JPH06340266A - Control of rear wheel steering gear - Google Patents
Control of rear wheel steering gearInfo
- Publication number
- JPH06340266A JPH06340266A JP12923393A JP12923393A JPH06340266A JP H06340266 A JPH06340266 A JP H06340266A JP 12923393 A JP12923393 A JP 12923393A JP 12923393 A JP12923393 A JP 12923393A JP H06340266 A JPH06340266 A JP H06340266A
- Authority
- JP
- Japan
- Prior art keywords
- control
- steering
- rear wheel
- yaw rate
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007423 decrease Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動車等の車両の4輪
操舵システム(4WS)において、後輪を電子的に操舵
する後輪操舵装置の制御方法に関し、詳しくは、ABS
制御等との協調制御に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a rear wheel steering system for electronically steering a rear wheel in a four-wheel steering system (4WS) for a vehicle such as an automobile.
Related to cooperative control with control and the like.
【0002】[0002]
【従来の技術】一般に、後輪操舵制御は車速感応式であ
って、低速域では後輪を逆相操舵して小回り性能を向上
し、中高速域では後輪を同相操舵し、且つ車速に応じて
転舵比を可変制御して車両の安定性を図ることが基本に
なっている。ところで車両は路面状態、左右後輪の駆動
力やグリップ力の違い、横風等の外乱により、車体の垂
直軸回りのヨーイング運動(自転運動)を生じる。そし
てこれら外乱によりドライバの技量とは無関係に車両の
挙動が変化して、安定性を損なうことが知られている。2. Description of the Related Art Generally, rear wheel steering control is a vehicle speed sensitive type, in which a rear wheel is reverse-phase steered in a low speed range to improve a small turning performance, and a rear wheel is in-phase steered in a medium and high speed range to obtain a vehicle speed. Accordingly, it is fundamental to variably control the steering ratio to achieve vehicle stability. By the way, the vehicle causes a yawing motion (rotational motion) around the vertical axis of the vehicle body due to a road surface condition, a difference in driving force between left and right rear wheels and a grip force, and a disturbance such as a side wind. It is known that these disturbances change the behavior of the vehicle regardless of the driver's skill and impair the stability.
【0003】ところで近年、車両のヨーイング運動のヨ
ーレート(回転角速度)を高い精度で直接検出するヨー
レートセンサが開発されてきている。このヨーレートセ
ンサによると、前輪操舵の場合のみならず、路面状態、
横風等の外乱に対する車両の挙動の変化も迅速に検出す
ることができる。このためヨーレートを積極的に用い、
種々の外乱に対しても車両の安定性を図るように後輪操
舵する制御方法が提案されている。By the way, in recent years, a yaw rate sensor for directly detecting the yaw rate (rotational angular velocity) of the yawing motion of the vehicle with high accuracy has been developed. According to this yaw rate sensor, not only in the case of front wheel steering,
Changes in the behavior of the vehicle due to disturbances such as cross winds can also be detected quickly. Therefore, the yaw rate is actively used,
A control method has been proposed in which the rear wheels are steered so as to ensure the stability of the vehicle against various disturbances.
【0004】ここでヨーレートセンサのヨーレートを用
いた後輪操舵制御では、ハンドル角の比例ゲインを操縦
性を加味して逆相方向に設定し、ヨーレートの比例ゲイ
ンを安定性を加味して同相方向に設定し、これら両者に
より目標後輪舵角を演算し、逆相舵角比例制御とヨーレ
ートフィードバック制御で後輪操舵することが考えられ
る。ところで近年、車両にはABS制御やトルク配分制
御の装置が装備され、低μ路での制動や加速等の場合に
車輪のロックやスリップを防止するように制御されるも
のがある。そこで例えばABS制御されている場合に
は、その信号により滑り易い路面状態を判断することが
でき、このとき逆相舵角比例制御の状態に保持されてい
ると、逆相操舵によりかえって車両の挙動が不安定にな
ることがある。このためABS等の制御が行われる場合
は、後輪操舵制御を安定側に保つように協調させること
が望まれる。Here, in the rear wheel steering control using the yaw rate of the yaw rate sensor, the proportional gain of the steering wheel angle is set in the opposite phase direction in consideration of maneuverability, and the proportional gain of the yaw rate is considered in stability in the in-phase direction. It is conceivable that the target rear wheel steering angle is calculated by both of them and the rear wheel steering is performed by the anti-phase steering angle proportional control and the yaw rate feedback control. By the way, in recent years, some vehicles are equipped with a device for ABS control or torque distribution control, and are controlled so as to prevent wheel locking or slipping when braking or accelerating on a low μ road. Therefore, for example, when the ABS control is performed, the slippery road surface state can be determined from the signal, and if the state of the antiphase steering angle proportional control is maintained at this time, the behavior of the vehicle is rather changed by the antiphase steering. May become unstable. Therefore, when the control such as the ABS is performed, it is desired that the rear wheel steering control is coordinated so as to be maintained on the stable side.
【0005】従来、上記ABS制御時の後輪操舵制御に
関して、例えば特開平2−262471号公報の先行技
術がある。この先行技術において、アンチスキッドブレ
ーキ作動時には第1舵角係数をそれより大きい値に設定
されている第2舵角係数に切換え、第1ヨーレート係数
をそれより大きい値に設定されている第2ヨーレート係
数に切換え、これら第2舵角係数と第2ヨーレート係数
を用いて目標後輪操舵角を算出して操舵制御することが
示されている。Conventionally, as for the rear wheel steering control during the ABS control, there is a prior art disclosed in, for example, Japanese Patent Laid-Open No. 2-262471. In this prior art, when the anti-skid brake is operated, the first steering angle coefficient is switched to the second steering angle coefficient which is set to a larger value, and the first yaw rate coefficient is set to a larger second yaw rate. It is shown that the target rear wheel steering angle is calculated using the second steering angle coefficient and the second yaw rate coefficient for steering control.
【0006】[0006]
【発明が解決しようとする課題】ところで、上記先行技
術のものにあっては、アンチスキッドブレーキ作動時に
舵角係数とヨーレート係数をいずれも特性の異なるもの
に切換える制御方法である。このため特に車速が小さい
場合は、切換え時の係数の変化が大きくて車両の挙動が
大きく変化する等の問題がある。By the way, the above prior art is a control method in which both the steering angle coefficient and the yaw rate coefficient are changed to those having different characteristics when the antiskid brake is actuated. Therefore, especially when the vehicle speed is low, there is a problem that the change of the coefficient at the time of switching is large and the behavior of the vehicle is greatly changed.
【0007】本発明は、このような点に鑑み、逆相舵角
比例制御とヨーレートフィードバック制御による後輪操
舵制御において、ABS等の制御の際には常に車両の挙
動の小さい状態で車両を安定側に保つように協調するこ
とを目的とする。In view of such a point, the present invention stabilizes the vehicle in a state in which the behavior of the vehicle is always small during the control such as ABS in the rear wheel steering control by the antiphase steering angle proportional control and the yaw rate feedback control. The aim is to cooperate to keep on the side.
【0008】[0008]
【課題を解決するための手段】この目的を達成するため
本発明は、ヨーレート、車速の関数で同相方向に設定さ
れるヨーレート係数、ハンドル角、車速の関数で逆相方
向に設定されるハンドル角係数により目標後輪舵角を演
算し、この目標後輪舵角に基づいて後輪を自動的に操舵
する後輪操舵装置において、ABS制御等の制御信号が
入力したか否かを判定し、制御信号が入力した場合はハ
ンドル角係数として時間経過により徐々に減少する比例
ゲインに切換えることを特徴とする。To achieve this object, the present invention is directed to a yaw rate coefficient set in the in-phase direction as a function of yaw rate and vehicle speed, a steering wheel angle, and a steering wheel angle set in the opposite phase direction as a function of vehicle speed. The target rear wheel steering angle is calculated from the coefficient, and in the rear wheel steering device that automatically steers the rear wheels based on the target rear wheel steering angle, it is determined whether or not a control signal such as ABS control is input, When a control signal is input, the steering wheel angle coefficient is switched to a proportional gain that gradually decreases over time.
【0009】[0009]
【作用】上記制御方法による本発明では、車両走行時に
ヨーレート、ヨーレート係数、ハンドル角、ハンドル角
係数により目標後輪舵角が演算され、この目標後輪舵角
に基づき後輪操舵装置が作動する。このため車速、ハン
ドル角、または横風等の外乱により車両の挙動が変化す
る場合のヨーレートにより、後輪が所望の舵角等を得る
ように自動的に同相または逆相に操舵され、低速時の旋
回性、高速時と外乱に対する安定性が良くなる。一方、
例えばABS制御されその制御信号が入力すると、ハン
ドル角係数として時間の関数で徐々に減少する比例ゲイ
ンに切換えることで、いかなる走行条件でも円滑にヨー
レートフィードバック制御の強い方向に移行する。この
ため低速域で逆相操舵することが無くなって、滑り易い
路面状態であっても車両の挙動の急変が確実に防止され
る。In the present invention based on the above control method, the target rear wheel steering angle is calculated by the yaw rate, the yaw rate coefficient, the steering wheel angle, and the steering wheel angle coefficient when the vehicle is traveling, and the rear wheel steering device is operated based on this target rear wheel steering angle. . Therefore, the yaw rate when the vehicle behavior changes due to disturbances such as vehicle speed, steering wheel angle, or crosswind, the rear wheels are automatically steered in-phase or in anti-phase to obtain the desired steering angle, etc. Turnability and stability at high speed and against disturbance are improved. on the other hand,
For example, when ABS control is performed and its control signal is input, the steering angle coefficient is switched to a proportional gain that gradually decreases as a function of time, so that the yaw rate feedback control smoothly shifts to a strong direction under any running condition. Therefore, reverse phase steering is not performed in the low speed range, and sudden changes in vehicle behavior are reliably prevented even in slippery road conditions.
【0010】[0010]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2において、車両の駆動系と4輪操舵系の概略
について説明する。先ず、車両1においてエンジン2が
クラッチ3、変速機4に連結され、変速機4の出力側が
フロントデフ5、車軸6等を介して前輪7に伝動構成さ
れる。また変速機4の出力側は、プロペラ軸8、リヤデ
フ9、車軸10等を介して後輪11にも伝動構成され、
4輪駆動走行する。また4輪操舵系として、前輪操舵装
置20と後輪操舵装置30を有する。Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2, an outline of the vehicle drive system and the four-wheel steering system will be described. First, in the vehicle 1, the engine 2 is connected to the clutch 3 and the transmission 4, and the output side of the transmission 4 is configured to be transmitted to the front wheels 7 via the front differential 5, the axle 6, and the like. The output side of the transmission 4 is also configured to be transmitted to the rear wheel 11 via the propeller shaft 8, the rear differential 9, the axle 10, and the like.
Four-wheel drive runs. Further, it has a front wheel steering device 20 and a rear wheel steering device 30 as a four-wheel steering system.
【0011】前輪操舵装置20は、ハンドル21を有す
るステアリングシャフト22が、油圧式の制御バルブ2
3とパワーシリンダ24、ロッド25、ナックルアーム
26を介して前輪7に連結され、ハンドル操作により前
輪7を手動操舵するように構成される。後輪操舵装置3
0は、電動モータ31を有し、このモータ31が減速用
のウォームギヤ32を介して偏芯軸33に連結され、こ
の偏芯軸33からリンク34、レバー35、ナックルア
ーム36等を介して後輪11に連結され、モータ駆動に
より後輪11を自動操舵するように構成される。また異
常時にモータ電源を切った場合には、ウォームギヤ32
の非可逆性により後輪11を路面外力に対して所定の舵
角状態に保持する。In the front wheel steering device 20, a steering shaft 22 having a steering wheel 21 has a hydraulic control valve 2
3 is connected to the front wheels 7 via the power cylinder 24, the rod 25, and the knuckle arm 26, and the front wheels 7 are manually steered by operating the steering wheel. Rear wheel steering device 3
Reference numeral 0 denotes an electric motor 31, which is connected to an eccentric shaft 33 via a worm gear 32 for reduction, and which is connected to the eccentric shaft 33 via a link 34, a lever 35, a knuckle arm 36, and the like. It is connected to the wheels 11 and is configured to automatically steer the rear wheels 11 by driving a motor. In addition, when the motor power is turned off during an abnormality, the worm gear 32
Due to the non-reciprocity, the rear wheel 11 is maintained in a predetermined steering angle state with respect to the road surface external force.
【0012】制御系として、ハンドル角θを検出するハ
ンドル角センサ40、ハンドル角速度dθを検出するハ
ンドル角速度センサ41、後輪舵角Erを検出する後輪
舵角センサ42、後輪舵角速度ωrを検出する後輪舵角
速度センサ43を有する。また車両の回頭状態に応じた
回転角速度のヨーレートγを検出するヨーレートセンサ
44を有する。更に、制御用車速Vを演算するため前左
車輪速Nfrを検出する前左車輪速センサ45、後右車
輪速Nrlを検出する後右車輪速センサ46を有し、こ
れらセンサ信号が制御ユニット50に入力して電気的に
処理され、後輪の操舵方向、舵角、舵角速度に応じたモ
ータ信号をモータ31に出力する。The control system includes a steering wheel angle sensor 40 for detecting the steering wheel angle θ, a steering wheel angular velocity sensor 41 for detecting the steering wheel angular velocity dθ, a rear wheel steering angle sensor 42 for detecting the rear wheel steering angle Er, and a rear wheel steering angular velocity ωr. It has a rear wheel steering angular velocity sensor 43 for detecting. Further, it has a yaw rate sensor 44 for detecting a yaw rate γ of a rotational angular velocity according to the turning state of the vehicle. Further, in order to calculate the control vehicle speed V, a front left wheel speed sensor 45 for detecting the front left wheel speed Nfr and a rear right wheel speed sensor 46 for detecting the rear right wheel speed Nrl are provided, and these sensor signals are used as the control unit 50. Is input to the motor 31 to be electrically processed, and a motor signal corresponding to the steering direction of the rear wheels, the steering angle, and the steering angular velocity is output to the motor 31.
【0013】制御ユニット50は、前左車輪速Nfrと
後右車輪速Nrlが入力する車速算出部51を有し、制
御用の車速Vを、V=(Nfr+Nrl)/2により算
出する。車速Vはハンドル角係数設定部52に入力し
て、ハンドル角係数Kθを車速Vの関数で設定し、同時
にヨーレート係数設定部53に入力して、ヨーレート係
数Kγを同様に車速Vの関数で設定する。ハンドル角係
数Kθは、図3(a)の舵角ゲインマップのように車速
全域で逆相であり、低中速域において車速Vが低いほど
値の絶対値が減少変化する特性である。ヨーレート係数
Kγは、同図のヨーレートゲインマップのように車速全
域で同相であり、車速Vの上昇に応じて緩やかに増大変
化する特性である。そこでこのマップを参照して両係数
Kθ、Kγを設定する。The control unit 50 has a vehicle speed calculation unit 51 to which the front left wheel speed Nfr and the rear right wheel speed Nrl are input, and calculates the control vehicle speed V by V = (Nfr + Nrl) / 2. The vehicle speed V is input to the steering wheel angle coefficient setting unit 52, the steering wheel angle coefficient Kθ is set as a function of the vehicle speed V, and simultaneously input to the yaw rate coefficient setting unit 53, and the yaw rate coefficient Kγ is similarly set as a function of the vehicle speed V. To do. The steering wheel angle coefficient Kθ has a reverse phase over the entire vehicle speed as shown in the steering angle gain map of FIG. 3A, and has a characteristic that the absolute value of the value decreases and decreases as the vehicle speed V decreases in the low and medium speed range. The yaw rate coefficient Kγ is in-phase throughout the vehicle speed as shown in the yaw rate gain map in the same figure, and has a characteristic that it gradually increases as the vehicle speed V increases. Therefore, both coefficients Kθ and Kγ are set with reference to this map.
【0014】ハンドル角θとハンドル角係数Kθは乗算
部54に入力して両者の乗算値Kθ・θを算出し、ヨー
レートγとヨーレート係数Kγも乗算部55に入力して
両者の乗算値Kγ・γを算出する。これら2つの乗算値
Kθ・θ、Kγ・γは目標後輪舵角演算部56に入力
し、目標後輪舵角ETを、 ET=Kγ・γ+Kθ・θ により算出する。従って、Kγ・γの項は車両を安定側
に保つ安定要素であり、Kθ・θの項は旋回を促進する
旋回要素である。The steering wheel angle θ and the steering wheel angle coefficient Kθ are input to the multiplication unit 54 to calculate a multiplication value Kθ · θ of both, and the yaw rate γ and the yaw rate coefficient Kγ are also input to the multiplication unit 55 to calculate both multiplication values Kγ · θ. Calculate γ. These two multiplication values Kθ · θ and Kγ · γ are input to the target rear wheel steering angle calculation unit 56, and the target rear wheel steering angle ET is calculated by ET = Kγ · γ + Kθ · θ. Therefore, the term of Kγ · γ is a stabilizing element that keeps the vehicle on the stable side, and the term of Kθ · θ is a turning element that promotes turning.
【0015】ここでヨーレートγは車速全域で旋回や外
乱による車両回頭状態に応じて発生し、この係数Kγが
車速Vの増大関数の特性であるため、車速Vが大きいほ
どKγ・γの値が大きくなる。ハンドル角θは一般に中
高速域では非常に小さく、このため係数Kθが逆相方向
に小さい特性でもKθ・θの値は零付近になる。そこで
中高速域でヨーレートγを検出すると、Kγ・γの値に
より目標後輪舵角ETは同相方向になって、安定性重視
で制御される。ハンドル角θの大きい低速域では逆相方
向のKθ・θの値により旋回性重視で制御され、このと
きヨーレートγの同相方向のKγ・γの値で安定側に補
正される。Here, the yaw rate γ is generated according to the turning state of the vehicle due to turning or disturbance over the entire vehicle speed, and this coefficient Kγ is a characteristic of an increasing function of the vehicle speed V. Therefore, the higher the vehicle speed V, the more the value of Kγ · γ becomes. growing. The steering wheel angle θ is generally very small in the medium-high speed range, and therefore the value of Kθ · θ becomes close to zero even if the coefficient Kθ is small in the opposite phase direction. Therefore, when the yaw rate γ is detected in the medium-high speed range, the target rear wheel steering angle ET is in the in-phase direction due to the value of Kγ · γ, and stability-oriented control is performed. In the low speed range where the steering wheel angle θ is large, the turning property is controlled with emphasis on the value of Kθ · θ in the opposite phase direction, and at this time, the yaw rate γ is corrected to the stable side by the value of Kγ · γ in the in-phase direction.
【0016】目標後輪舵角ETと後輪舵角Erは偏差算
出部57に入力して偏差EDを、ED=ET−Erによ
り算出する。この偏差EDは目標後輪転舵速度設定部5
8に入力し、図3(b)のマップにより偏差EDに応じ
た目標後輪転舵速度ωoを設定する。更に、目標後輪転
舵速度ωoと後輪舵角速度ωrは速度差算出部59に入
力して速度差ωdを、ωd=ωo−ωrにより算出す
る。そして速度差ωdは制御量設定部60に入力して、
速度差ωdに応じた比例成分の制御量Kpを設定し、駆
動部61により制御量Kpに応じた正転または逆転のモ
ータ電流Iをモータ31に供給するように構成される。The target rear wheel steering angle ET and the rear wheel steering angle Er are input to the deviation calculating section 57 to calculate the deviation ED by ED = ET-Er. This deviation ED is the target rear wheel turning speed setting unit 5
8, and the target rear wheel turning speed ωo corresponding to the deviation ED is set by the map of FIG. 3 (b). Further, the target rear wheel turning speed ωo and the rear wheel steering angular speed ωr are input to the speed difference calculation unit 59, and the speed difference ωd is calculated by ωd = ωo−ωr. Then, the speed difference ωd is input to the control amount setting unit 60,
The control amount Kp of the proportional component is set according to the speed difference ωd, and the driving unit 61 supplies the forward or reverse motor current I according to the control amount Kp to the motor 31.
【0017】上記制御系において、ABS制御等が行わ
れる場合の協調制御について説明する。先ず、ハンドル
角係数KθとABS制御の信号が入力する臨時比例ゲイ
ン算出部62を有し、ABS制御信号が入力すると、臨
時比例ゲインKθ’に切換えて乗算部54に出力する。
臨時比例ゲインKθ’はABS制御信号の入力直前のハ
ンドル角係数Kθnと減少定数Gを乗算して算出する。
減少定数Gは時間の関数で徐々に減少する、例えば一時
遅れの定数であり、時定数T、ラプラス演算子sによ
り、G=Ts/(1+Ts)により設定される。そこで
臨時比例ゲインKθ’を、 Kθ’=G・Kθn、G=Ts/(1+Ts) により算出して出力するように構成される。Coordinated control when ABS control or the like is performed in the above control system will be described. First, it has a temporary proportional gain calculating section 62 to which the steering wheel angle coefficient Kθ and the ABS control signal are input. When the ABS control signal is input, it switches to the temporary proportional gain Kθ ′ and outputs it to the multiplying section 54.
The temporary proportional gain Kθ ′ is calculated by multiplying the steering wheel angle coefficient Kθn immediately before the input of the ABS control signal by the reduction constant G.
The decrease constant G gradually decreases as a function of time, for example, is a temporary delay constant, and is set by G = Ts / (1 + Ts) by the time constant T and the Laplace operator s. Therefore, the temporary proportional gain Kθ ′ is configured to be calculated and output by Kθ ′ = G · Kθn, G = Ts / (1 + Ts).
【0018】次に、この実施例の作用を説明する。先
ず、エンジン2を運転し、変速機4の変速動力が駆動系
により前輪7と後輪11に伝達することで、車両1が4
輪駆動で走行する。このときドライバがハンドル21を
操作すると、前輪操舵装置20により前輪7が転舵して
手動操舵される。また図6のフローチャートが所定時間
毎に実行して、走行、ハンドル操作、車両の回頭等の状
態により後輪操舵制御される。Next, the operation of this embodiment will be described. First, the engine 2 is operated, and the transmission power of the transmission 4 is transmitted to the front wheels 7 and the rear wheels 11 by the drive system, so that the vehicle 1 moves
Drive with wheel drive. At this time, when the driver operates the steering wheel 21, the front wheels 7 are steered and manually steered by the front wheel steering device 20. Further, the flowchart of FIG. 6 is executed every predetermined time, and the rear wheel steering control is performed depending on the conditions such as traveling, steering wheel operation, and turning of the vehicle.
【0019】即ち、ステップS1でハンドル角θ、ヨー
レートγ、後輪舵角Er、後輪舵角速度ωrを読込み、
ステップS2で車速Vを算出する。そしてステップS3
でABS制御信号が入力したか否かを判定し、入力しな
い場合はステップS4に進みフラグをクリアする。その
後ステップS5に進み車速Vに応じてハンドル角係数K
θとヨーレート係数Kγを設定し、ステップS6で目標
後輪舵角ETをハンドル角θとその係数Kθ、ヨーレー
トγとその係数Kγにより演算する。その後ステップS
7で目標後輪舵角ETと後輪舵角Erとの偏差EDを算
出し、ステップS8で目標後輪転舵速度ωoを設定し、
ステップS9で目標後輪転舵速度ωoと後輪舵角速度ω
rとの速度差ωdを算出し、ステップS10で速度差ω
dに応じた制御量Kpを定め、ステップS11で制御量
Kpのモータ電流Iを出力してモータ31を駆動する。That is, in step S1, the steering wheel angle θ, the yaw rate γ, the rear wheel steering angle Er, and the rear wheel steering angular velocity ωr are read,
The vehicle speed V is calculated in step S2. And step S3
It is determined whether or not the ABS control signal is input, and if not input, the process proceeds to step S4 to clear the flag. After that, the process proceeds to step S5, where the steering wheel angle coefficient K is determined according to the vehicle speed V.
θ and the yaw rate coefficient Kγ are set, and in step S6 the target rear wheel steering angle ET is calculated from the steering wheel angle θ and its coefficient Kθ, and the yaw rate γ and its coefficient Kγ. Then step S
The deviation ED between the target rear wheel steering angle ET and the rear wheel steering angle Er is calculated in 7 and the target rear wheel turning speed ωo is set in step S8.
In step S9, the target rear wheel steering speed ωo and the rear wheel steering angular speed ω
The speed difference ωd from r is calculated, and the speed difference ωd is calculated in step S10.
The control amount Kp corresponding to d is determined, and the motor current I of the control amount Kp is output in step S11 to drive the motor 31.
【0020】このため後輪操舵装置30では、モータ3
1によりウォームギヤ32、偏芯軸33が回転し、リン
ク34、レバー35が左右に揺動して後輪11が自動的
に操舵される。この場合に後輪11は同相または逆相
で、所望の舵角や舵角速度を得るように、逆相舵角比例
制御とヨーレートフィードバック制御される。Therefore, in the rear wheel steering system 30, the motor 3
1, the worm gear 32 and the eccentric shaft 33 rotate, the link 34 and the lever 35 swing left and right, and the rear wheel 11 is automatically steered. In this case, the rear wheels 11 are in-phase or anti-phase, and are subjected to anti-phase steering angle proportional control and yaw rate feedback control so as to obtain a desired steering angle or steering angular velocity.
【0021】従って、発進等の低速時にハンドル21を
大きく切ると、目標後輪舵角ETがKθ・θの値により
負になり、後輪11が逆相操舵して小回り旋回される。
このとき急旋回したり、路面μにより車両が回頭してヨ
ーレートγが大きくなると、Kγ・γの値により後輪1
1の逆相操舵が減少補正され、車両の挙動が安定化され
る。中高速時の旋回では目標後輪舵角ETが主としてK
γ・γの値により正になって後輪11が同相操舵され、
このため旋回時の車両の安定性が良くなる。この場合の
ハンドル角θ、ヨーレートγ、両係数Kθ、Kγ、目標
後輪舵角ETの関係を示すと、図5のようになる。また
横風等の外乱で車両が左右に急激に回頭すると、ヨーレ
ートγが大きく増減変化してこの車両1の挙動変化が迅
速に検出される。そしてKγ・γの値により後輪11は
車両1が回頭するにもかかわず同相状態を保持するよう
に操舵される。このため車両1は横風により流されない
ように安定して対向した姿勢になり、且つスムースに元
の進路に戻る。Therefore, when the steering wheel 21 is greatly turned at a low speed such as starting, the target rear wheel steering angle ET becomes negative due to the value of Kθ · θ, and the rear wheel 11 is steered in a small turn by reverse-phase steering.
At this time, if the vehicle makes a sharp turn or the yaw rate γ increases due to the vehicle turning due to the road surface μ, the value of Kγ · γ causes the rear wheel 1
The reverse-phase steering of 1 is reduced and corrected, and the behavior of the vehicle is stabilized. When turning at medium and high speeds, the target rear wheel steering angle ET is mainly K
The value of γ · γ becomes positive and the rear wheels 11 are steered in phase,
Therefore, the stability of the vehicle when turning is improved. The relationship among the steering wheel angle θ, the yaw rate γ, the coefficients Kθ and Kγ, and the target rear wheel steering angle ET in this case is shown in FIG. Further, when the vehicle rapidly turns to the left or right due to a disturbance such as a side wind, the yaw rate γ changes greatly, and this behavior change of the vehicle 1 is quickly detected. Then, the rear wheel 11 is steered so as to maintain the in-phase state regardless of the turning of the vehicle 1 by the value of Kγ · γ. For this reason, the vehicle 1 stably assumes an opposite posture so as not to be swept away by a side wind, and smoothly returns to the original course.
【0022】一方、雪道等の低μ路での走行時にブレー
キ操作した場合に、車速Vが図6の一点鎖線のように急
激に低下すると、ABS制御して車速Vが緩やかに低下
するように補正され、これにより車輪ロックが防止され
る。このときその制御信号が入力することで、ステップ
S3からステップS12に進んでフラグをチェックし、
最初はステップS13に進んでABS制御直前のハンド
ル角係数Kθnを読出し、ステップS14でこのハンド
ル角係数Kθnと減少定数Gにより臨時比例ゲインK
θ’を算出する。その後ステップS15で臨時比例ゲイ
ンKθ’を零付近の設定値aと比較して、設定値aより
大きい場合はステップS5に進み、ハンドル角係数の代
りに臨時比例ゲインKθ’に切換える。そこでABS制
御開始後は逆相側の臨時比例ゲインKθ’が、図6のよ
うに車速Vやその変化に関係無く、常に時間の経過に伴
い一時遅れで滑らかに減少した特性になる。On the other hand, when the vehicle speed V sharply decreases as shown by the alternate long and short dash line in FIG. 6 when the brake is operated while traveling on a low μ road such as a snowy road, the vehicle speed V is gradually decreased by ABS control. Is corrected to prevent wheel lock. By inputting the control signal at this time, the process proceeds from step S3 to step S12 to check the flag,
First, at step S13, the steering wheel angle coefficient Kθn immediately before the ABS control is read out, and at step S14, the steering wheel angle coefficient Kθn and the reduction constant G are used to make a temporary proportional gain K.
Calculate θ ′. Then, in step S15, the temporary proportional gain Kθ 'is compared with the set value a near zero, and if it is larger than the set value a, the process proceeds to step S5, and the temporary proportional gain Kθ' is switched instead of the steering wheel angle coefficient. Therefore, after the ABS control is started, the temporary proportional gain Kθ ′ on the opposite phase side always has a characteristic that it smoothly decreases with a temporary delay with the passage of time regardless of the vehicle speed V and its change, as shown in FIG.
【0023】従って、ABS制御による車速低下時に、
同相側のヨーレート係数Kγは、図3(a)の特性によ
り図6のように車速Vの低下に応じて徐々に小さくなる
が、逆相側の臨時比例ゲインKθ’は、時間の関数でヨ
ーレート係数Kγより大きく減少する。そしてハンドル
角θと臨時比例ゲインKθ’の乗算値Kθ’・θ、ヨー
レートγとその係数Kγの乗算値Kγ・γより目標後輪
舵角ETを演算して後輪操舵制御される。このためこの
滑り易い路面状態でドライバが仮にハンドルを切って
も、Kθ’・θの値は非常に小さくなって影響しなくな
り、主としてKγ・γの値のみにより、後輪11が車両
を挙動変化の小さい状態で安定側に保つように操舵さ
れ、ヨーレートフィードバック制御が強められる。そこ
で滑り易い路面での制動時にABS制御される場合は、
更に後輪操舵制御により車両1の挙動が安定化した状態
を保つように協調され、制動時の車両挙動の急変が未然
に防止される。Therefore, when the vehicle speed is reduced by the ABS control,
The yaw rate coefficient Kγ on the in-phase side gradually decreases as the vehicle speed V decreases as shown in FIG. 6 due to the characteristics of FIG. 3A, but the temporary proportional gain Kθ ′ on the anti-phase side is a yaw rate as a function of time. It is greatly reduced from the coefficient Kγ. Then, the target rear wheel steering angle ET is calculated from the multiplied value Kθ ′ · θ of the steering wheel angle θ and the temporary proportional gain Kθ ′ and the multiplied value Kγ · γ of the yaw rate γ and its coefficient Kγ, and the rear wheel steering control is performed. Therefore, even if the driver turns the steering wheel on this slippery road surface, the value of Kθ ′ · θ becomes very small and has no effect, and the behavior of the rear wheel 11 changes the vehicle behavior mainly by the value of Kγ · γ. The yaw rate feedback control is strengthened by steering so as to maintain the stable side in a small state. Therefore, when ABS control is performed during braking on a slippery road surface,
Further, the rear wheel steering control cooperates to maintain the behavior of the vehicle 1 in a stable state, thereby preventing a sudden change in the vehicle behavior during braking.
【0024】そしてステップS15で臨時比例ゲインK
θ’が零になったことを判定すると、ステップS16に
進んでフラグをセットして上述の制御を終了する。また
ABS制御が解除すると、ステップS3からステップS
4以降に進んで、元の後輪操舵制御に復帰する。Then, in step S15, the temporary proportional gain K
When it is determined that θ ′ has become zero, the process proceeds to step S16, the flag is set, and the above control is ended. When the ABS control is released, steps S3 to S
Then, the control is returned to the original rear wheel steering control.
【0025】以上、本発明の実施例について説明した
が、滑り易い路面で前後輪のトルク配分を制御してスリ
ップ防止する場合にも同様に適応できる。またヨーレー
トセンサの故障時に一時的に採用することもでき、この
場合は故障直後の車両の挙動の急変を有効に防止するこ
とができる。更に、臨時比例ゲインは時間のみならず車
速の関数で減少しても良い。Although the embodiments of the present invention have been described above, the present invention can be similarly applied to the case where the torque distribution of the front and rear wheels is controlled to prevent slippage on a slippery road surface. It can also be temporarily adopted when the yaw rate sensor fails, in which case it is possible to effectively prevent sudden changes in the behavior of the vehicle immediately after the failure. Furthermore, the temporary proportional gain may be reduced not only as a function of time but also as a function of vehicle speed.
【0026】[0026]
【発明の効果】以上に説明したように本発明によると、
逆相舵角比例制御とヨーレートフィードバック制御によ
り後輪を自動的に操舵する後輪操舵装置において、AB
S等の制御を行う場合はハンドル角の逆相側の比例ゲイ
ンを徐々に減少するように制御するので、ヨーレートフ
ィードバック制御が強められて、滑り易い路面での車両
挙動を有効に安定した状態に保つことができる。ABS
等の制御が開始すると、そのときのハンドル角係数を時
間の関数で減少させる臨時比例ゲインに切換えるので、
いかなる走行条件でも逆相側の比例ゲインを確実に減少
することができる。また切換え時の比例ゲインが常に滑
らかに変化するので、車両の挙動が変化することがな
い。As described above, according to the present invention,
In a rear wheel steering system that automatically steers the rear wheels by reverse phase steering angle proportional control and yaw rate feedback control,
When performing control such as S, the proportional gain on the opposite phase side of the steering wheel angle is controlled so as to gradually decrease, so the yaw rate feedback control is strengthened and the vehicle behavior on a slippery road surface is effectively stabilized. Can be kept. ABS
When the control of etc. is started, the steering wheel angle coefficient at that time is switched to a temporary proportional gain that decreases as a function of time.
The proportional gain on the opposite phase side can be reliably reduced under any running condition. Further, since the proportional gain at the time of switching always changes smoothly, the behavior of the vehicle does not change.
【図1】本発明に係る後輪操舵装置の制御方法に適した
制御系を示すブロック図である。FIG. 1 is a block diagram showing a control system suitable for a control method for a rear wheel steering system according to the present invention.
【図2】車両の駆動系と4輪操舵系の概略を示す構成図
である。FIG. 2 is a configuration diagram showing an outline of a vehicle drive system and a four-wheel steering system.
【図3】ハンドル角係数、ヨーレート係数、目標後輪転
舵速度のマップを示す図である。FIG. 3 is a diagram showing a map of a steering wheel angle coefficient, a yaw rate coefficient, and a target rear wheel turning speed.
【図4】通常とABS制御時の後輪操舵制御を示すフロ
ーチャートである。FIG. 4 is a flowchart showing rear wheel steering control during normal and ABS control.
【図5】左右旋回時の後輪操舵の状態を示す図である。FIG. 5 is a diagram showing a state of rear wheel steering when turning left and right.
【図6】ABS制御の場合の車速、比例ゲインの状態を
示す図である。FIG. 6 is a diagram showing a state of vehicle speed and proportional gain in the case of ABS control.
30 後輪操舵装置 31 電動モータ 40 ハンドル角センサ 44 ヨーレートセンサ 50 制御ユニット 52 ハンドル角係数設定部 53 ヨーレート係数設定部 56 目標後輪舵角演算部 62 臨時比例ゲイン算出部 30 rear wheel steering device 31 electric motor 40 steering wheel angle sensor 44 yaw rate sensor 50 control unit 52 steering wheel angle coefficient setting unit 53 yaw rate coefficient setting unit 56 target rear wheel steering angle calculation unit 62 temporary proportional gain calculation unit
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B62D 117:00 137:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B62D 117: 00 137: 00
Claims (2)
定されるヨーレート係数、ハンドル角、車速の関数で逆
相方向に設定されるハンドル角係数により目標後輪舵角
を演算し、この目標後輪舵角に基づいて後輪を自動的に
操舵する後輪操舵装置において、ABS制御等の制御信
号が入力したか否かを判定し、制御信号が入力した場合
はハンドル角係数として時間経過により徐々に減少する
比例ゲインに切換えることを特徴とする後輪操舵装置の
制御方法。1. A target rear wheel steering angle is calculated from a yaw rate coefficient set in the in-phase direction by a function of yaw rate and vehicle speed, and a steering wheel angle coefficient set in a reverse phase direction by a function of vehicle speed, and the target rear wheel steering angle is calculated. In a rear wheel steering system that automatically steers the rear wheels based on the wheel steering angle, it is determined whether a control signal such as ABS control is input, and if a control signal is input, the steering wheel angle coefficient changes as time elapses. A control method for a rear wheel steering system, characterized by switching to a proportional gain that gradually decreases.
一時遅れで徐々に減少させることを特徴とする請求項1
記載の後輪操舵装置の制御方法。2. The proportional gain is gradually reduced with a temporary delay from a value when a control signal is input.
A method for controlling the rear wheel steering device described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12923393A JP3212183B2 (en) | 1993-05-31 | 1993-05-31 | Control method of rear wheel steering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12923393A JP3212183B2 (en) | 1993-05-31 | 1993-05-31 | Control method of rear wheel steering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06340266A true JPH06340266A (en) | 1994-12-13 |
JP3212183B2 JP3212183B2 (en) | 2001-09-25 |
Family
ID=15004469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12923393A Expired - Fee Related JP3212183B2 (en) | 1993-05-31 | 1993-05-31 | Control method of rear wheel steering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3212183B2 (en) |
-
1993
- 1993-05-31 JP JP12923393A patent/JP3212183B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3212183B2 (en) | 2001-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5845222A (en) | Vehicle steering control system | |
US7740102B2 (en) | Steering control device for vehicle | |
US6112845A (en) | Reactive steering control system | |
CN102596690A (en) | Device for controlling vehicle travel | |
JP2000289637A (en) | Steering gear for vehicle | |
JP3637801B2 (en) | Vehicle steering control device | |
JPH01309879A (en) | Control method for steering rear wheel of automobile | |
CN114802140B (en) | Vehicle control system | |
JP4114339B2 (en) | Electric power steering device for automobile | |
JP2004098732A (en) | Steering response characteristic control device for vehicle | |
JPH0999853A (en) | Front/rear wheel steering device for vehicle | |
JP3564612B2 (en) | Control method of rear wheel steering device | |
JP3212183B2 (en) | Control method of rear wheel steering device | |
JPH072130A (en) | Method for controlling rear wheel steering device | |
CN112424055B (en) | Weighting of application of auxiliary functions in an auxiliary steering system of a vehicle | |
JP4140611B2 (en) | Vehicle behavior control device | |
JP3212182B2 (en) | Control method of rear wheel steering device | |
JP4254710B2 (en) | Steering control device for vehicle | |
JP5167086B2 (en) | Electric power steering device | |
JP3027222B2 (en) | Vehicle rear wheel steering system | |
JPH072128A (en) | Method for controlling rear wheel steering device | |
JP3354677B2 (en) | Vehicle rear wheel steering system | |
JP4685407B2 (en) | Vehicle behavior control device | |
JP4702028B2 (en) | Vehicle travel control device | |
JP3040509B2 (en) | Vehicle rear wheel steering system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |