JPH06339815A - Electric discharge machining power unit - Google Patents

Electric discharge machining power unit

Info

Publication number
JPH06339815A
JPH06339815A JP16345192A JP16345192A JPH06339815A JP H06339815 A JPH06339815 A JP H06339815A JP 16345192 A JP16345192 A JP 16345192A JP 16345192 A JP16345192 A JP 16345192A JP H06339815 A JPH06339815 A JP H06339815A
Authority
JP
Japan
Prior art keywords
voltage
electric discharge
polarity
power supply
discharge machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16345192A
Other languages
Japanese (ja)
Other versions
JP2547365B2 (en
Inventor
Shiro Takada
田 士 郎 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP4163451A priority Critical patent/JP2547365B2/en
Publication of JPH06339815A publication Critical patent/JPH06339815A/en
Application granted granted Critical
Publication of JP2547365B2 publication Critical patent/JP2547365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To provide an electric discharge machining power unit which conducts highly precise electric discharge machining by setting average voltage between a discharge electrode and a machining electrode at zero for prevention of electrolytic corrosion. CONSTITUTION:By adjusting voltage level VS or level VS and its time length tauONS at an opposite polarity to a polarity to be applied at the time of discharge stoppage (time, tauOFF) and electric discharge, average polarity-to-polarity voltage is adjusted so as to obtain zero to solve problems such as electrolytic corrosion generated at a work when d.c. voltage for electric discharge is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放電加工電源装置に関
し、特にワークの電解腐食(電食)の発生を抑制する放
電加工電源装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining power supply device, and more particularly to an electric discharge machining power supply device for suppressing the occurrence of electrolytic corrosion (electrolytic corrosion) of a work.

【0002】[0002]

【従来の技術】例えば、ワイヤ放電加工電源装置におい
ては、水等の加工液中に浸したワイヤ電極を負電極とし
加工物(ワーク)を正電極として、両電極間にパルス状
の放電電圧が印加される。加工液として水が用いられる
場合には、電解電流が流れて電気分解(作用)、つまり
電食が生じ、ワーク表面の仕上面精度が劣化してしまう
という問題だけでなく、ワークが損傷してしまうという
問題もある。そこで、従来、非加工時に電極とワーク間
に、放電加工時の印加電圧と逆電圧を印加することによ
って、平均電圧を零にして電食を防止する技術が採用さ
れている。この技術の一例が特開昭60ー201826号公報に
開示されている。同公報には、ワイヤ電極とワーク間に
加工時とは逆極性の電圧を印加する時間を、平均加工電
圧が零になるように調整して電食を防止している。
2. Description of the Related Art For example, in a wire electric discharge machining power supply device, a wire electrode immersed in a machining liquid such as water is used as a negative electrode, a workpiece is a positive electrode, and a pulsed discharge voltage is applied between both electrodes. Is applied. When water is used as the working fluid, not only the problem that electrolysis current flows to cause electrolysis (action), that is, electrolytic corrosion, and the accuracy of the finished surface of the work surface deteriorates, but also the work is damaged. There is also the problem of being lost. Therefore, conventionally, a technique has been adopted in which an average voltage is made zero by applying a voltage reverse to the applied voltage at the time of electric discharge machining between the electrode and the work during non-machining. An example of this technique is disclosed in JP-A-60-201826. In this publication, the time for applying a voltage having a polarity opposite to that at the time of machining between the wire electrode and the work is adjusted so that the average machining voltage becomes zero to prevent electrolytic corrosion.

【0003】[0003]

【発明が解決しようとする課題】上述のように、従来の
放電加工電源装置では、電食作用を防止するため、非放
電加工時に電極とワーク間に放電加工時とは逆極性の電
圧を印加し、平均電圧を零にすべく印加電圧の時間長を
調整している。
As described above, in the conventional electric discharge machining power supply device, in order to prevent electrolytic corrosion, a voltage having a polarity opposite to that of electric discharge machining is applied between the electrode and the work during non-electric discharge machining. The time length of the applied voltage is adjusted so that the average voltage becomes zero.

【0004】ところが、通常の放電加工は、ワイヤ電極
とワーク電極間には、放電を生起させるために直流電圧
が印加され、放電が発生すると所定時間だけ放電加工を
行い、その後、直流電圧の印加を中止して放電加工を休
止せしめ、続いて放電を生起させるための直流電圧が印
加されるような処理が繰り返し行われている。上述従来
技術では、この放電休止期間に放電加工時の直流電圧と
は逆極性の直流電圧を供給するようにしている。しか
し、平均電圧を零にすべく調整される直流電圧の印加時
間長は、上記放電休止期間で制限されるため、調整範囲
には限界があり、平均電圧を零にできない場面も発生
し、その場合には電食が発生してしまうという問題があ
る。
However, in the usual electric discharge machining, a DC voltage is applied between the wire electrode and the work electrode to generate an electric discharge, and when the electric discharge occurs, the electric discharge machining is performed for a predetermined time, and then the DC voltage is applied. Is stopped to stop the electric discharge machining, and subsequently, a process of applying a DC voltage for causing electric discharge is repeatedly performed. In the above-mentioned conventional technique, a DC voltage having a polarity opposite to that of the DC voltage at the time of electric discharge machining is supplied during this discharge pause period. However, since the application time length of the DC voltage adjusted to make the average voltage zero is limited by the discharge rest period, there is a limit in the adjustment range, and there are cases where the average voltage cannot be made zero. In some cases, there is a problem that electrolytic corrosion will occur.

【0005】そこで、本発明の目的は、いかなる場合で
あっても常にワイヤ電極とワーク電極間電圧の平均電圧
を零にし、電食を防止して高精度な放電加工を可能とす
る放電加工電源装置を提供することにある。
Therefore, the object of the present invention is to always make the average voltage between the wire electrode and the work electrode zero in any case to prevent electrolytic corrosion and enable high-precision electric discharge machining. To provide a device.

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
め、本発明による放電加工電源装置は、加工用電極とワ
ーク電極との両電極間に所定の極性で電圧を印加して放
電加工を行わせる放電加工電源装置において、前記両電
極間の平均電圧を検出する第1の手段と、前記所定の極
性の電圧による放電の休止期間中に前記所定の極性の電
圧と逆極性の逆極性電圧を前記両電極間に印加する第2
の手段と、前記第1の手段で検出した前記平均電圧と予
め定めた許容値との差に応じて前記第2の手段から出力
される前記逆極性電圧のレベルを前記平均電圧が零にな
る方向に制御する第3の手段と、を備えて構成される。
In order to solve the above-mentioned problems, the electric discharge machining power supply device according to the present invention performs electric discharge machining by applying a voltage with a predetermined polarity between the machining electrode and the work electrode. In the electric discharge machining power supply device to be performed, first means for detecting an average voltage between the electrodes, and a reverse polarity voltage having a reverse polarity to the voltage having the predetermined polarity during a pause period of discharge by the voltage having the predetermined polarity. Second applied between the electrodes
And the level of the reverse polarity voltage output from the second means in accordance with the difference between the average voltage detected by the first means and a predetermined allowable value, the average voltage becomes zero. And a third means for controlling the direction.

【0007】[0007]

【作用】本発明では、放電休止時に印加する、放電時に
印加される極性とは逆極性の電圧レベルまたは該レベル
とその時間長を調整することにより、極間平均電圧を零
にできる。
In the present invention, the inter-electrode average voltage can be made zero by adjusting the voltage level applied at the time of the discharge stop and having the opposite polarity to the polarity applied at the time of discharge, or the level and the time length thereof.

【0008】[0008]

【実施例】次に、本発明の実施例について図面を参照し
ながら説明する。図1は、本発明による放電加工電源装
置からワイヤ電極とワーク電極との極間に印加される極
間電圧の出力波形及び主電源、副電源のON−OFFタ
イミングを示す。図1において、ワイヤ電極に負電圧が
印加されている状態を所定の極性、逆にワイヤ電極に正
電圧が印加されている状態を逆極性とする。ワイヤ放電
加工機か形彫放電加工機か、加工電極やワークの材質、
加工条件等により、加工電極を正電圧にして、またはワ
ークを正電圧にして加工するかは予め決定すべき事項で
ある。要するに、所定の極性の電圧とは、放電により実
際に加工を行う方の極性である。この所定の極性のこと
を以後正極性という。放電加工開始時点T0には、正極
性電圧が極間に印加され、時点T1において、放電が生
ずると、放電加工が行われるが、このとき、極間電圧は
急激に低下する。1回目の放電加工が終了する時点T2
で印加電圧は零とされ、極間電圧も零となる。この1回
の放電加工処理時間(T0ーT2)はτONMで表され、2
〜20μsecである。この放電加工処理時間と同様な2
〜20μsecの休止時間τOFFが経過した後、時点T5で
2回目の放電加工処理が開始され、正極性電圧が極間に
印加される。放電が生じた時点T6で放電加工が行わ
れ、時点T7から2回目の休止期間となる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows output waveforms of a voltage between electrodes applied between electrodes of a wire electrode and a work electrode from an electric discharge machining power supply device according to the present invention, and ON-OFF timings of a main power supply and a sub power supply. In FIG. 1, a state where a negative voltage is applied to the wire electrode has a predetermined polarity, and a state where a positive voltage is applied to the wire electrode has a reverse polarity. Wire electric discharge machine or die-sinking electric discharge machine, material of machining electrode or workpiece,
Depending on the processing conditions and the like, whether to process the processing electrode with a positive voltage or the work with a positive voltage is a matter to be determined in advance. In short, the voltage of the predetermined polarity is the polarity of the one that is actually processed by electric discharge. This predetermined polarity is hereinafter referred to as positive polarity. A positive voltage is applied between the electrodes at the electric discharge machining start time T0, and when electric discharge occurs at time T1, electric discharge machining is performed. At this time, the voltage between the electrodes sharply decreases. Time point T2 when the first electrical discharge machining ends
Thus, the applied voltage becomes zero and the voltage between contacts also becomes zero. This single electric discharge machining processing time (T0-T2) is represented by τ ONM and is 2
It is about 20 μsec. The same as this EDM processing time
After the pause time τ OFF of ˜20 μsec has elapsed, the second electric discharge machining process is started at time T5, and the positive voltage is applied between the electrodes. The electric discharge machining is performed at the time T6 when the electric discharge occurs, and the second idle period starts from the time T7.

【0009】本実施例では、正極性電圧を主電源から供
給し、逆極性電圧を副電源から供給する。すなわち、図
1に示す如く、主電源からの1回目の正極性電圧の供給
をτONMの間だけ行い、τOFFの期間は該供給を休止せし
めた後、2回目の供給を行う。また、副電源からの逆極
性電圧は上記τOFF期間内にτONSの時間だけ供給され
る。τONSの開始時点はT3で、終了時点はT4である。
本実施例は、この逆極性電圧の供給時間τONSとそのレ
ベルを平均電圧が零になるように調整している。
In this embodiment, the positive voltage is supplied from the main power source and the reverse polarity voltage is supplied from the sub power source. That is, as shown in FIG. 1, the first supply of the positive voltage from the main power source is performed only during τ ONM , and during the period of τ OFF , the supply is stopped and then the second supply is performed. Further, the reverse polarity voltage from the sub power supply is supplied for the time of τ ONS within the τ OFF period. τ ONS starts at T3 and ends at T4.
In this embodiment, the reverse polarity voltage supply time τ ONS and its level are adjusted so that the average voltage becomes zero.

【0010】図2には、本発明による放電加工電源装置
の一実施例を示す構成ブロック図が示されている。NC
装置1からは、放電加工時にワイヤ電極7とワーク電極
8間に印加する電圧レベルVMを指令するVM指令信号が
主電源電圧調整部2に送出される。主電源電圧調整部2
は、VM指令信号を受けて、安定化電圧VMを出力する。
主電源出力部3からは、ワイヤ電極7の給電子7Aと7
Bに正極性電圧が供給される。該ワイヤ電極7とワーク
8間に上記正極性電圧が印加されると放電が発生し、ワ
ーク8が放電加工される。このときワイヤ電極7から主
電源出力部3には電流IMが流れ込んでいる。
FIG. 2 is a block diagram showing the configuration of an embodiment of the electric discharge machining power supply device according to the present invention. NC
From the device 1, a VM command signal for commanding the voltage level VM applied between the wire electrode 7 and the work electrode 8 during electric discharge machining is sent to the main power supply voltage adjusting unit 2. Main power supply voltage adjustment unit 2
Receives the VM command signal and outputs the stabilized voltage VM.
From the main power output unit 3, the power supply terminals 7A and 7A of the wire electrode 7 are connected.
A positive voltage is supplied to B. When the positive voltage is applied between the wire electrode 7 and the work 8, a discharge is generated and the work 8 is subjected to electric discharge machining. At this time, the current IM flows from the wire electrode 7 to the main power supply output section 3.

【0011】副電源電圧調整部4からは制御部6からの
VS指令信号に応答して定電圧の逆極性電圧が副電源出
力部5に出力される。副電源出力部5からは、レベルV
S、時間長τONSの逆極性電圧がワイヤ電極7の給電子7
A,7Bに供給される。このとき、副電源出力部5から
ワイヤ電極7に向かって電流ISが流れる。ここで、副
電源出力部5は、加工を行う目的ではないため、ISは
IMと比較して充分小さい値である。制御部6は、NC
装置1から供給される上記放電休止期間を示すτOFF
号とワイヤ電極7に印加されている電圧信号とを受け、
副電源電圧調整部4に逆極性電圧VSの出力を指令す
る。また、制御部6は、正極性電圧の発生時間を指定す
るτONMと逆極性電圧の発生時間を指定するτONSを、そ
れぞれ主電源出力部3と副電源出力部5に送出して、図
1に示すようなシーケンスで正極性電圧と逆極性電圧を
発生せしめている。このとき、制御部6は、ワイヤ電極
7の給電子7A,7Bからの電圧の平均電圧を検出し、
逆極性電圧のレベルVSを、またはレベルVSとその時間
長τONSを調整する。
In response to the VS command signal from the control unit 6, the sub power supply voltage adjusting unit 4 outputs a constant polarity reverse polarity voltage to the sub power supply output unit 5. From the sub power supply output unit 5, the level V
The reverse polarity voltage of S and time τ ONS is the power supply 7 of the wire electrode 7.
A, 7B is supplied. At this time, the current IS flows from the sub power supply output section 5 toward the wire electrode 7. Here, since the sub power supply output unit 5 is not for the purpose of performing processing, Is has a sufficiently small value as compared with IM. The control unit 6 is NC
Receiving a τ OFF signal indicating the discharge rest period supplied from the device 1 and a voltage signal applied to the wire electrode 7,
The sub power supply voltage adjusting unit 4 is instructed to output the reverse polarity voltage VS. Further, the control unit 6 sends τ ONM that specifies the generation time of the positive polarity voltage and τ ONS that specifies the generation time of the reverse polarity voltage to the main power supply output unit 3 and the sub power supply output unit 5, respectively. The positive polarity voltage and the reverse polarity voltage are generated in the sequence shown in FIG. At this time, the control unit 6 detects an average voltage of the voltages from the power supply terminals 7A and 7B of the wire electrode 7,
The level VS of the reverse polarity voltage or the level VS and its time length τ ONS are adjusted.

【0012】図3には、本実施例において極間平均電圧
を零にするべく逆極性電圧を調整する制御部6の動作処
理手順がフローチャートとして示されている。例えば、
100msec毎に本実施例の調整処理が開始され、先ず、
ワイヤ電極7の給電子7A,7Bからの電圧に基づいて
極間平均電圧VGを検出し(ステップS1)、検出した
平均電圧VGの絶対値が予め定めた許容電圧Pr(理想的
には零)よりも小さくなっているか否かを判定し(ステ
ップS2)、小さくなっていれば現在の調整で電食等は
問題にならないとして、ステップS1の次のインターバ
ルでの極間平均電圧VGの検出を行う。一方、ステップ
S2において、平均電圧の絶対値がPrより大きくなっ
たときには、電食等の問題が発生しているのであるか
ら、逆極性電圧VSのレベルや時間長を調整して平均電
圧が零になる方向に制御する。そのため、ステップS3
において、平均電圧VGが正か負かを判定し、正であれ
ば、現在の逆極性電圧VSから減算すべき電圧VPを定め
(ステップS4)、次に印加する逆極性電圧をVS−VP
として設定し(ステップS5)、再びステップS1の処
理に戻る。また、ステップS3で平均電圧VGが負であ
るときには、現在の逆極性電圧VSに加えるべき所定値
VPを定め(ステップS6)、次に印加する逆極性電圧
をVS+VPとして設定し(ステップS7)、ステップS
1の処理に戻る。
FIG. 3 is a flow chart showing an operation processing procedure of the control unit 6 for adjusting the reverse polarity voltage in order to make the inter-electrode average voltage zero in this embodiment. For example,
The adjustment process of this embodiment is started every 100 msec.
The inter-electrode average voltage VG is detected based on the voltage from the power supply terminals 7A and 7B of the wire electrode 7 (step S1), and the absolute value of the detected average voltage VG is a predetermined allowable voltage Pr (ideally zero). Is determined (step S2), and if it is smaller, it is determined that the current adjustment does not cause problems such as electrolytic corrosion, and detection of the average voltage VG between poles in the interval following step S1. To do. On the other hand, in step S2, when the absolute value of the average voltage becomes larger than Pr, there is a problem such as electrolytic corrosion. Therefore, the level and time length of the reverse polarity voltage VS are adjusted and the average voltage becomes zero. Control to become. Therefore, step S3
In step S4, it is determined whether the average voltage VG is positive or negative. If the average voltage VG is positive, the voltage VP to be subtracted from the current reverse polarity voltage VS is determined (step S4), and the reverse polarity voltage to be applied next is VS-VP.
(Step S5), and the process returns to step S1 again. When the average voltage VG is negative in step S3, the predetermined value VP to be added to the current reverse polarity voltage VS is determined (step S6), and the reverse polarity voltage to be applied next is set as VS + VP (step S7). Step S
Return to processing of 1.

【0013】上述実施例において、平均電圧を零にすべ
く調整する逆極性電圧は、そのレベルVSを対象として
いるが、レベルVSだけでなくその時間長τONSを調整す
れば、更に調整範囲が拡大され、高精度な調整が可能と
なる。
In the above-described embodiment, the reverse polarity voltage for adjusting the average voltage to zero is targeted at the level VS, but if the time length τ ONS is adjusted in addition to the level VS, the adjustment range is further increased. It is enlarged and highly accurate adjustment is possible.

【0014】図4のフローチャートには、本発明の他の
実施例の動作処理手順が示されている。本実施例は、極
間に放電のための電圧が印加されていても放電していな
い状態(オープン状態)における処理を示す。すなわ
ち、実際の放電加工に移行するアプローチ段階や正極性
電圧が印加された放電加工時に、ワイヤ電極とワーク間
距離が何らかの原因で長くなり放電が停止した場合がこ
のオープン状態であり、かかる状態が長時間継続する
と、上述電食の問題が生じる。本実施例は、この問題を
解決している。
The flowchart of FIG. 4 shows the operation processing procedure of another embodiment of the present invention. The present embodiment shows a process in a state (open state) in which discharge is not performed even if a voltage for discharge is applied between the electrodes. In other words, this is the open state when the distance between the wire electrode and the work becomes longer and the discharge is stopped for some reason during the approach stage of shifting to the actual electric discharge machining or during the electric discharge machining where the positive polarity voltage is applied. If it continues for a long time, the above-mentioned problem of electrolytic corrosion occurs. The present embodiment solves this problem.

【0015】図4を参照すると、先ず、正極性電圧の印
加を指示するτONM“ON”信号が出力されると(ステ
ップS11)、オープン状態時間を検出するためのオー
プンカウンタTcをスタートさせた後(ステップS1
2)、放電が発生したか否かを判定する(ステップS1
3)。放電の発生は、例えば極間電圧が一定値以下に低
下したことを検出することにより簡単に判定できる。放
電が発生していなければ、オープンカウンタがTc(例
えば、50μsec)を計時したか否かを判定する(ステ
ップS14)。ステップS13において、放電が発生し
たと判定したとき、及びステップS14でオープンカウ
ンタがTcを計時したときには、信号τONMを“OFF”
とし(ステップS15)、タイマをスタートさせる。こ
こで、該タイマにより時間Td(図1に示され、出力素
子の遅れ、ケーブルのインダクタンスによる電流の遅れ
に対するマージンに対応し、例えば1μsecが設定され
る)を計時されると(ステップS16)、逆極性電圧V
Sを出力させるための信号τONSを“ON”とし(ステッ
プS17)、再びオープンカウンタをスタートさせる
(ステップS18)。次に、放電の発生を判定し(ステ
ップS19)、放電が発生していなければオープンカウ
ンタが時間Tc経過したか否かを判定し(ステップS2
0)、経過していなければステップS19の処理に戻
る。ステップS19において、放電が発生していると判
定され、またはステップS20で時間Tcが計時される
と、信号τONSを“OFF”とし(ステップS21)、
タイマにより時間Tdを計時した後(ステップS2
2)、ステップS1の処理に戻る。
Referring to FIG. 4, first, when the τ ONM “ON” signal for instructing the application of the positive voltage is output (step S11), the open counter Tc for detecting the open state time is started. After (Step S1
2) Determine whether or not discharge has occurred (step S1)
3). The occurrence of discharge can be easily determined, for example, by detecting that the voltage between contacts has dropped below a certain value. If discharge has not occurred, it is determined whether or not the open counter has counted Tc (for example, 50 μsec) (step S14). When it is determined in step S13 that discharge has occurred, and when the open counter measures Tc in step S14, the signal τ ONM is set to “OFF”.
Then, the timer is started (step S15). Here, when the timer measures time Td (which is shown in FIG. 1 and corresponds to the margin for the delay of the output element and the delay of the current due to the inductance of the cable, for example, 1 μsec is set) (step S16), Reverse polarity voltage V
The signal τONS for outputting S is turned “ON” (step S17), and the open counter is started again (step S18). Next, it is determined whether discharge has occurred (step S19), and if discharge has not occurred, it is determined whether the open counter has elapsed time Tc (step S2).
0), if not elapsed, the process returns to step S19. When it is determined in step S19 that discharge has occurred, or when the time Tc is measured in step S20, the signal τ ONS is set to “OFF” (step S21),
After measuring the time Td by the timer (step S2
2), the process returns to step S1.

【0016】図4に示す実施例によれば、オープン状態
にあっても強制的にτONMとτONSのタイミングで、例え
ば、数KHzの交流電圧が出力されることになり効果が
著しくなる。
According to the embodiment shown in FIG. 4, even in the open state, for example, an alternating voltage of several KHz is output at the timing of τ ONM and τ ONS , and the effect becomes remarkable.

【0017】[0017]

【発明の効果】以上説明したように、本発明による放電
加工電源装置は、放電休止時に印加する放電時に印加さ
れる極性とは逆極性の電圧レベルまたは該レベルとその
時間長を調整することにより、極間平均電圧を零にすべ
く調整しているので、放電用直流電圧が印加されたとき
生ずる電食等の問題が解決され、また調整範囲も拡大さ
れてより高精度な放電加工が可能となる。
As described above, in the electric discharge machining power supply device according to the present invention, by adjusting the voltage level of the polarity opposite to the polarity applied at the time of the discharge applied at the time of the discharge pause or the level and the time length thereof. Since the average voltage between contacts is adjusted to zero, problems such as electrolytic corrosion that occur when a DC voltage for discharge is applied are solved, and the adjustment range is expanded to enable more accurate electrical discharge machining. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による放電加工電源装置の一実施例動作
を説明するための図である。
FIG. 1 is a diagram for explaining the operation of an embodiment of an electric discharge machining power supply device according to the present invention.

【図2】本発明による放電加工電源装置の一実施例を示
す構成ブロック図である。
FIG. 2 is a configuration block diagram showing an embodiment of an electric discharge machining power supply device according to the present invention.

【図3】本発明による放電加工電源装置の一実施例の動
作処理手順を示すフローチャートである。
FIG. 3 is a flowchart showing an operation processing procedure of an embodiment of the electric discharge machining power supply device according to the present invention.

【図4】本発明による放電加工電源装置の他の実施例の
動作処理手順を示すフローチャートである。
FIG. 4 is a flowchart showing an operation processing procedure of another embodiment of the electric discharge machining power supply device according to the present invention.

【符号の説明】[Explanation of symbols]

1 NC装置 2 主電
源電圧調整部 3 主電源出力部 4 副電
源電圧調整部 5 副電源出力部 6 制御
部 7 ワイヤ電極 7A,7B
給電子 8 ワーク
DESCRIPTION OF SYMBOLS 1 NC device 2 Main power supply voltage adjustment unit 3 Main power supply output unit 4 Sub power supply voltage adjustment unit 5 Sub power supply output unit 6 Control unit 7 Wire electrodes 7A, 7B
Power supply 8 work

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月28日[Submission date] October 28, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
め、本発明による放電加工電源装置は、加工用電極とワ
ーク電極との両電極間に所定の極性で電圧を印加して放
電加工を行わせる放電加工電源装置において、前記両電
極間の平均電圧を検出する第1の手段と、前記所定の極
性の電圧による放電の休止期間中に前記所定の極性の電
圧と逆極性の電圧を前記両電極間に印加する第2の手段
と、前記第1の手段で検出した前記平均電圧と予め定め
た許容値との差に応じて前記第2の手段から出力される
前記逆極性の電圧のレベルを前記平均電圧が零になる方
向に制御する第3の手段と、を備えて構成される。
In order to solve the above-mentioned problems, the electric discharge machining power supply device according to the present invention performs electric discharge machining by applying a voltage with a predetermined polarity between the machining electrode and the work electrode. In the electric discharge machining power supply device to be performed, the first means for detecting the average voltage between the both electrodes, and the voltage of the polarity opposite to the voltage of the predetermined polarity during the suspension period of the discharge by the voltage of the predetermined polarity The second means applied between both electrodes, and the voltage of the opposite polarity output from the second means according to the difference between the average voltage detected by the first means and a predetermined allowable value. And a third means for controlling the level so that the average voltage becomes zero.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】図3には、本実施例において極間平均電圧
を零にするべく逆極性電圧を調整する制御部6の動作処
理手順がフローチャートとして示されている。例えば、
100msec毎に本実施例の調整処理が開始され、先ず、
ワイヤ電極7の給電子7A,7Bからの電圧に基づいて
極間平均電圧VGを検出し(ステップS1)、検出した
平均電圧VGの絶対値が予め定めた許容電圧Pr(理想的
には零)よりも小さくなっているか否かを判定し(ステ
ップS2)、小さくなっていれば現在の調整で電食等は
問題にならないとして、ステップS1の次のインターバ
ルでの極間平均電圧VGの検出を行う。一方、ステップ
S2において、平均電圧の絶対値がPrより大きくなっ
たときには、電食等の問題が発生しているのであるか
ら、逆極性電圧VSのレベルや時間長を調整して平均電
圧が零になる方向に制御する。そのため、ステップS3
において、平均電圧VGが正か負かを判定し、正であれ
ば、現在の逆極性電圧VSから減算すべき電圧VPを定め
(ステップS6)、次に印加する逆極性電圧をVS−VP
として設定し(ステップS7)、再びステップS1の処
理に戻る。また、ステップS3で平均電圧VGが負であ
るときには、現在の逆極性電圧VSに加えるべき所定値
VPを定め(ステップS4)、次に印加する逆極性電圧
をVS+VPとして設定し(ステップS5)、ステップS
1の処理に戻る。
FIG. 3 is a flow chart showing an operation processing procedure of the control unit 6 for adjusting the reverse polarity voltage in order to make the inter-electrode average voltage zero in this embodiment. For example,
The adjustment process of this embodiment is started every 100 msec.
The inter-electrode average voltage VG is detected based on the voltage from the power supply terminals 7A and 7B of the wire electrode 7 (step S1), and the absolute value of the detected average voltage VG is a predetermined allowable voltage Pr (ideally zero). Is determined (step S2), and if it is smaller, it is determined that the current adjustment does not cause problems such as electrolytic corrosion, and detection of the average voltage VG between poles in the interval following step S1. To do. On the other hand, in step S2, when the absolute value of the average voltage becomes larger than Pr, there is a problem such as electrolytic corrosion. Therefore, the level and time length of the reverse polarity voltage VS are adjusted and the average voltage becomes zero. Control to become. Therefore, step S3
, It is determined whether the average voltage VG is positive or negative. If the average voltage VG is positive, the voltage VP to be subtracted from the current reverse polarity voltage VS is determined (step S6), and the reverse polarity voltage to be applied next is VS-VP.
(Step S7), and the process returns to step S1 again. When the average voltage VG is negative in step S3, a predetermined value VP to be added to the current reverse polarity voltage VS is determined (step S4), and the reverse polarity voltage to be applied next is set as VS + VP (step S5). Step S
Return to processing of 1.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】図4を参照すると、先ず、正極性電圧の印
加を指示するτONM“ON”信号が出力されると(ステ
ップS11)、オープン状態時間を検出するためのオー
プンカウンタTcをスタートさせた後(ステップS1
2)、放電が発生したか否かを判定する(ステップS1
3)。放電の発生は、例えば極間電圧が一定値以下に低
下したことを検出することにより簡単に判定できる。放
電が発生していなければ、オープンカウンタがTc(例
えば、50μsec)を計時したか否かを判定する(ステ
ップS14)。ステップS13において、放電が発生し
たと判定したとき、τON制御をして所定の放電時間を設
定し(ステップS23)、信号τONMを“OFF”とす
る(ステップS15)。また、ステップS14でオープ
ンカウンタがTcを計時したときにも、信号τONMを“O
FF”とし(ステップS15)、タイマをスタートさせ
る。ここで、該タイマにより時間Td(図1に示され、
出力素子の遅れ、ケーブルのインダクタンスによる電流
の遅れに対するマージンに対応し、例えば1μsecが設
定される)を計時されると(ステップS16)、逆極性
電圧VSを出力させるための信号τONSを“ON”とし
(ステップS17)、再びオープンカウンタをスタート
させる(ステップS18)。次に、放電の発生を判定し
(ステップS19)、放電が発生していなければオープ
ンカウンタが時間Tc経過したか否かを判定し(ステッ
プS20)、経過していなければステップS19の処理
に戻る。ステップS19において、放電が発生している
と判定され、またはステップS20で時間Tcが計時さ
れると、信号τONSを“OFF”とし(ステップS2
1)、タイマにより時間Tdを計時した後(ステップS
22)、ステップS11の処理に戻る。
Referring to FIG. 4, first, when the τ ONM “ON” signal for instructing the application of the positive voltage is output (step S11), the open counter Tc for detecting the open state time is started. After (Step S1
2) Determine whether or not discharge has occurred (step S1)
3). The occurrence of discharge can be easily determined, for example, by detecting that the voltage between contacts has dropped below a certain value. If discharge has not occurred, it is determined whether or not the open counter has counted Tc (for example, 50 μsec) (step S14). When it is determined in step S13 that discharge has occurred, τ ON control is performed to set a predetermined discharge time (step S23), and the signal τ ONM is set to “OFF” (step S15). Also, when the open counter measures Tc in step S14, the signal τ ONM is set to “O”.
FF "(step S15), and the timer is started. Here, the timer causes the time Td (shown in FIG.
Corresponding to the delay of the output element and the margin for the current delay due to the inductance of the cable, for example, 1 μsec is set) (step S16), the signal τONS for outputting the reverse polarity voltage VS is turned “ON”. Then (step S17), the open counter is started again (step S18). Next, it is determined whether discharge has occurred (step S19). If discharge has not occurred, it is determined whether the open counter has elapsed time Tc (step S20). If not, the process returns to step S19. . When it is determined in step S19 that discharge has occurred, or when the time Tc is measured in step S20, the signal τ ONS is set to “OFF” (step S2
1) After measuring the time Td by the timer (step S
22) and returns to the process of step S11.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Figure 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 ─────────────────────────────────────────────────────
[Figure 4] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月20日[Submission date] June 20, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
め、本発明による放電加工電源装置は、加工用電極とワ
ーク電極との両電極間に所定の極性で電圧を印加して放
電加工を行わせる放電加工電源装置において、前記両電
極間の平均電圧を検出する第1の手段と、前記所定の極
性の電圧による放電の休止期間中に前記所定の極性の電
圧と逆極性の電圧を前記両電極間に印加する第2の手段
と、前記第1の手段で検出した前記平均電圧と予め定め
た許容値との差に応じて前記第2の手段から出力される
前記逆極性の電圧のレベルを前記平均電圧が零になる方
向に制御する第3の手段と、を備えて構成される。
In order to solve the above-mentioned problems, the electric discharge machining power supply device according to the present invention performs electric discharge machining by applying a voltage with a predetermined polarity between the machining electrode and the work electrode. In the electric discharge machining power supply device to be performed, the first means for detecting the average voltage between the both electrodes, and the voltage of the polarity opposite to the voltage of the predetermined polarity during the suspension period of the discharge by the voltage of the predetermined polarity The second means applied between both electrodes, and the voltage of the opposite polarity output from the second means according to the difference between the average voltage detected by the first means and a predetermined allowable value. And a third means for controlling the level so that the average voltage becomes zero.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】図3には、本実施例において極間平均電圧
を零にするべく逆極性電圧を調整する制御部6の動作処
理手順がフローチャートとして示されている。例えば、
100msec毎に本実施例の調整処理が開始され、先
ず、ワイヤ電極7の給電子7A,7Bからの電圧に基づ
いて極間平均電圧VGを検出し(ステップS1)、検出
した平均電圧VGの絶対値が予め定めた許容電圧Pr
(理想的には零)よりも小さくなっているか否かを判定
し(ステップS2)、小さくなっていれば現在の調整で
電食等は問題にならないとして、ステップS1の次のイ
ンターバルでの極間平均電圧VGの検出を行う。一方、
ステップS2において、平均電圧の絶対値がPrより大
きくなったときには、電食等の問題が発生しているので
あるから、逆極性電圧VSのレベルや時間長を調整して
平均電圧が零になる方向に制御する。そのため、ステッ
プS3において、平均電圧VGが正が負かを判定し、正
であれば、現在の逆極性電圧VSから減算すべき電圧V
Pを定め(ステップS6)、次に印加する逆極性電圧を
VS−VPとして設定し(ステップS7)、再びステッ
プS1の処理に戻る。また、ステップS3で平均電圧V
Gが負であるときには、現在の逆極性電圧VSに加える
べき所定値VPを定め(ステップS4)、次に印加する
逆極性電圧をVS+VPとして設定し(ステップS
5)、ステップS1の処理に戻る。
FIG. 3 is a flow chart showing an operation processing procedure of the control unit 6 for adjusting the reverse polarity voltage in order to make the inter-electrode average voltage zero in this embodiment. For example,
The adjustment process of the present embodiment is started every 100 msec, and first, the inter-electrode average voltage VG is detected based on the voltage from the power supply terminals 7A and 7B of the wire electrode 7 (step S1), and the detected average voltage VG is absolute. Allowable voltage Pr whose value is predetermined
It is determined whether or not it is smaller than (ideally zero) (step S2), and if it is smaller, it is considered that electrolytic corrosion does not pose a problem in the current adjustment, and the pole in the interval next to step S1 is determined. The inter-average voltage VG is detected. on the other hand,
In step S2, when the absolute value of the average voltage becomes larger than Pr, there is a problem such as electrolytic corrosion. Therefore, the level and time length of the reverse polarity voltage VS are adjusted and the average voltage becomes zero. Control in the direction. Therefore, in step S3, it is determined whether the average voltage VG is positive or negative. If the average voltage VG is positive, the voltage V to be subtracted from the current reverse polarity voltage VS.
P is determined (step S6), the reverse polarity voltage to be applied next is set as VS-VP (step S7), and the process returns to step S1. In step S3, the average voltage V
When G is negative, a predetermined value VP to be added to the current reverse polarity voltage VS is determined (step S4), and the reverse polarity voltage to be applied next is set as VS + VP (step S4).
5) and returns to the process of step S1.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Name of item to be corrected] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】図4を参照すると、先ず、正極性電圧の印
加を指示するτONM“ON”信号が出力されると(ス
テップS11)、オープン状態時間を検出するためのオ
ープンカウタTcをスタートさせた後(ステップS1
2)、放電が発生したか否かを判定する(ステップS1
3)。放電の発生は、例えば極間電圧が一定値以下に低
下したことを検出することにより簡単に判定できる。放
電が発生していなければ、オープンカウンタがTc(例
えば、50μsec)を計時したか否かを判定する(ス
テップS14)。ステップS13において、放電が発生
したと判定したとき、τON制御をして所定の放電時間
を設定し(ステップS23)、信号τONMを“OF
F”とする(ステップS15)。また、ステップS14
でオープンカウンタがTcを計時したときにも、信号τ
ONMを“OFF”とし(ステップS15)、タイマを
スタートさせる。ここで、該タイマにより時間Td(図
1に示され、出力素子の遅れ、ケーブルのインダクタン
スによる電流の遅れに対するマージンに対応し、例えば
1μsecが設定される)を計時されると(ステップS
16)、逆極性電圧VSを出力させるための信号τON
Sを“ON”とし(ステップS17)、再びオープンカ
ウンタをスタートさせる(ステップS18)。次に、放
電の発生を判定し(ステップS19)、放電が発生して
いなければオープンカウンタが時間Tc経過したか否か
を判定し(ステップS20)、経過していなければステ
ップS19の処理に戻る。ステップS19において、放
電が発生していると判定され、またはステップS20で
時間Tcが計時されると、信号τONSを“OFF”と
し(ステップS21)、タイマにより時間Tdを計時し
た後(ステップS22)、ステップS11の処理に戻
る。
Referring to FIG. 4, first, when the τONM "ON" signal for instructing the application of the positive polarity voltage is output (step S11), the open counter Tc for detecting the open state time is started. (Step S1
2) Determine whether or not discharge has occurred (step S1)
3). The occurrence of discharge can be easily determined, for example, by detecting that the voltage between contacts has dropped below a certain value. If discharge has not occurred, it is determined whether or not the open counter has measured Tc (for example, 50 μsec) (step S14). When it is determined in step S13 that discharge has occurred, τON control is performed to set a predetermined discharge time (step S23), and the signal τONM is set to “OF”.
F "(step S15). Also, step S14
Even when the open counter measures Tc at
The ONM is turned "OFF" (step S15), and the timer is started. Here, when the timer measures time Td (corresponding to the margin for the delay of the output element and the delay of the current due to the inductance of the cable, which is shown in FIG. 1, for example, 1 μsec is set) (step S
16), a signal τON for outputting the reverse polarity voltage VS
S is turned "ON" (step S17), and the open counter is started again (step S18). Next, it is determined whether or not discharge has occurred (step S19). If discharge has not occurred, it is determined whether or not the open counter has elapsed time Tc (step S20). If not, the process returns to step S19. . When it is determined in step S19 that discharge has occurred, or when the time Tc is measured in step S20, the signal τONS is turned "OFF" (step S21), and after the time Td is measured by the timer (step S22). , And returns to the process of step S11.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】加工用電極とワーク電極との両電極間に所
定の極性で電圧を印加して放電加工を行わせる放電加工
電源装置において、 前記両電極間の平均電圧を検出する第1の手段と、 前記所定の極性の電圧による放電の休止期間中に前記所
定の極性の電圧と逆極性の逆極性電圧を前記両電極間に
印加する第2の手段と、 前記第1の手段で検出した前記平均電圧と予め定めた許
容値との差に応じて前記第2の手段から出力される前記
逆極性電圧のレベルを前記平均電圧が零になる方向に制
御する第3の手段と、を備えて成ることを特徴とする放
電加工電源装置。
1. An electric discharge machining power supply device for performing electric discharge machining by applying a voltage with a predetermined polarity between both electrodes of a machining electrode and a work electrode, wherein a first voltage for detecting an average voltage between both electrodes is detected. A second means for applying a reverse polarity voltage having a reverse polarity to the voltage of the predetermined polarity between the electrodes during a rest period of discharge by the voltage of the predetermined polarity; and detection by the first means. Third means for controlling the level of the reverse polarity voltage output from the second means in the direction in which the average voltage becomes zero according to the difference between the average voltage and a predetermined allowable value. An electric discharge machine power supply device characterized by comprising.
【請求項2】前記第3の手段は、前記逆極性電圧のレベ
ル及び時間長を制御して前記平均電圧が零になるように
した請求項1に記載の放電加工電源装置。
2. The electric discharge machining power supply device according to claim 1, wherein the third means controls the level and time length of the reverse polarity voltage so that the average voltage becomes zero.
【請求項3】前記所定の極性の電圧が印加されているに
もかかわらず放電が発生していないオープン状態が所定
時間以上継続していることを検出する第4の手段と、 前記オープン状態が検出されたとき、前記所定の極性の
電圧と前記逆極性電圧とを交互に繰り返し発生させる第
5の手段と、を更に備えて成る請求項1または2に記載
の放電加工電源装置。
3. A fourth means for detecting that an open state in which no discharge has occurred despite the application of the voltage of the predetermined polarity has continued for a predetermined time or more; The electric discharge machining power supply device according to claim 1 or 2, further comprising: fifth means for alternately and repeatedly generating the voltage of the predetermined polarity and the voltage of the opposite polarity when detected.
JP4163451A 1992-05-29 1992-05-29 EDM power supply Expired - Lifetime JP2547365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4163451A JP2547365B2 (en) 1992-05-29 1992-05-29 EDM power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4163451A JP2547365B2 (en) 1992-05-29 1992-05-29 EDM power supply

Publications (2)

Publication Number Publication Date
JPH06339815A true JPH06339815A (en) 1994-12-13
JP2547365B2 JP2547365B2 (en) 1996-10-23

Family

ID=15774135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4163451A Expired - Lifetime JP2547365B2 (en) 1992-05-29 1992-05-29 EDM power supply

Country Status (1)

Country Link
JP (1) JP2547365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102538A1 (en) * 2001-06-15 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Wire electric-discharge machining method and device
US20120228270A1 (en) * 2011-03-07 2012-09-13 Fanuc Corporation Electric discharge machine
US20150196964A1 (en) * 2014-01-15 2015-07-16 Fanuc Corporation Wire electric discharge machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993231A (en) * 1982-11-19 1984-05-29 Mitsubishi Electric Corp Electric discharge machining device
JPS60201826A (en) * 1984-03-26 1985-10-12 Fanuc Ltd Power source for wire electric discharge machining
JPH03228521A (en) * 1990-11-17 1991-10-09 Fanuc Ltd Electric discharge machining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993231A (en) * 1982-11-19 1984-05-29 Mitsubishi Electric Corp Electric discharge machining device
JPS60201826A (en) * 1984-03-26 1985-10-12 Fanuc Ltd Power source for wire electric discharge machining
JPH03228521A (en) * 1990-11-17 1991-10-09 Fanuc Ltd Electric discharge machining method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102538A1 (en) * 2001-06-15 2002-12-27 Mitsubishi Denki Kabushiki Kaisha Wire electric-discharge machining method and device
US6903297B2 (en) 2001-06-15 2005-06-07 Mitsubishi Denki Kabushiki Kaisha Wire electric-discharge machining method and device
US20120228270A1 (en) * 2011-03-07 2012-09-13 Fanuc Corporation Electric discharge machine
US8901448B2 (en) * 2011-03-07 2014-12-02 Fanuc Corporation Electric discharge machine
US20150196964A1 (en) * 2014-01-15 2015-07-16 Fanuc Corporation Wire electric discharge machine

Also Published As

Publication number Publication date
JP2547365B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JPS614620A (en) Electric discharge machining power supply device
US5416290A (en) Electric discharge machine power supply circuit
EP0286685A1 (en) Method of controlling wire cut discharge machining
WO1985004353A1 (en) Power source for wire cut electrospark machining
US4695696A (en) Electric discharge machine with control of the machining pulse's current value in accordance with the delay time
JP2692510B2 (en) Electric discharge machine
JP3882753B2 (en) Power supply device for wire electric discharge machining and wire electric discharge machining method
JP2547365B2 (en) EDM power supply
JPS6029246A (en) Contact sensor for electric discharge machine
JPH09183019A (en) Method and device for discharge machining
JPH07246519A (en) Electric discharge machining method and its device
JPS6368317A (en) Electric discharge machining device
JPH01274923A (en) Servo controller for electrolytic corrosion working machine
JP3627084B2 (en) Electric discharge machine power supply
JP3252622B2 (en) Machining power supply controller for wire electric discharge machine
JPH059209B2 (en)
JPH03136719A (en) Electric discharge machine
EP0696488B1 (en) A power supply apparatus for electrical discharge machining and an electrical discharge interval control method using the power supply apparatus
JPS6219322A (en) Electric power device for wire-cut electric discharge machining
JP2002154015A (en) Contact detecting device for electric discharge machine
JP2718616B2 (en) Method and apparatus for supplying electric discharge machining pulse
JPH06262435A (en) Electric discharge machining method and device
JPH06283B2 (en) Wire EDM power supply
JP2000015524A (en) Control method and device of electrical discharge machine
JPH089125B2 (en) Power supply for electrical discharge machining

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20100808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120808

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120808