vessel 4 and recovered. Globular silver particles having about 0.1-10mum average diameter are efficiently mass-produced in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に導電ペースト、粉
末冶金用などに使用される平均粒径0.1〜10μm程
度の球状銀微粒子を効率的に得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently obtaining spherical silver fine particles having an average particle size of about 0.1 to 10 .mu.m, which are used particularly for conductive paste and powder metallurgy.

【0002】[0002]

【従来の技術】従来より、導電ペースト、粉末冶金用な
どに使用される銀微粒子は、主として湿式法によって製
造されている。この湿式法は、銀地金を硝酸に溶解させ
て硝酸銀水溶液とした後、これに水酸化ナトリウムなど
を加えて酸化銀を作り、さらにこれを種々の還元剤を用
いて還元して金属銀微粒子を析出させるものである。前
記還元剤としては、苛性アルカリ、アンモニウム、過酸
化水素、ブドウ糖、ヒドラジンなどが使用されている。
2. Description of the Related Art Conventionally, fine silver particles used for conductive paste, powder metallurgy and the like have been manufactured mainly by a wet method. In this wet method, silver metal is dissolved in nitric acid to form an aqueous solution of silver nitrate, and then sodium hydroxide or the like is added thereto to form silver oxide, which is further reduced with various reducing agents to produce metallic silver fine particles. Is deposited. As the reducing agent, caustic alkali, ammonium, hydrogen peroxide, glucose, hydrazine and the like are used.

【0003】しかしながら、このようにして得られた銀
微粒子は、不完全な球状あるいは不定型な多面体であ
り、析出条件によっては球に近いものを得ることもでき
るが、この場合でも、スポンジ状の多孔質の微粒子で、
内部にガスを包含するものである。したがって、前記湿
式法によって得られた銀微粒子をそのまま使用して調整
された導電ペーストは、粒子の分散性、流動性、スクリ
ーン印刷性、耐マイグレーション性等に改善の余地を残
すものとなっており、銀微粒子の微細化および高球状化
が望まれている。
However, the fine silver particles thus obtained are incomplete spherical or irregular polyhedrons, and although they can be close to spherical depending on the deposition conditions, sponge-like particles are also obtained in this case. Porous fine particles,
It contains gas inside. Therefore, the conductive paste prepared by directly using the fine silver particles obtained by the wet method leaves room for improvement in the dispersibility, fluidity, screen printability, migration resistance, etc. of the particles. It is desired that the fine silver particles be made finer and have a higher spherical shape.

【0004】一方、本願出願人等は、先の特開平4−2
46104号、特願平4−178352号において、高
周波プラズマ発生装置を用い、所定の条件下でプラズマ
フレーム内に微粒子を供給することによって、粒子表面
が平滑で、定型の球状化微粒子を得る方法を提案してい
る。
On the other hand, the applicants of the present application filed the above-mentioned Japanese Patent Laid-Open No. 4-2.
No. 46104 and Japanese Patent Application No. 4-178352, there is disclosed a method for obtaining regular spheroidized particles having a smooth particle surface by supplying the particles into a plasma flame under a predetermined condition using a high frequency plasma generator. is suggesting.

【0005】[0005]

【発明が解決しようとする課題】たとえば、湿式法によ
って得られた銀微粒子を前記プラズマ発生装置による球
状化処理を行えば、粒子表面が平滑で、定型の球状化微
粒子を得ることができるのであるが、前記湿式法による
銀粒子の析出法の場合には、PH調整、沈殿生成、還元
等の複雑な処理工程を要するとともに、回分式反応器を
使用するため量産性に乏しい。また、液相中で沈殿生成
するため凝集化している場合も多く、さらに湿式法によ
って得られた銀微粒子は、比較的粒径が大きく、粒度分
布の幅も広いなどの欠点を有する。
For example, by subjecting the silver fine particles obtained by the wet method to the spheroidizing treatment by the plasma generator, it is possible to obtain the regular spheroidized fine particles having a smooth particle surface. However, in the case of the method of depositing silver particles by the wet method, complicated processing steps such as pH adjustment, precipitation generation, and reduction are required, and a batch reactor is used, so mass productivity is poor. Further, since they are often precipitated in the liquid phase and thus aggregated, the silver fine particles obtained by the wet method have drawbacks such as a relatively large particle size and a wide particle size distribution.

【0006】そこで本発明の主たる課題は、製造工程を
簡素化ができ、球状銀微粒子を量産でき、さらに粒径が
小さくかつ球状化された銀微粒子を効率的に製造する方
法を提供するものである。
Therefore, a main object of the present invention is to provide a method capable of simplifying the manufacturing process, mass-producing spherical silver fine particles, and efficiently manufacturing spherical fine silver particles having a small particle size. is there.

【0007】[0007]

【課題を解決するための手段】前記課題は、高周波誘導
コイルにより高周波磁場を励磁し、この高周波磁場内に
プラズマガスを供給して誘導的に発生された高周波プラ
ズマフレーム内に酸化銀微粒子を供給し、このプラズマ
フレーム内で前記酸化銀微粒子を急激に加熱して分解、
破砕および溶融させた後、高周波磁場の減衰による急激
な冷却により球状化された銀微粒子を得ることで解決で
きる。
[Means for Solving the Problems] The object is to excite a high-frequency magnetic field by a high-frequency induction coil, supply a plasma gas into the high-frequency magnetic field, and supply silver oxide fine particles into a high-frequency plasma frame generated inductively. Then, the silver oxide fine particles are rapidly heated and decomposed in the plasma flame,
It can be solved by crushing and melting and then obtaining spherical silver particles by rapid cooling due to attenuation of a high frequency magnetic field.

【0008】この場合、前記酸化銀微粒子を高周波プラ
ズマフレームの500〜5000℃領域に分散状態で供
給することが望ましい。
In this case, it is desirable that the fine silver oxide particles are supplied in a dispersed state in the range of 500 to 5000 ° C. of the high frequency plasma flame.

【0009】[0009]

【作用】本発明においては、高周波プラズマによる球状
化処理物質として酸化銀微粒子を用いる。この酸化銀微
粒子の製造工程は、銀地金を硝酸に溶解させ硝酸銀水溶
液とし、水酸化アルカリを加える工程までは、還元銀微
粒子の製造工程と同じであるが、還元工程がないためプ
ロセスが簡素化できるので、従来のように不定型還元銀
微粒子を製造した後これを球状化するよりも、本発明に
従って酸化銀微粒子を使用し一気に球状化銀微粒子を製
造する方が安価となる。
In the present invention, silver oxide fine particles are used as the spheroidizing substance by high frequency plasma. This silver oxide fine particle manufacturing process is the same as the reduced silver fine particle manufacturing process up to the step of dissolving silver metal in nitric acid to form an aqueous silver nitrate solution and adding an alkali hydroxide, but the process is simple because there is no reduction step. Therefore, it is cheaper to produce the spheroidized silver fine particles at once by using the silver oxide fine particles according to the present invention, than to produce the atypical reduced silver fine particles and then spheroidize them as in the conventional case.

【0010】また、一般的に、酸化銀は190℃前後で
容易に分解し、銀と酸素とを生成することが知られてい
る。そこで、本発明者等は、この特性に着目し、酸化銀
の状態のままプラズマフレーム内に供給することによっ
て、このプラズマフレーム内で急激に加熱し、一気に分
解、破砕、溶融させた後、高周波磁場の減衰により急冷
することによって球状化された銀微粒子を効率的に生産
する方法を見出したものである。
It is generally known that silver oxide easily decomposes at around 190 ° C. to produce silver and oxygen. Therefore, the present inventors have paid attention to this characteristic, and by supplying it into the plasma flame in the state of silver oxide, they are rapidly heated in this plasma flame, decomposed, crushed, and melted at once, and then the high frequency The inventors have found a method for efficiently producing spherical silver fine particles by quenching by magnetic field decay.

【0011】より具体的に説明すると、好ましくは前記
酸化銀微粒子をそのまま高周波プラズマによる500〜
5000℃の領域に分散状態で供給する。すると、酸化
銀微粒子は急激に高温熱ショックを受け、酸化銀微粒子
は瞬時に酸素と銀とに分解される。この際、気体である
酸素が急激に生成し、その体積を膨張させるため、粒子
は破砕され飛散する。そして破砕された銀微粒子がプラ
ズマフレームの熱によって溶融され急冷によって固化さ
れ、球状化された銀微粒子となる。
More specifically, it is preferable that the silver oxide fine particles are directly treated by high-frequency plasma in a range of 500-500.
It is supplied in a dispersed state in the region of 5000 ° C. Then, the silver oxide fine particles are suddenly subjected to a high temperature heat shock, and the silver oxide fine particles are instantly decomposed into oxygen and silver. At this time, oxygen, which is a gas, is abruptly generated and the volume thereof is expanded, so that the particles are crushed and scattered. Then, the crushed silver fine particles are melted by the heat of the plasma flame and solidified by rapid cooling to become spherical silver fine particles.

【0012】このように、本発明法の場合には、酸化銀
のままでプラズマフレーム内に投入することによって、
分解、破砕、溶融を瞬時に行い、球状化された平均粒径
0.1〜10μm程度の銀微粒子を効率的に得るもので
あるため、量産性に優れかつ安価なものとなる。また、
本発明法によって製造された球状化銀微粒子を使用すれ
ば、ペースト化した際の分散性が良好となり、添加樹脂
等の減量化が可能となり、その上流動性も改善されるの
で、スクリーン印刷性に優れ、焼成膜の幅を小さくかつ
緻密にすることが容易となり、耐マイグレーション性が
大となるなど、種々の利点がもたらされる。
As described above, in the case of the method of the present invention, by introducing silver oxide as it is into the plasma flame,
Decomposition, crushing, and melting are performed instantaneously to efficiently obtain spheroidized silver fine particles having an average particle diameter of about 0.1 to 10 μm, and thus are excellent in mass productivity and inexpensive. Also,
When the spheroidized silver fine particles produced by the method of the present invention are used, the dispersibility when formed into a paste becomes good, the amount of added resin and the like can be reduced, and the fluidity is also improved, so that the screen printability is improved. In addition, various advantages are obtained such that the width of the fired film can be made narrow and dense, migration resistance can be increased, and the like.

【0013】なお、高周波プラズマの代わりに、直流熱
プラズマを使用することも可能であるが、高周波プラズ
マの方がフレームが大きく、また電極が存在しないので
不純物の混入もなく好ましいものとなる。
It is possible to use direct current thermal plasma instead of high frequency plasma. However, high frequency plasma has a larger frame, and since no electrodes are present, it is preferable because impurities are not mixed.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいて詳述する。
図1は、本発明に係る球状銀微粒子の製造方法に使用さ
れる高周波誘導プラズマ反応器の縦断面図であり、図2
は装置の全体縦断面図である。先ず、図2により、高周
波誘導プラズマ反応による球状化粒子製造装置の全体構
造について説明すると、本球状化粒子製造装置は、その
上部にプラズマ反応器1を備えるとともに、その下方に
図示されない吸排気装置によって、加圧または真空圧運
転が可能な容器4とを備え、その最下部に加工された球
状化粒子を回収するための回収容器4Aを備えるもので
ある。なお、前記容器4の側部の4aは、監視用窓であ
り、4bおよび4cは、温度計設置等の器具の設置およ
び吸排気のための管路が接続されるための吸排気孔であ
る。
EXAMPLES The present invention will be described in detail below based on examples.
FIG. 1 is a vertical cross-sectional view of a high frequency induction plasma reactor used in the method for producing spherical silver fine particles according to the present invention.
FIG. 3 is an overall vertical sectional view of the device. First, referring to FIG. 2, the overall structure of the spheroidized particle production apparatus using a high frequency induction plasma reaction will be described. The spheroidized particle production apparatus includes a plasma reactor 1 at its upper part and an intake / exhaust device (not shown) below the plasma reactor 1. According to the above, a container 4 capable of pressurizing or vacuum pressure operation is provided, and a recovery container 4A for recovering the processed spheroidized particles is provided at the lowermost part thereof. The side portion 4a of the container 4 is a monitoring window, and the reference numerals 4b and 4c are intake / exhaust holes for connecting pipes for installing instruments such as a thermometer and for intake / exhaust.

【0015】前記プラズマ反応装置1は、図1に示され
るように、二重管構造の石英管3の外方部分に高周波誘
導コイル2、2…が配設され、前記石英管3の内部に高
周波磁場を励磁するようになっており、その上方に設置
されたプラズマガス供給管5からプラズマガスを流し込
むとともに、前記高周波コイル2、2…に高周波電流を
流し、点火することによってプラズマフレームFを生じ
させる。前記プラズマガス供給管5は二重管構造となっ
ており、この中空部分には、冷却水供給管7より冷却水
が供給されるようになっている。また、シールガス供給
管6より、アルゴンガス等のシールガスが前記石英管3
内に送られ、供給されるプラズマガスによるガス流の乱
れを抑えるとともに、石英管3の内面に沿って流れるシ
ールガスによって処理物質が石英管内面に付着するのを
防止している。
In the plasma reactor 1, as shown in FIG. 1, high frequency induction coils 2, 2, ... Are arranged outside a quartz tube 3 having a double tube structure, and the quartz tube 3 is provided with an inside thereof. A high-frequency magnetic field is excited, and a plasma gas is supplied from a plasma gas supply pipe 5 installed above the high-frequency magnetic field, and a high-frequency current is passed through the high-frequency coils 2, 2 ... Give rise to. The plasma gas supply pipe 5 has a double pipe structure, and cooling water is supplied from a cooling water supply pipe 7 to this hollow portion. Further, a seal gas such as argon gas is supplied from the seal gas supply pipe 6 to the quartz pipe 3
The turbulence of the gas flow due to the plasma gas sent and supplied therein is suppressed, and the treatment gas is prevented from adhering to the inner surface of the quartz tube by the seal gas flowing along the inner surface of the quartz tube 3.

【0016】また、前記石英管3の二重管内の中空部に
は、冷却水供給管3a、3bにより冷却水が供給されて
いる。前記プラズマガスとしては、アルゴンガスの他、
ヘリューム、窒素等のガスを使用することでもよいし、
また水素を補助ガスとしてアルゴンガスと同時供給する
ようにすれば、特に酸化物の少ない金属粒子を得ること
ができる。前記プラズマ発生装置1により発生するプラ
ズマフレームFは、流入ガスの勢いにより、高周波誘導
コイル2、2…が配設されたプラズマ部Aからさらに下
方に延び、細長のプラズマフレームFを形成する。この
プラズマフレームFの内、この高周波コイル2、2…が
配置されていない領域、すなわち直接高周波エネルギー
を受けていないテールフレームBのエネルギーのみを球
状化のために利用する。該テールフレームBは、約70
00℃の高温部から約1000℃の低温部の温度範囲に
あり、この領域に対して、処理物質を供給することによ
って、プラズマ部Aでの気流乱れが無くなるため、処理
物質の蒸発および熱対流が無くなり、プラズマ発生トー
チ部、処理物質供給ノズル5の閉塞の問題および遮蔽に
よる高周波プラズマの失火現象がなくなる。一方、処理
原料となる酸化銀微粒子は、プラズマガス供給管5を介
して、供給されるプラズマガスに乗せて二相流状態で供
給される。前記処理物質は、処理物質の重力落下+αの
低い圧力で送給するとともに、望ましくは約1(l/m
in)以上の流量で、プラズマ部Aには処理物質が落下
しないように、プラズマ反応器1の圧力、処理物質の供
給用ガス圧および処理物質供給ノズル5の位置などを調
整しながら球状化処理を行う。
Cooling water is supplied to the hollow portion of the double tube of the quartz tube 3 by cooling water supply pipes 3a and 3b. As the plasma gas, in addition to argon gas,
It is also possible to use a gas such as helium or nitrogen,
If hydrogen is supplied as an auxiliary gas simultaneously with the argon gas, metal particles with a particularly small amount of oxide can be obtained. The plasma flame F generated by the plasma generator 1 extends further downward from the plasma part A in which the high frequency induction coils 2, 2, ... Are arranged by the force of the inflowing gas to form an elongated plasma flame F. Of the plasma frame F, only the region where the high-frequency coils 2, 2, ... Are not arranged, that is, the energy of the tail frame B that is not directly receiving the high-frequency energy is used for spheroidizing. The tail frame B is about 70
The temperature range is from a high temperature part of 00 ° C. to a low temperature part of about 1000 ° C., and by supplying the processing substance to this region, turbulence of the air flow in the plasma part A is eliminated, so that evaporation and heat convection of the processing substance are eliminated. The problem of clogging of the plasma generating torch portion, the treatment substance supply nozzle 5 and the misfire phenomenon of high frequency plasma due to the shielding are eliminated. On the other hand, the silver oxide fine particles as the processing raw material are supplied in a two-phase flow state on the supplied plasma gas through the plasma gas supply pipe 5. The treatment substance is fed at a low pressure of gravity drop + α of the treatment substance, and is preferably about 1 (l / m).
in), the spheroidizing treatment is performed while adjusting the pressure of the plasma reactor 1, the gas pressure for supplying the processing substance, the position of the processing substance supply nozzle 5 and the like so that the processing substance does not drop into the plasma part A at a flow rate of at least above. I do.

【0017】前記プラズマ装置の場合には、単位時間当
りの処理量が少なくなるものの、供給される微粒子は、
テールフレームBの全延長範囲を通過するため、球状化
率を向上させることができる。前記供給用キャリアガス
としては、アルゴンガス、ヘリューム等の不活性ガスの
他、活性ガスを用いることでもよい。
In the case of the above-mentioned plasma device, although the processing amount per unit time is small, the supplied fine particles are
Since it passes through the entire extension range of the tail frame B, the spheroidization rate can be improved. As the carrier gas for supply, an inert gas such as argon gas or helium, or an active gas may be used.

【0018】さらに、処理される酸化銀微粒子は、プラ
ズマフレーム内に供給される前に、篩に掛けたり、機械
的または非機械的方法により(特殊ノズル、および原料
供給用キャリアーガス量の変化)分散させ、凝集してい
る量を加減することにより、本発明が特に対象とする
0.1〜10μmの球状化粒子の他、処理物質の融点、
あるいは熱伝導性、粘性条件等に応じ、プラズマフレー
ムFと処理物質供給ノズル5との距離、プラズマ反応部
分の圧力条件、処理物質の供給用ガスの圧力条件などを
適宜制御することによって、所望の粒径サイズの球状化
粒子を得ることが可能となる。かかるプラズマ発生装置
を用い、前記処理物質供給ノズル5から酸化銀微粒子を
供給することによって、酸化銀微粒子は、プラズマのテ
ールフレームBと接触し、銀と酸素の分解反応によって
破砕され、その直後溶融・凝固することによって、球状
化され容器4の回収容器4Aに落下し回収される。
Further, the fine silver oxide particles to be treated are sieved before being fed into the plasma flame, or by a mechanical or non-mechanical method (special nozzle, and change of carrier gas amount for raw material supply). By dispersing and adjusting the amount of aggregation, in addition to the spheroidized particles of 0.1 to 10 μm that are particularly targeted by the present invention, the melting point of the treatment substance,
Alternatively, by appropriately controlling the distance between the plasma flame F and the treatment substance supply nozzle 5, the pressure condition of the plasma reaction portion, the pressure condition of the gas for supplying the treatment substance, etc., according to the thermal conductivity, the viscosity condition, etc. It becomes possible to obtain spheroidized particles having a particle size. By supplying fine particles of silver oxide from the treatment substance supply nozzle 5 using such a plasma generator, the fine particles of silver oxide come into contact with the tail frame B of the plasma, are crushed by the decomposition reaction of silver and oxygen, and are melted immediately thereafter. By being solidified, it is spheroidized and dropped into the collection container 4A of the container 4 to be collected.

【0019】〔実施例〕以下、本発明の効果を実施例に
基づき明らかにする。図1に示される高周波プラズマ反
応装置により、平均粒径0.85μmの多面体の酸化銀
微粒子をアルゴンガスによって搬送し、処理物質供給ノ
ズル5から酸化銀微粒子2g/分、アルゴンガス5l/
分で分散供給した。これを5KVA の高周波プラズマで処
理したところ、平均粒径0.15μmの球状銀微粒子を
得た。
EXAMPLES The effects of the present invention will be clarified below based on examples. With the high frequency plasma reactor shown in FIG. 1, polyhedral silver oxide fine particles having an average particle diameter of 0.85 μm are conveyed by argon gas, and 2 g / min of silver oxide fine particles and 5 l / argon gas of argon gas are supplied from the treatment substance supply nozzle 5.
Dispersed and supplied in minutes. When this was treated with a high frequency plasma of 5 KVA, spherical silver fine particles having an average particle diameter of 0.15 μm were obtained.

【0020】なお、製造された銀微粒子をX線回折装置
にて組成分析した結果、銀成分が100%であった。ま
た、図3および図4に、それぞれ酸化銀微粒子および球
状銀微粒子の走査型電子顕微鏡写真を示す。これらよ
り、本発明法によって得られた銀微粒子は球形であり、
粒度分布も狭いことが判明される。
The composition of the produced silver fine particles was analyzed by an X-ray diffractometer, and the silver content was 100%. 3 and 4 show scanning electron micrographs of silver oxide fine particles and spherical silver fine particles, respectively. From these, the silver fine particles obtained by the method of the present invention are spherical,
It is found that the particle size distribution is also narrow.

【0021】なお、本発明は、比較的低温度で分解して
融点の存在する固体微粒子とガス状分解物を生成する物
質にも適用可能であるので、酸化金から球状金微粒子を
製造する場合、炭酸カルシウムから球状酸化カルシウム
微粒子の製造する場合等にも適用が可能である。
Since the present invention can be applied to a substance which decomposes at a relatively low temperature to produce solid fine particles having a melting point and a gaseous decomposition product, when producing spherical gold fine particles from gold oxide. It is also applicable to the case of producing spherical calcium oxide fine particles from calcium carbonate.

【0022】[0022]

【発明の効果】以上詳説のように、本発明によれば、製
造工程が簡素化されるとともに、球状銀微粒子を量産で
き、さらに粒径が小さくかつ球状化された銀微粒子を効
率的に生産することができる。
As described above in detail, according to the present invention, the manufacturing process is simplified, spherical silver fine particles can be mass-produced, and the spherical fine silver particles having a small particle size can be efficiently produced. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法に使用した高周波プラズマ反応装置の
縦断面図である。
FIG. 1 is a vertical sectional view of a high-frequency plasma reactor used in the method of the present invention.

【図2】球状化粒子製造装置の全体縦断面図である。FIG. 2 is an overall vertical cross-sectional view of a spheroidized particle manufacturing apparatus.

【図3】酸化銀微粒子の粒子構造写真(倍率;×750
0)である。
FIG. 3 is a grain structure photograph of silver oxide fine particles (magnification: × 750).
0).

【図4】球状銀微粒子の粒子構造写真(倍率;×200
00)である。
FIG. 4 is a photograph of a particle structure of spherical silver particles (magnification: × 200
00).

【符号の説明】[Explanation of symbols]

1…プラズマ発生装置、2…高周波誘導コイル、3…石
英管、4…容器、4A…回収用容器、5…プラズマガス
供給管、F…プラズマフレーム、A…プラズマ部、B…
テールフレーム
DESCRIPTION OF SYMBOLS 1 ... Plasma generator, 2 ... High frequency induction coil, 3 ... Quartz tube, 4 ... Container, 4A ... Collection container, 5 ... Plasma gas supply tube, F ... Plasma flame, A ... Plasma part, B ...
Tail frame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 住友 紘泰 埼玉県鶴ケ島市富士見6丁目2番22号 富 士電波工機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyasu Sumitomo 6-22-22 Fujimi, Tsurugashima City, Saitama Fuji Electric Wave Machinery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高周波誘導コイルにより高周波磁場を励磁
し、この高周波磁場内にプラズマガスを供給して誘導的
に発生された高周波プラズマフレーム内に酸化銀微粒子
を供給し、このプラズマフレーム内で前記酸化銀微粒子
を急激に加熱して分解、破砕および溶融させた後、高周
波磁場の減衰による急激な冷却により球状化された銀微
粒子を得ることを特徴とする球状銀微粒子の製造方法。
1. A high frequency magnetic field is excited by a high frequency induction coil, and a plasma gas is supplied into the high frequency magnetic field to supply silver oxide fine particles into a high frequency plasma frame generated inductively. A method for producing spherical silver fine particles, which comprises rapidly heating silver oxide fine particles for decomposition, crushing and melting, and then obtaining spheroidized silver fine particles by rapid cooling due to attenuation of a high frequency magnetic field.
【請求項2】前記酸化銀微粒子を高周波プラズマフレー
ムの500〜5000℃領域に分散状態で供給する請求
項1記載の球状銀微粒子の製造方法。
2. The method for producing spherical silver fine particles according to claim 1, wherein the silver oxide fine particles are supplied in a dispersed state in a 500 to 5000 ° C. region of a high frequency plasma flame.
JP13173493A 1993-06-02 1993-06-02 Method for producing spherical silver fine particles Expired - Fee Related JP3253175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13173493A JP3253175B2 (en) 1993-06-02 1993-06-02 Method for producing spherical silver fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13173493A JP3253175B2 (en) 1993-06-02 1993-06-02 Method for producing spherical silver fine particles

Publications (2)

Publication Number Publication Date
JPH06340906A true JPH06340906A (en) 1994-12-13
JP3253175B2 JP3253175B2 (en) 2002-02-04

Family

ID=15064952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13173493A Expired - Fee Related JP3253175B2 (en) 1993-06-02 1993-06-02 Method for producing spherical silver fine particles

Country Status (1)

Country Link
JP (1) JP3253175B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180112A (en) * 2000-12-19 2002-06-26 Hitachi Metals Ltd Method for manufacturing high melting point metal powder material
CN102554930A (en) * 2012-01-11 2012-07-11 成都市新筑路桥机械股份有限公司 Mechanical arm control system and control method
CN111921472A (en) * 2016-01-05 2020-11-13 螺旋株式会社 Decomposition processing device, vehicle with decomposition processing device mounted thereon, and decomposition processing method
CN116921670A (en) * 2023-09-12 2023-10-24 西安赛隆增材技术股份有限公司 Microwave plasma spheroidizing device and method for micron-sized powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180112A (en) * 2000-12-19 2002-06-26 Hitachi Metals Ltd Method for manufacturing high melting point metal powder material
CN102554930A (en) * 2012-01-11 2012-07-11 成都市新筑路桥机械股份有限公司 Mechanical arm control system and control method
CN111921472A (en) * 2016-01-05 2020-11-13 螺旋株式会社 Decomposition processing device, vehicle with decomposition processing device mounted thereon, and decomposition processing method
CN116921670A (en) * 2023-09-12 2023-10-24 西安赛隆增材技术股份有限公司 Microwave plasma spheroidizing device and method for micron-sized powder
CN116921670B (en) * 2023-09-12 2023-12-05 西安赛隆增材技术股份有限公司 Microwave plasma spheroidizing device and method for micron-sized powder

Also Published As

Publication number Publication date
JP3253175B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
JP4754488B2 (en) Methods for the synthesis, separation and purification of powder materials
JP3383608B2 (en) Apparatus for synthesizing nanocrystalline materials
JP4392864B2 (en) Method for producing gold particles by aerosol decomposition
JPH04116109A (en) Production of fine copper powder
HU215406B (en) Method of forming fine size oxide-dispersion in tungsten and method of forming product from such fine size oxide-dispersion in tungsten
JP2009287106A (en) Method for producing titanium spherical powder, and titanium spherical powder
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
JPS6317884B2 (en)
JP2019508581A (en) Method of manufacturing copper nanometal powder having uniform oxygen passivation layer using thermal plasma and apparatus for manufacturing the same
US3475158A (en) Production of particulate,non-pyrophoric metals and product
CN114260454A (en) Preparation method of high-quality spherical metal powder
US4810285A (en) Process for preparing spherical copper fine powder
JP2004124257A (en) Metal copper particulate, and production method therefor
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
JP3253175B2 (en) Method for producing spherical silver fine particles
CN110124591A (en) Sub-micron or nano particle cladding spherical powder and preparation method thereof
CN111515408B (en) NiTi alloy powder and preparation method and application thereof
JPH0445207A (en) Manufacture of spherical nickel fine particles
Zavjalov et al. Synthesis of copper nanopowders using electron-beam evaporation at atmospheric pressure of inert gas
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
CN110014162B (en) Method for preparing spherical molybdenum-based powder
JP2001064703A (en) Production of fine spherical metal powder
JP2508506B2 (en) Spherical fine powder manufacturing method and manufacturing apparatus
JP2008106327A (en) Fine powder of tin and production method therefor
JP2005154834A (en) Ruthenium ultrafine powder and its production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees