JPH0633963B2 - Cooling tower using synthetic resin heat exchanger for cooling tower and closed heat exchanger composed of this heat exchanger - Google Patents

Cooling tower using synthetic resin heat exchanger for cooling tower and closed heat exchanger composed of this heat exchanger

Info

Publication number
JPH0633963B2
JPH0633963B2 JP13909188A JP13909188A JPH0633963B2 JP H0633963 B2 JPH0633963 B2 JP H0633963B2 JP 13909188 A JP13909188 A JP 13909188A JP 13909188 A JP13909188 A JP 13909188A JP H0633963 B2 JPH0633963 B2 JP H0633963B2
Authority
JP
Japan
Prior art keywords
cooling tower
heat exchanger
cooling water
water
hollow body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13909188A
Other languages
Japanese (ja)
Other versions
JPH01310294A (en
Inventor
健 柏田
忠信 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Sangyo Co Ltd
Original Assignee
Shinwa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Sangyo Co Ltd filed Critical Shinwa Sangyo Co Ltd
Priority to JP13909188A priority Critical patent/JPH0633963B2/en
Publication of JPH01310294A publication Critical patent/JPH01310294A/en
Publication of JPH0633963B2 publication Critical patent/JPH0633963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 イ.発明の目的 (産業上の利用分野) この発明は冷却塔用の熱交換体及びこの熱交換体から成
る熱交換器を利用した冷却塔に関する。
Detailed Description of the Invention a. Object of the Invention (Industrial field of application) The present invention relates to a heat exchanger for a cooling tower and a cooling tower using a heat exchanger composed of this heat exchanger.

(従来の技術) 従来、この種の気液非接触型の熱交換器が、特開昭51
−100370号公報に記載されており、その構造は全
体合成樹脂製で、扁平な垂直方向の相互に平行な複数個
の液体流下通路と、これらの液体流下通路間に夫れ夫れ
形成された垂直方向の面を持つ扁平な気流の流れる空気
通路とを有し、これら2つの流体通路が相互の流体を非
接触とする複数枚の合成樹脂板よりなる熱交換隔壁板に
よって仕切られている冷却塔用熱交換器が記載されてお
り、各空気通路の両壁は逆U字状部材で形成され、隣接
する逆U字状部材の波形側壁は突出して設けたリブ部分
で相互に接着されていると共にその側縁において連結パ
ネルにより相互に連結されて前記液体流下通路を形成し
ている。
(Prior Art) Conventionally, a gas-liquid non-contact type heat exchanger of this type has been disclosed in Japanese Patent Laid-Open No.
No. 100370, the structure is entirely made of synthetic resin and is formed by a plurality of flat vertical liquid flow passages parallel to each other and between the liquid flow passages. Cooling having a flat airflow passage having a vertical surface, and these two fluid passages being partitioned by a heat exchange partition plate made of a plurality of synthetic resin plates that do not make mutual fluids in contact with each other. A heat exchanger for towers is described in which both walls of each air passage are formed by inverted U-shaped members, and corrugated side walls of adjacent inverted U-shaped members are bonded to each other by protruding rib portions. The liquid flow-down passages are connected to each other at their side edges by connecting panels.

(発明が解決しようとする課題) このように先行技術のものにおいては、液体の流下速度
を緩くするため狭く、かつ屈曲させた液体通路は長期間
使用する間には塵埃や微生物がそれらの壁面に付着し、
液体通路の断面積を実質的に狭くし、所定の流量流下で
きず、これらの熱交換器の供給側において溢水し、これ
らの周辺を悪戯に濡らすだけでなく、循環冷媒の損失と
なっている。
(Problems to be Solved by the Invention) As described above, in the prior art, the liquid passage that is narrow and bent to slow down the flow velocity of the liquid is dusty or microbially contaminated during long-term use. Attached to the
The cross-sectional area of the liquid passage is substantially narrowed, it is not possible to flow down at a predetermined flow rate, water overflows on the supply side of these heat exchangers, not only wetting these surroundings by mischief, but also loss of circulating refrigerant. .

更に、前記供給側での溢水現象により所望の冷却を行え
ないこともあると共に、前記流体通路が狭いため内部に
侵入したエアが抜けがたくこの通路内に滞留し熱交換を
阻害している。
Further, there is a case where desired cooling cannot be performed due to the overflow phenomenon on the supply side, and since the fluid passage is narrow, air that has entered the inside is hard to escape and stays in this passage, which hinders heat exchange.

この発明は気液非接触型の熱交換器の熱交換を行なう主
要部分における液体通路において、仮に一部分に目詰り
を起したとしても、熱交換器全体として液体の給吐出量
が一定に保持できるようにし、液体通路の流量に影響を
及ぼさないようにすると共に侵入したエアを円滑に抜け
るようにし、かつ供給された液体を2分し前記液体通路
に供給分散できるようにした熱交換体を提供すると共
に、かかる熱交換体を使用した冷却塔を提供することを
目的とする。
According to the present invention, in the liquid passage in the main portion for heat exchange of the gas-liquid non-contact type heat exchanger, even if a part of the liquid passage is clogged, the amount of liquid supplied and discharged can be kept constant as a whole of the heat exchanger. A heat exchange element that does not affect the flow rate of the liquid passage, smoothly escapes the invading air, and divides the supplied liquid into two parts for supply and dispersion in the liquid passage. In addition, it is an object of the present invention to provide a cooling tower using such a heat exchange element.

ロ.発明の構成 (課題を解決する手段) 前記課題を達成するために、この特定発明の冷却塔用合
成樹脂製熱交換体は、全体として扁平な合成樹脂製薄肉
中空体であり、内部が液体流下通路としてありその中空
体の上縁中央部には外部に開口した筒状循環冷却水供給
口が形成されており、その中空体の下縁である前記液体
流下通路の下縁中央部にも外部に開口した筒状循環水吐
出口が前記供給口と同一軸線上に設けてあり、この液体
流下通路の幅の大部分は、流下液緩速部としてあり、こ
の流下液緩速部は前記中空体の両壁板を相互に密着して
なる水平方向に長い邪魔シール部を全面に複数段にわた
り階層的に分布させて、これら邪魔シール部を一つ置き
に位置をずらせ、前記邪魔シール部間に蛇行流路を形成
して成り この中空体の両側縁に沿い、垂直なシール部が一本宛各
側縁から間隔をおいて形成してあり、更に前記供給口と
前記吐出口とにわたり延在する2本の垂直なシール部が
この中空体の中央部に形成してあり、この側縁と垂直な
シール部間に夫れ夫れ一個宛側方溢水路が形成され、ま
た前記中央の2本の垂直なシール部間に1個の中央溢水
路が形成されており、 前記流下液緩速部は前記中央溢水路で2つの流体通路に
分離され、これら垂直なシール部の上端は、堰の形状と
してあり、この堰を通して各側方溢水路、中央溢水路と
前記各流体通路における最上段部の液溜部分とが相互連
通していると共に、前記蛇行する流下緩速部の屈曲路位
置には前記垂直なシール部を横断し前記溢水路内に開口
するエア抜き穴が形成してあり、前記両壁板外面には、
隆起部がスペーサとして成形してあることを特徴とす
る。
B. Structure of the Invention (Means for Solving the Problems) In order to achieve the above-mentioned objects, the synthetic resin heat exchange element for a cooling tower according to the specific invention is a thin synthetic resin thin hollow body as a whole, and the inside thereof is a liquid flowing down. A cylindrical circulating cooling water supply port that is open to the outside is formed in the center of the upper edge of the hollow body as a passage, and the center of the lower edge of the liquid flow passage that is the lower edge of the hollow body is also outside. A cylindrical circulating water discharge port opened at the same position is provided on the same axis as the supply port, and most of the width of this liquid flow-down passage is a slow-flowing liquid slowing part, and this slow-flowing liquid slowing part is the hollow part. Horizontally long obstruction seal parts, which are made by closely adhering both wall plates of the body to each other, are hierarchically distributed over the entire surface in multiple stages, and these obstruction seal parts are displaced every other position, and between the obstruction seal parts. A meandering channel is formed on the side of the hollow body. A vertical seal portion is formed at a distance from each side edge, and two vertical seal portions extending over the supply port and the discharge port are formed in the center of the hollow body. One side-to-side overflow channel is formed between each of the two vertical seal portions, and one central overflow channel is formed between the two central vertical seal portions. The slow-flowing part is separated into two fluid passages in the central overflow passage, and the upper ends of these vertical seal portions are in the shape of weirs, and the lateral overflow passages and the central overflow passages are passed through the weirs. And the uppermost liquid storage portion of each fluid passage communicate with each other, and at the curved path position of the meandering slow-moving portion, the vertical seal portion is crossed to open in the overflow channel. Air vent holes are formed, and the outer surfaces of both wall plates are
The raised portion is formed as a spacer.

前記中空体を真空乃至ブロー成形品としあることが望ま
しい。
It is desirable that the hollow body is a vacuum or blow molded product.

特許請求の範囲第1項記載の冷却塔用合成樹脂製熱交換
体における上下隣接する水平な方向に長い邪魔シール部
間の蛇行流路の両壁は、この両壁ほゞ全面にわたり下流
側ほど上位に45度前後傾斜した平行な畝を内外に形成
した波板状としてあることもある。
In the synthetic resin heat exchanger for a cooling tower according to claim 1, both walls of the meandering flow path between the vertically long and horizontally obstructing seal portions which are vertically adjacent to each other are located on the downstream side over the entire surface of both walls. It may be in the shape of a corrugated plate in which upper and lower parallel ridges inclined at about 45 degrees are formed inside and outside.

関連発明としての冷却塔は、冷却塔本体内に配管した散
水装置から密閉式熱交換器上に冷却水を散布し、負荷部
からこの熱交換器内に供給され流れる昇温した工業用プ
ロセス流体を間接的に冷却し、自身昇温した冷却水を空
気流と直接接触し気化の潜熱で冷却し前記散水装置に供
給し循環使用すると共に所定温度に冷却した工業用プロ
セス流体を負荷部へ供給し循環使用する冷却塔であっ
て、 特許請求の範囲第1項記載の冷却塔用合成樹脂製熱交換
体を隆起部を相互嵌合乃至当接して若干の間隙を置いて
所定枚数並列配置し、隣接する熱交換体間に狭幅の空気
流通路を形成してを構成してなることを特徴とする、 前記供給口から中央溢水路の上端に向けて、窪みか形成
してあり、この窪み内に着脱自在な短管からなる継ぎ管
の上端は工業用プロセス流体供給用のパイプに連通して
あり、この継ぎ管の下端は閉じており栄前記窪み内への
挿入時にこの下端は前記窪みの底に位置し中央溢水路の
上端から若干離反し、この継ぎ管の下端寄りでこの継ぎ
管の周壁には直径方向で対を為す工業用プロセス流体分
配穴が2個穿設してあるとともに、前記継ぎ管の上端寄
りには、半径方向に張り出した陣傘状の冷却水侵入防止
を兼ねるエア抜き用帽子部が形成されていることが、前
記冷却塔における循環冷却水の分配上及びエア抜きの上
からも好適である。
The cooling tower as a related invention is an industrial process fluid that is heated from a water sprinkler installed in the cooling tower main body and sprays cooling water onto the sealed heat exchanger, and is supplied from the load section into the heat exchanger. Is indirectly cooled, and the cooling water whose temperature has risen is brought into direct contact with the air flow to be cooled by the latent heat of vaporization and supplied to the sprinkler to be circulated for use and the industrial process fluid cooled to a predetermined temperature is supplied to the load section. A cooling tower which is circulated and used, wherein a predetermined number of synthetic resin heat exchangers for cooling towers according to claim 1 are arranged in parallel with each other with a slight gap therebetween by fitting or abutting the raised portions. A narrow airflow passage is formed between the adjacent heat exchange elements, and a recess is formed from the supply port toward the upper end of the central overflow channel. The upper end of the joint pipe consisting of a detachable short pipe in the depression is for industrial use It is communicated with a pipe for supplying a process fluid, and the lower end of this joint pipe is closed, and when inserted into the recess, the lower end is located at the bottom of the recess and slightly separated from the upper end of the central overflow channel. Two industrial process fluid distribution holes, which are paired in the diameter direction, are formed in the peripheral wall of the joint pipe near the lower end thereof, and at the upper end of the joint pipe, a group of radially projecting members is formed. It is preferable that an air-bleeding cap portion that also serves as an umbrella-shaped cooling water intrusion prevention portion is formed from the viewpoint of distributing the circulating cooling water in the cooling tower and from the viewpoint of air bleeding.

前記熱交換体の吐出口には、吐出管の上端が嵌合し一体
に接着され、この吐出管の下端は、冷却塔の散布水用下
部水槽内に設置された外気開口型の循環冷却水用膨張タ
ンクに接続されこのタンクを介してこの吐出口が負荷部
に連通していることが、散布水と、循環冷却水の分離上
有利である。
An upper end of a discharge pipe is fitted and integrally bonded to a discharge port of the heat exchanger, and a lower end of the discharge pipe has an outside air opening type circulating cooling water installed in a lower water tank for spray water of a cooling tower. It is advantageous to separate the spray water and the circulating cooling water from the spray expansion tank, and the discharge port communicates with the load through the tank.

前記冷却塔はカウンターフロー式乃至クロスフロー式と
してある。
The cooling tower is of a counter flow type or a cross flow type.

(発明の作用) このように構成されている発明である前記熱交換体の作
用を冷却塔の作用を共に説明する。
(Operation of the Invention) The operation of the heat exchanger according to the present invention configured as described above will be described together with the operation of the cooling tower.

先ず、複数枚の熱交換体をケース乃至適宜の支持枠を用
いて並列配置し、前記隆起部を一種のスペーサとして、
これにより隣接する熱交換体の間に狭い幅の水平な空気
流通路を形成し、所望寸法の密閉式熱交換器を組み立て
る。
First, a plurality of heat exchange elements are arranged in parallel using a case or an appropriate support frame, and the raised portions are used as a kind of spacer,
As a result, a horizontal air passage having a narrow width is formed between the adjacent heat exchangers, and a closed heat exchanger having a desired size is assembled.

このように組み立てた熱交換器を、冷却塔本体内に配管
した散水装置の下方で冷却塔内に配列する。この状態
で、前記散水装置から密閉式熱交換器上に散布水を散布
し、負荷部からこの熱交換器内に供給され流れる昇温し
た循環冷却水を間接的に冷却し、自身昇温した散布水を
空気流と直接接触し気化の潜熱で冷却し前記散水装置に
供給し循環しようとすると共に所定温度に冷却した循環
冷却水を負荷部へ供給し循環使用する。
The heat exchanger thus assembled is arranged in the cooling tower below the sprinkler installed in the cooling tower body. In this state, sprayed water was sprayed from the water sprinkler onto the closed heat exchanger, and the heated circulating cooling water supplied from the load part into the heat exchanger was indirectly cooled to raise its own temperature. The sprayed water is brought into direct contact with the air flow to be cooled by the latent heat of vaporization to be supplied to the water spraying device for circulation, and the circulating cooling water cooled to a predetermined temperature is supplied to the load part for circulation.

この際、負荷部で温められた(30〜70℃程度)循環
する循環冷却水は供給用ヘッダーを通して前記熱交換体
内に前記供給口から供給され、好適には、前記継ぎ管に
穿設した左右2つの循環冷却水分配管を通して循環冷却
水は前記中央溢水路の真上で両側に2つの流れに分か
れ、前記2つの流体通路における最上段の液溜部分内に
噴出し分散流入していく。
At this time, the circulating cooling water circulated by the load part (about 30 to 70 ° C.) is supplied from the supply port into the heat exchange body through the supply header, and preferably the left and right holes formed in the joint pipe. The circulating cooling water is divided into two streams on both sides directly above the central overflow passage through the two circulating cooling water pipes, and is jetted and dispersed and flows into the uppermost liquid reservoir portion in the two fluid passages.

次いで流下液緩速部を2分してなる2つの流体通路内に
供給された循環冷却水は順次前記邪魔シール部間に形成
された蛇行流路中を蛇行しつつ順次流下し、前記熱交換
体の両壁板と充分に撹拌されながら接触し、単に垂直に
流下するより遥かに長時間両壁板と接触し、これら両壁
板を介して前記各空気流通路を垂直方向に流れる冷却水
により間接的に冷却される。このようにして所定温度に
冷却されて循環冷却水は前記吐出口、好適にはこの吐出
口に接続した吐出管を通して前記膨張タンク内に吐出
後、負荷部へ循環供給される。一方、空気との接触で冷
却された前記散布水は前記下部水槽から汲み上げポンプ
により前記散水装置に供給され、再使用される。
Then, the circulating cooling water supplied into the two fluid passages formed by dividing the slow-moving liquid slowing portion into two gradually flows while meandering in the meandering passage formed between the baffle seal portions, and the heat exchange is performed. Cooling water that comes into contact with both wall plates of the body while being sufficiently agitated, and comes into contact with both wall plates for a much longer time than simply flowing vertically down, and vertically flows through the air flow passages through these wall plates. Is indirectly cooled by. In this way, the circulating cooling water cooled to a predetermined temperature is discharged into the expansion tank through the discharge port, preferably a discharge pipe connected to the discharge port, and then circulated and supplied to the load section. On the other hand, the spray water cooled by contact with air is supplied from the lower water tank to the water spray device by a pump and is reused.

なお、邪魔シール部間の蛇行流路の両壁板を、この両壁
板のほゞ全面にわたり下流側ほど上位に45度前後傾斜
した平行な畝を内外に形成した波板状としてある場合に
は、この蛇行流路内を巡回する循環冷却水はこれら畝を
乗り越える度に上方に誘導されて若干盛り上がり、この
蛇行流路の各水平部分の流路の上側部まで循環冷却水は
充満乃至は少なくとも前記水平部分の内壁面の上部まで
を濡らして屈曲位置に達し、長時間にわたり両壁板のほ
ゞ全面と接触し続ける。
In addition, when both wall plates of the meandering flow path between the obstructing seal parts are formed in a corrugated plate shape in which inside and outside are parallel ridges inclined forward and backward by 45 degrees toward the downstream side over substantially the entire surface of both wall plates. The circulating cooling water circulating in the meandering channel is guided upwards and swells up a little each time it gets over these ridges, and the circulating cooling water is filled or filled up to the upper side of the channel in each horizontal part of the meandering channel. At least the upper portion of the inner wall surface of the horizontal portion is wetted to reach the bending position, and keeps contact with almost the entire surfaces of both wall plates for a long time.

この冷却塔の運転中に、前記流下液緩速部内に残留して
いるエアは前記畝により上方へ若干盛り上がる工業用プ
ロセス流体の動きに伴い、前記流下液緩速部の屈曲路上
部隅角に押しやられ、この部分に滞留しようとするが、
前記エア抜き穴を通って前記側方及び中央の溢水路内に
流入しこれら溢水路を上昇し前記供給口に至る。この供
給口に寄せ集められたエアは、前記中央溢水賂上端と継
ぎ管下端間の間隙を通り抜け、前記供給口の上端と帽子
部下縁間に成形された隙間から熱交換体外部に排気され
ると共に、前記帽子部の上面に散布された前記散布水の
一部は前記供給口を回避して熱交換体の上縁部に向けて
拡がり、前記供給口から熱交換体内に散布水が侵入しな
い。
During the operation of this cooling tower, the air remaining in the slow-flowing liquid slowly moves to the upper corner angle of the curved path of the slow-flowing liquid slowly along with the movement of the industrial process fluid that rises slightly upward due to the ridges. I was pushed and tried to stay in this part,
It flows through the air vent holes into the lateral and central overflow channels, rises in these overflow channels, and reaches the supply port. The air collected in the supply port passes through the gap between the upper end of the central overflow bottle and the lower end of the joint pipe, and is discharged to the outside of the heat exchanger through the gap formed between the upper end of the supply port and the lower edge of the cap portion. At the same time, a part of the sprayed water sprayed on the upper surface of the hat portion spreads toward the upper edge of the heat exchange body while avoiding the supply port, and the sprayed water does not enter the heat exchange body from the supply port. .

仮に循環冷却水の供給量が脈動を起したり、一時的に供
給量が増加したとき、或は流下液緩速路中に微生物など
が付着し、流下液緩速路の断面積が狭くなり、流量低下
をきたし、前記液体通路最上段における液溜部の水位が
上昇し、前記堰より高くなると、前記循環冷却水の一部
は側方又は中央の溢水路を通り直接流下し、前記熱交換
体の大気に開放している前記供給口外に溢れ出さない。
If the supply amount of circulating cooling water pulsates, or if the supply amount temporarily increases, or microorganisms adhere to the slow flowing liquid slow path, the cross sectional area of the slow flowing liquid narrows. When the flow rate decreases and the water level in the liquid reservoir in the uppermost stage of the liquid passage rises and becomes higher than the weir, a part of the circulating cooling water directly flows down through the lateral or central overflow channel, Do not overflow outside the supply port that is open to the atmosphere of the exchanger.

なお、前記冷却塔運転中、各熱交換体の前記供給口は外
気に開放してあり、自然流下式に前記冷却塔内に配設さ
れた循環冷却水は前記流下液緩速路内を蛇行しつつ流下
していく。そして、冷却塔の運転停止と同時に大気圧を
受けて前記吐出口より外部へ吐出される。
During the operation of the cooling tower, the supply port of each heat exchanger is open to the outside air, and the circulating cooling water arranged in the cooling tower in a natural flow type meanders in the slow flow-through path. While flowing down. Then, at the same time when the operation of the cooling tower is stopped, it receives atmospheric pressure and is discharged from the discharge port to the outside.

前記冷却塔の作用はクロスフロー方式及びカウンター方
式とも同様に行なわれる。
The operation of the cooling tower is the same as that of the cross flow system and the counter system.

(実施例) 次にこの熱交換体の代表的な実施例をカウンターフロー
式の冷却塔の代表的な実施例と共に説明する。
(Example) Next, a typical example of this heat exchanger will be described together with a typical example of a counterflow type cooling tower.

第1図においてAは冷却塔用合成樹脂熱交換体であり、
この熱交換体Aは全体として扁平な合成樹脂製薄肉中空
体10からなり、内部が液体流下通路11としてありそ
の中空体10の上縁12中央部には外部に開口した筒状
循環冷却水供給口13が形成されており、この中空体1
0の下縁である前記液体流下通路11の下縁中央部にも
外部に開口した筒状循環冷却水吐出口15が前記供給口
13と同一軸線上に設けてあり、この液体流下通路11
の幅の大部分は、流下液緩速部16としてあり、この流
下液緩速部16は前記中空体10の両壁板17、18を
相互に密着してなる水平方向に長い邪魔シール部19を
全面に複数段にわたり階層的に分布させて、これら邪魔
シール部19を一つ置きに位置をずらせ、前記邪魔シー
ル部19間に蛇行流路を形成して成る。
In FIG. 1, A is a synthetic resin heat exchanger for a cooling tower,
This heat exchanger A is composed of a thin synthetic resin thin hollow body 10 as a whole, and has a liquid flow-down passage 11 inside and a cylindrical circulating cooling water supply opening to the outside at the center of the upper edge 12 of the hollow body 10. The mouth 13 is formed and this hollow body 1
At the center of the lower edge of the liquid flow-down passage 11, which is the lower edge of 0, a cylindrical circulating cooling water discharge port 15 that opens to the outside is provided on the same axis as the supply port 13.
Most of the width of the falling liquid is the slow flowing liquid slowing part 16, and the slow flowing liquid slowing part 16 has a horizontally long obstruction seal portion 19 in which both wall plates 17 and 18 of the hollow body 10 are in close contact with each other. Are hierarchically distributed in a plurality of stages over the entire surface, and every other one of these baffle seal portions 19 is displaced, and a meandering flow path is formed between the baffle seal portions 19.

前記中空体10は真空乃至ブロー成形品としてある。The hollow body 10 is a vacuum or blow molded product.

この中空体10の両側縁20、21に沿い、垂直なシー
ル部22、23が一本宛各側縁20、21から間隔をお
いて形成してあり、更に前記供給口13と前記吐出口1
5とにわたり延在する2本の垂直なシール部24、25
がこの中空体10の中央部に形成してあり、この側縁2
0、21と垂直なシール部22、23間に夫れ夫れ一個
宛側方溢水路26と27が形成され、また前記中央の2
本の垂直なシール部24と25間に1個の中央溢水路2
8が形成されており、 前記流下液緩速部16は前記中央溢水路28で2つの流
体通路16a、16bに分離され、これら垂直なシール
部22、23、24、25の上端は、堰29の形状とし
てあり、この堰29を通して各側方溢水路26、27、
中央溢水路28と前記各流体通路16a、16bにおけ
る最上段部の液溜部分16cとが相互連通していると共
に、前記蛇行する流下緩速部16の屈曲路16d位置に
は前記垂直なシール部22、23、24、25を横断し
前記溢水路26、27、28内に開口するエア抜き穴3
0が形成してあり、前記両壁板17、18外面には、隆
起部31がスペーサとして成形してある。
Vertical seal portions 22 and 23 are formed along both side edges 20 and 21 of the hollow body 10 with a space from each side edge 20 and 21, and further, the supply port 13 and the discharge port 1 are provided.
Two vertical seals 24, 25 extending over
Is formed in the center of the hollow body 10, and the side edge 2
0 and 21 are respectively provided between the seal portions 22 and 23 which are perpendicular to each other, and one sideward overflow channel 26 and 27 is formed respectively.
One central overflow 2 between the vertical seals 24 and 25 of the book
8 is formed, the slow-flowing liquid slowing portion 16 is divided into two fluid passages 16a and 16b by the central overflow passage 28, and the upper ends of these vertical seal portions 22, 23, 24 and 25 are weirs 29. Through the weir 29, each lateral overflow channel 26, 27,
The central overflow passage 28 and the liquid storage portion 16c at the uppermost step of each of the fluid passages 16a, 16b are in communication with each other, and the vertical seal portion is provided at the bending passage 16d of the meandering slow-moving portion 16. Air vent hole 3 that crosses 22, 23, 24, 25 and opens into the overflow channels 26, 27, 28
0 is formed, and ridges 31 are formed as spacers on the outer surfaces of the both wall plates 17 and 18.

上下に隣接する水平な方向に長い前記邪魔シール部19
間の蛇行流路の両壁板17、18のは、この両壁板1
7、18のほゞ全面にわたり下流側ほど上位に45度前
後傾斜した平行な畝32を内外に形成した波板状として
あることもある。
The obstruction seal portion 19 that is vertically long and is long in the horizontal direction
The both side wall plates 17 and 18 of the meandering flow path between the two side wall plates 1
It may be in the shape of a corrugated plate in which parallel ridges 32 inclined forward and backward by 45 degrees are formed inward and outward over the entire surface of 7 and 18 toward the downstream side.

前記冷却塔用合成樹脂製熱交換体Aを隆起部31を相互
嵌合乃至当接して若干の間隙を置いて所定枚数並列配置
し、隣接する熱交換体A間に狭幅の空気流通路を形成し
てなる冷却塔用の密閉式熱交換器Bをカウンターフロー
式冷却塔C内に配置する。
A predetermined number of the heat exchangers A made of the synthetic resin for the cooling tower are arranged in parallel with each other by fitting or abutting the raised portions 31 with a slight gap therebetween, and a narrow air flow passage is provided between the adjacent heat exchangers A. The formed closed heat exchanger B for the cooling tower is arranged in the counterflow cooling tower C.

前記供給口13から中央溢水路28の上端に向けて、窪
み34が形成してあり、この窪み34内に着脱自在な短
管からなる継ぎ管35の上端は工業用プロセス流体供給
用のパイプ36に設けた下向きノズル37先端部を収納
する開口部38としてある。なお、このノズル37を使
用せずに、直接継ぎ管35の上端を前記パイプ36の吐
出口に接続連通する場合もある。前記継ぎ管35の下端
は閉じており、前記窪み34内への挿入時にこの下端は
窪み34の底に位置し中央溢水路28の上端から若干離
反し、この継ぎ管35の下端寄りでこの継ぎ管35の周
壁には直径方向には直径方向で対を為す工業用プロセス
流体分配穴39が2個穿設してあるとともに、前記継ぎ
管35の上端寄りには、前記供給口13上方を覆うよう
に半径方向に張り出した陣傘状の冷却水侵入防止を兼ね
るエア抜き用帽子部40が形成されている。
A recess 34 is formed from the supply port 13 toward the upper end of the central overflow passage 28, and an upper end of a connecting pipe 35 made of a detachable short pipe is provided in the recess 34 at an upper end of a pipe 36 for supplying an industrial process fluid. The opening 38 is provided to accommodate the tip of the downward nozzle 37 provided in the. The upper end of the joint pipe 35 may be directly connected to the discharge port of the pipe 36 without using the nozzle 37. The lower end of the joint pipe 35 is closed, and when inserted into the recess 34, the lower end is located at the bottom of the recess 34 and slightly separated from the upper end of the central overflow passage 28. In the peripheral wall of the pipe 35, two industrial process fluid distribution holes 39 that are paired in the diametrical direction are formed in the diametrical direction, and the upper side of the joint pipe 35 covers the upper side of the supply port 13. As described above, the air-releasing cap portion 40 that also serves as a umbrella-like protrusion of the cooling water that extends in the radial direction is formed.

42は、この密閉式熱交換器B上に冷却水を散布する散
水装置であり、冷却塔本体43内に配管されており、前
記下部水槽Dと汲み上げポンプPを介して連通してい
る。
Reference numeral 42 denotes a water sprinkling device for sprinkling cooling water on the closed heat exchanger B, which is piped in the cooling tower main body 43 and communicates with the lower water tank D via the pumping pump P.

(実施例の作用) このように構成した実施例の冷却塔C及び熱交換体Aの
作用は次ぎの通りである。
(Operation of Example) The operation of the cooling tower C and the heat exchanger A of the example configured as described above is as follows.

前記散水装置42から密閉式熱交換器B上に冷却水を散
布し、負荷部からこの熱交換器B内に供給され流れる昇
温した工業用プロセス流体を間接的に冷却し、自身昇温
した散布水を空気流と直接接触し気化の潜熱で冷却し汲
み上げポンプPにより前記散水装置42に汲み上げ供給
して循環させて使用すると共に所定温度に冷却した工業
用プロセス流体を負荷部Gへ再び供給しこれも循環させ
て使用する。
Cooling water is sprayed from the water spraying device 42 onto the closed heat exchanger B, and the heated industrial process fluid supplied from the load section into the heat exchanger B is indirectly cooled to heat itself. The sprayed water is brought into direct contact with the airflow, cooled by the latent heat of vaporization, pumped up by the pumping pump P to the sprinkler 42, used for circulation, and used again for supplying the industrial process fluid cooled to a predetermined temperature to the load part G. This is also circulated for use.

この際、負荷部Gで温められた(30〜70℃程度)循
環する前記工業用プロセス流体は供給用ヘッダーFを通
して前記熱交換体A内に前記供給口13から供給され、
前記継ぎ管35を通して工業用プロセス流体は前記中央
溢水路28の真上で両側に2つの流れに分かれ、前記2
つの流体通路16a、16bにおける最上段の液溜部分
16c内に分散流入していく。
At this time, the circulating industrial process fluid heated in the load part G (about 30 to 70 ° C.) is supplied from the supply port 13 into the heat exchanger A through the supply header F,
Through the joint pipe 35, the industrial process fluid is split into two streams on both sides just above the central overflow 28.
The two fluid passages 16a and 16b are dispersed and flown into the uppermost liquid reservoir portion 16c.

次いで流下液緩速部16を2分してなる2つの流体通路
16a、16b内に供給された工業用プロセス流体は順
次前記邪魔シール部19間に形成された蛇行流路中を蛇
行しつつ順次流下し、前記熱交換体の両壁板と充分に撹
拌されながら接触し、単に垂直に流下するより遥かに長
時間両壁板と接触し、これら両壁板16、17を介して
前記各空気流路を垂直方向に流れる散布水により間接的
に冷却される。このようにして所定温度に冷却されて工
業用プロセス流体はこの吐出口15に接続した吐出管4
4を通して前記膨張タンクE内に吐出後、負荷部Gへ循
環供給される。一方、空気との接触で冷却された前記散
布水は前記下部水槽Dより汲み上げポンプPにより前記
散水装置42へ汲み上げられ供給され再使用される。
Next, the industrial process fluid supplied into the two fluid passages 16a and 16b, which are formed by dividing the falling liquid slow-moving portion 16 into two, sequentially meander in the meandering flow passages formed between the baffle seal portions 19, and sequentially. It flows down and comes into contact with both wall plates of the heat exchanger while being sufficiently stirred, and comes into contact with both wall plates for a much longer time than simply flowing vertically, and the air flows through the both wall plates 16 and 17. It is indirectly cooled by spray water flowing vertically through the flow path. The industrial process fluid thus cooled to a predetermined temperature is connected to the discharge port 15 through the discharge pipe 4.
After being discharged into the expansion tank E through 4, it is circulated and supplied to the load part G. On the other hand, the sprayed water cooled by contact with the air is pumped from the lower water tank D by the pumping pump P to the water spraying device 42 and supplied for reuse.

なお、邪魔シール部19間の蛇行流路の両壁を、この両
壁ほゞ全面にわたり下流側ほど上位に45度前後傾斜し
た平行な畝32を内外に形成した波板状としてある場合
には、この蛇行流路内を巡回する冷却水はこれら畝32
を乗り越える度に上方に誘導されて若干盛り上がり、こ
の蛇行流路の各水平部分の流路の上側部まで冷却水は充
満乃至は少なくとも前記水平部分の内壁面の上部までを
濡らして屈曲位置に達し、長時間にわたり両壁板17、
18のほゞ全面と接触し続ける。
In the case where both walls of the meandering flow path between the baffle seal portions 19 are in the shape of a corrugated plate in which parallel ridges 32 inclined forward and backward by 45 degrees are formed inward and outward over the entire surfaces of the both walls and the entire surface. , The cooling water circulating in the meandering flow path has these ridges 32
Each time it gets over, it rises slightly and rises a little, and the cooling water fills up to the upper part of the flow path of each horizontal part of this meandering flow path or wets at least the upper part of the inner wall surface of the horizontal part and reaches the bending position. , Both wall boards 17, for a long time,
Keep in contact with the entire surface of 18

この冷却塔Cの運転中に、前記流下液緩速部16内に残
留しているエアは前記畝32により上方へ若干盛り上が
る冷却水の動きに伴い、前記流下液緩速部16の屈曲路
16d上部隅角に押しやられ、この部分に滞留しようと
するが、前記エア抜き穴30を通って前記側方及び中央
の溢水路26、27、28内に流入しこれら溢水路2
6、27、28を上昇し前記供給口13と前記帽子部4
0との間隙を通り抜け外部(大気中)へ排気される。
During the operation of the cooling tower C, the air remaining in the slow-flowing liquid slowing portion 16 is moved slightly upward by the ridges 32 as the cooling water moves upward, and the curved passage 16d of the slow-flowing liquid slowing portion 16 is moved. Although it is pushed to the upper corner and tries to stay in this portion, it flows through the air vent holes 30 into the lateral and central overflow channels 26, 27, 28, and these overflow channels 2
6, 27, 28 are raised to the supply port 13 and the cap portion 4
It passes through the gap with 0 and is exhausted to the outside (in the atmosphere).

更に、この帽子部40は前記散水装置42から前記供給
口13近傍へ散布された冷却水の一部を供給口13外方
へ飛散させ、冷却水がこの供給口13から前記工業用プ
ロセス流体と混ざりあって前記熱交換体A内に流入する
のを回避する。
Further, the cap portion 40 scatters a part of the cooling water sprinkled from the sprinkler device 42 to the vicinity of the supply port 13 to the outside of the supply port 13, and the cooling water flows from the supply port 13 to the industrial process fluid. Avoid mixing and flowing into the heat exchanger A.

仮に工業用プロセス流体の供給量が脈動を起したり、一
時的に供給量が増加したとき、或は流下液緩速路16中
に微生物などが付着し、流下液緩速路16の断面積が狭
くなり、流量低下をきたし、前記液体通路16最上段に
おける液溜部16cの水位が上昇し、前記堰29より高
くなると、前記冷却水の一部は側方又は中央の溢水路2
6、27、28を通り直接吐出口15に向い流下し、前
記熱交換体の大気に開放している前記供給口13外に溢
れ出さない。
If the industrial process fluid supply rate pulsates or the supply rate temporarily increases, or if microorganisms adhere to the downflowing fluid slow-speed passage 16, the cross-sectional area of the downflowing fluid slow-passage 16 is increased. Becomes smaller, the flow rate decreases, the water level in the liquid reservoir 16c at the uppermost stage of the liquid passage 16 rises, and becomes higher than the weir 29. As a result, a part of the cooling water flows into the lateral or central overflow channel 2
It does not flow out of the supply port 13 which is open to the atmosphere of the heat exchange body through the flow through 6, 27 and 28 directly toward the discharge port 15.

なお、前記冷却塔C運転中、各熱交換体Aの前記供給口
13は外気に開放してあり、自然流下式に前記冷却塔C
内の循環冷却水は前記流下液緩速路内を蛇行しつつ流下
していく。そして、この冷却塔Cの運転停止と同時に大
気圧を受けて前記吐出口15より外部へ吐出される。
In addition, during the operation of the cooling tower C, the supply port 13 of each heat exchanger A is open to the outside air, and the cooling tower C is naturally flow-down type.
The circulating cooling water therein flows down while meandering in the slow-flowing liquid passage. Then, at the same time when the operation of the cooling tower C is stopped, the cooling tower C receives atmospheric pressure and is discharged from the discharge port 15 to the outside.

(その他の実施例) 冷却塔をクロスフロー式冷却塔C1とし、この冷却塔C1
の外気取入口50に対面して前記密閉式熱交換器Bを配
置する(第5図参照)。
(Other Examples) The cooling tower is a cross-flow type cooling tower C 1, and this cooling tower C 1
The sealed heat exchanger B is arranged so as to face the outside air intake 50 (see FIG. 5).

このクロスフロー式冷却塔C1においては、前記冷却塔
1の外気取入口50に対面して前記密閉式熱交換器B
を配置してある場合には、外気取入口50から取り入れ
た空気流は前記熱交換体群Aの空気流通路内に水平方向
から流入する。
In this cross flow type cooling tower C 1 , the closed heat exchanger B is faced to the outside air intake 50 of the cooling tower C 1.
, The airflow taken in from the outside air inlet 50 flows into the airflow passage of the heat exchanger group A from the horizontal direction.

一方、この熱交換体Aの屈曲した流下液緩速部16を蛇
行して流下してくる工業用プロセス流体はその流下中に
前記空気通路内を流下中の前記散布水により間接的に冷
却される。このような冷却で自身昇温した冷却水はこの
通路内を水平に流れる前記空気流と直接接触し、気化の
潜熱で冷却され、一方昇温した空気は排気口から冷却塔
1外に排気する。
On the other hand, the industrial process fluid meandering down the bent downflow slow-moving portion 16 of the heat exchanger A is indirectly cooled by the sprayed water flowing down the air passage during the flow. It The cooling water whose temperature has risen by such cooling comes into direct contact with the air flow horizontally flowing in this passage and is cooled by the latent heat of vaporization, while the heated air is exhausted from the exhaust port to the outside of the cooling tower C 1. To do.

(発明の効果) 叙上のように構成し作用を為すこの特定発明の熱交換体
においては、全体として扁平な合成樹脂製薄肉中空体で
あり、内部が液体流下通路としてありその中空体の上縁
中央部には外部に開口した筒状循環循環冷却水供給口が
形成されており、その中空体の下縁である前記液体流下
通路の下縁中央部にも外部に開口した筒状循環冷却水吐
出口が前記供給口と同一軸線上に設けてあり、この液体
流下通路の幅の大部分は流下液緩速部としてあり、この
流下液緩速部は前記中空体の両壁板を相互に密着してな
る水平方向に長い邪魔シール部を全面に複数段にわたり
階層的に分布させて、これら邪魔シール部を一つ置きに
位置をずらせ、前記邪魔シール部間に蛇行流路を形成し
て成り この中空体の両側縁に沿い、垂直なシール部が一本宛各
側縁から間隔をおいて形成してあり、更に前記供給口と
前記吐出口とにわたり延在する2本の垂直なシール部が
この中空体の中央部に形成してあり、この側縁と垂直な
シール部間に夫れ夫れ一個宛側方溢水路が形成され、ま
た前記中央の2本の垂直なシール部間に1個の中央溢水
路が形成されており、 前記流下液緩速部は前記中央溢水路で2つの流体通路に
分離され、これら垂直なシール部の上端は、堰の形状と
してあり、この堰を通して各側方溢水路、中央溢水路と
前記各流体通路における最上段部の液溜部分とが相互連
通しているため、広い面積の流下液緩速部であっても、
これを左右22分して2つの流体通路に中央の供給口よ
り循環冷却水を分流できるため、長尺で大寸法の熱交換
体であって、短時間に能率良く大容量の循環冷却水を熱
交換体外へ溢水することなく分配でき、広い面積で能率
良く空気流との間で循環冷却水を接触させ、冷却できる
とともに、熱交換体の熱交換面積を大きくとれるため、
冷却塔に充填する熱交換体の枚数が少なくとも従来と同
様の熱交換率を発揮することが出来る。
(Effects of the Invention) In the heat exchange element of this specific invention configured and acting as described above, it is a thin synthetic resin thin hollow body as a whole, and the inside is a liquid flow-down passage and the hollow body is above the hollow body. A cylindrical circulation cooling water supply port that is open to the outside is formed in the center of the rim, and a cylindrical circulation cooling that is also open to the outside is formed in the center of the lower edge of the liquid flow passage that is the lower edge of the hollow body. The water discharge port is provided on the same axis as the supply port, and most of the width of the liquid flow-down passage is a slow-flowing liquid slowing part, and the slow-flowing liquid slowing part connects both wall plates of the hollow body to each other. Horizontally long obstruction seal parts that are in close contact with each other are hierarchically distributed over the entire surface in multiple stages, and these obstruction seal parts are displaced every other position to form a meandering flow path between the obstruction seal parts. The vertical seals along the edges of the hollow body are Two vertical seal portions, which are formed at a distance from each side edge and extend over the supply port and the discharge port, are formed in the central portion of the hollow body. One side-to-side overflow channel is formed between each of the two vertical seal sections, and one central overflow channel is formed between the two vertical seal sections at the center. The velocities are separated into two fluid passages in the central overflow channel, and the upper ends of these vertical seals are in the shape of weirs, through which the lateral overflow channels, the central overflow channel, and the maximum in each of the fluid channels. Since the upper-stage liquid reservoir is in communication with each other, even if the flowing-down liquid slow speed part has a large area,
This is divided into 22 parts on the left and right, and the circulating cooling water can be split into the two fluid passages from the central supply port. Since it can be distributed without overflowing to the outside of the heat exchanging body, the circulating cooling water can be efficiently brought into contact with the air flow over a wide area, and the heat exchanging area of the heat exchanging body can be made large.
The number of heat exchangers packed in the cooling tower can exhibit at least the same heat exchange rate as the conventional one.

また、熱交換を行なう主要部分たる流下液緩速部におい
て、仮に一部目詰り乃至流量制限があり、一時的に循環
冷却水の流量が変化し、液溜部の水位が上昇しても、堰
を超えて溢水路を通って下方に循環冷却水が吐出するた
め、通過水量自体を制限するおそれがない。
In the slow-flowing liquid slow portion, which is the main part of heat exchange, if there is some clogging or flow rate restriction, the flow rate of the circulating cooling water changes temporarily, and the water level in the liquid reservoir rises, Since the circulating cooling water is discharged downward beyond the weir through the overflow channel, there is no risk of limiting the amount of passing water itself.

更に、この冷却塔運転開始時に前記流下液緩速部内に残
留しているエアは循環冷却水により前記流下液緩速部の
屈曲路上部に押しやられ、前記エア抜き穴を通って前記
溢水路内に流入しこの溢水路を上昇して前記供給部から
外部へ吐き出されるため、エアはこの流下液緩速部内に
殆ど残留せず、熱交換に支障を来さない。好適には、前
記継ぎ管の下端と中央溢水路上端間の間隙を通り抜けた
エアは、前記供給口と前記継ぎ間の帽子部下縁間の隙間
から、大気中に放出できる。
Further, at the start of the cooling tower operation, the air remaining in the slow-flowing liquid slow portion is urged by the circulating cooling water to the upper part of the curved path of the slow-flowing liquid slowing portion, and passes through the air vent hole to enter the overflow channel. Since the air flows into the spillway and rises in the overflow channel and is discharged to the outside from the supply section, the air hardly remains in the slow-downflowing section, and heat exchange is not hindered. Preferably, the air that has passed through the gap between the lower end of the joint pipe and the upper end of the central overflow channel can be discharged into the atmosphere from the gap between the lower end of the cap portion between the supply port and the joint.

更に、前記邪魔シール部間の蛇行流路の両壁を、この両
壁板ほゞ全面にわたり下流側ほど上位に45度前後傾斜
した平行な畝を内外に形成した波板状としてある冷却塔
用合成樹脂製熱交換体においては、前記特定発明の効果
に加えて、この蛇行流路内を巡回する循環冷却水をこれ
ら畝を乗り越える度に上方に誘導されて若干盛り上が
る。
Further, for both walls of the meandering flow path between the baffle seals, a corrugated plate is formed in which inside and outside are parallel ridges inclined forward and backward by 45 degrees toward the downstream side over the entire surface of both side wall plates. In the heat exchanger made of synthetic resin, in addition to the effect of the specific invention, the circulating cooling water circulating in the meandering flow path is guided upward every time it gets over these ridges, and rises slightly.

この場合に、各水平流路部分の上側にエアが残留してい
たとしても、この盛り上がる循環冷却水によって、エア
は前述のエア抜き穴から押し出されるため、内部の残留
エアが各水平流路部における水位の上昇を阻害すること
がない。
In this case, even if air remains on the upper side of each horizontal flow path portion, this rising circulating cooling water pushes the air out of the air vent hole, so that the residual air inside the horizontal flow path portion It does not hinder the rise of water level in.

また蛇行流路の各水平部分の流路の上側部まで循環冷却
水は上昇してこれら各水平部分に充満乃至は少なくとも
前記水平部分の内壁面の上部までも漏らし屈曲位置に到
達させるため、前記傾斜させた畝のない場合よりも、循
環冷却水が蛇行流路を通過する時間が長くなり、かつ両
壁板と循環冷却水とが接触する表面積が広くなるため、
散布水と循環冷却水との間接的な熱交換率を上げること
が出来る。
Further, the circulating cooling water rises to the upper side of the flow path of each horizontal part of the meandering flow path and fills each horizontal part or at least the upper part of the inner wall surface of the horizontal part to reach the bending position. Compared to the case without inclined ridges, the circulation cooling water takes a longer time to pass through the meandering flow path, and the surface area of contact between both wall plates and the circulation cooling water becomes wider,
The indirect heat exchange rate between the spray water and the circulating cooling water can be increased.

前記冷却塔においては、前記流下液緩速路の一部目詰ま
りが発生しても、堰を超えて溢水路を通過して下部開口
部から循環冷却水が吐出する為、循環冷却水が前記供給
部から溢れること無くこの供給量は激減せず、この熱交
換体での循環冷却水空気と冷却水との間での密閉式の熱
交換量が少なくならない。
In the cooling tower, even if a part of the slow-flowing liquid is clogged, the circulating cooling water is discharged from the lower opening through the overflow passage beyond the weir, so that the circulating cooling water is This supply amount does not drastically decrease without overflowing from the supply unit, and the sealed heat exchange amount between the circulating cooling water air and the cooling water in the heat exchanger does not decrease.

前記中空体を真空乃至ブロー成形品とすれば、この熱交
換体の製造が容易で安価となる。
If the hollow body is formed into a vacuum or blow-molded product, the heat exchange body can be manufactured easily and at low cost.

前記供給口から中央溢水路の上端に向けて、窪みか形成
してあり、この窪み内に着脱自在な短管からなる継ぎ管
の上端は循環冷却水供給用のパイプに連通してあり、こ
の継ぎ管の下端は閉じており、前記窪み内への挿入時に
この下端は前記窪みの底に位置し中央溢水路の上端から
若干離反し、この継ぎ管の下端寄りでこの継ぎ管の周壁
には直径方向で対を為す循環冷却水分配穴が2個穿設し
てあるとともに、前記継ぎ管の上端寄りには、半径方向
に張り出した陣傘状の冷却水侵入防止を兼ねるエア抜き
用帽子部が形成されていることを特徴とする冷却塔の場
合には、前記閉じた短管下端により、中央溢水賂内に供
給口から直接循環冷却水が多量に流入するのを未然に防
止できると共に、前記2つ流体通路への工業用プロセス
流体の分配をスムーズに行うことが出来る。と同時に、
前記中央溢水路上端と継ぎ管下端間の間隙を通り抜けた
エアは前記供給口の上端と帽子部下縁間に成形された隙
間から外部に排気できると共に、前記帽子部の上面に散
布された前記散布水の一部は前記供給口を回避して熱交
換体の上縁部に向けて拡がり、この前記供給口から熱交
換体内に散布水が侵入するのを防止しできる。
A recess is formed from the supply port toward the upper end of the central overflow channel, and the upper end of a connecting pipe made of a detachable short pipe is connected to a circulating cooling water supply pipe in the recess. The lower end of the joint pipe is closed, and when inserted into the recess, the lower end is located at the bottom of the recess and slightly separated from the upper end of the central overflow channel, and the peripheral wall of the joint pipe is close to the lower end of the joint pipe. Two circulating cooling water distribution holes forming a pair in the diametrical direction are bored, and a cap-like cap portion for preventing the intrusion of cooling water in the form of a umbrella extending radially toward the upper end of the joint pipe. In the case of a cooling tower characterized by being formed, by the closed short pipe lower end, it is possible to prevent a large amount of circulating cooling water from directly flowing from the supply port into the central overflow ledge, and Smooth distribution of industrial process fluid to the two fluid passages It can be carried out in the figure. At the same time
The air that has passed through the gap between the upper end of the central overflow channel and the lower end of the connecting pipe can be discharged to the outside from the gap formed between the upper end of the supply port and the lower edge of the cap portion, and the sprayed on the upper surface of the cap portion. A part of the water spreads toward the upper edge of the heat exchange body while avoiding the supply port, and it is possible to prevent the sprayed water from entering the heat exchange body through the supply port.

次に、前記熱交換体の吐出口には、吐出管の上端が嵌合
し一体に接着され、この吐出管の下端は、冷却塔の散布
水用下部水槽内に設置された外気開口型の循環冷却水用
膨張タンクに接続されこのタンクを介してこの吐出口が
負荷部に連通していることを特徴とする冷却塔の場合に
は、散布水と循環冷却水とを相互に分離し、混合せずに
循環使用出来る。
Next, an upper end of a discharge pipe is fitted and integrally bonded to a discharge port of the heat exchanger, and a lower end of the discharge pipe is an outside air opening type installed in a lower water tank for spray water of a cooling tower. In the case of a cooling tower characterized in that it is connected to an expansion tank for circulating cooling water and this discharge port communicates with the load section through this tank, spray water and circulating cooling water are separated from each other, Can be recycled without mixing.

前記各冷却塔の効果はカウンターフロー式冷却塔は勿
論、クロスフロー式冷却塔においても奏することができ
る。
The effect of each cooling tower can be exerted not only in the counterflow type cooling tower but also in the crossflow type cooling tower.

(実施例の効果) 前記のように構成し作用する各実施例は、前記各発明の
効果を奏することは勿論であり、更に前記継ぎ管35の
上端を前記パイプ36の吐出口に直接接続連通する場合
には、前記ノズル37の配管作業が省略出来、冷却塔全
体としての構造を簡略化出来る。
(Effects of Embodiments) Of course, the embodiments configured and operated as described above exhibit the effects of the above-described inventions, and further, the upper end of the joint pipe 35 is directly connected to the discharge port of the pipe 36 for communication. In this case, piping work for the nozzle 37 can be omitted, and the structure of the cooling tower as a whole can be simplified.

【図面の簡単な説明】[Brief description of drawings]

図はこの発明に関するもので、第1図はこの熱交換体の
代表的な実施例を示す正面図、第2図は第1実施例のカ
ウンタフロー式冷却塔の概略図、第3図はその供給口部
分の拡大縦断面図、第4図はその吐出口部分の拡大縦断
面図、第5図はその他の実施例のクロスフロー式冷却塔
の概略図、第6図は第1図の6−6線に沿う横断面図、
及び第7図は第1図の7−7線に沿う横断面図である。 図中の主な符号 26、27……側方溢水路、 28……中央溢水路。
FIG. 1 relates to the present invention. FIG. 1 is a front view showing a typical embodiment of this heat exchanger, FIG. 2 is a schematic view of a counterflow type cooling tower of the first embodiment, and FIG. FIG. 4 is an enlarged vertical sectional view of a supply port portion, FIG. 4 is an enlarged vertical sectional view of a discharge port portion thereof, FIG. 5 is a schematic diagram of a cross-flow type cooling tower of another embodiment, and FIG. 6 is 6 of FIG. A cross-sectional view along line -6,
7 and FIG. 7 are transverse sectional views taken along line 7-7 of FIG. Main signs in the figure 26, 27 ... Side overflow channel, 28 ... Central overflow channel.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】全体として扁平な合成樹脂製薄肉中空体で
あり、内部が液体流下通路としてありその中空体の上縁
中央部には外部に開口した筒状循環冷却水供給口が形成
されており、その中空体の下縁である前記液体流下通路
の下縁中央部にも外部に開口した筒状循環冷却水吐出口
が前記供給口と同一軸線上に設けてあり、前記液体流下
通路の幅の大部分は、流下液緩速部としてあり、この流
下液緩速部は前記中空体の両壁板を相互に密着してなる
水平方向に長い邪魔シール部を全面に複数段にわたり階
層的に分布させて、これら邪魔シール部を一つ置きに位
置をずらせ、前記邪魔シール部間に蛇行流路を形成して
成り この中空体の両側縁に沿い、垂直なシール部が一本宛各
側縁から間隔をおいて形成してあり、更に前記供給口と
前記吐出口とにわたり延在する2本の垂直なシール部が
この中空体の中央部に形成してあり、この側縁と垂直な
シール部間に夫れ夫れ一個宛側方溢水路が形成され、ま
た前記中央の2本の垂直なシール部間に1個の中央溢水
路が形成されており、 前記流下液緩速部は前記中央溢水路で2つの流体通路に
分離され、これら垂直なシール部の上端は、堰の形状と
してあり、この堰を通して各側方溢水路、中央溢水路と
前記各流体通路における最上段部の液溜部分とが相互連
通していると共に、前記蛇行する流下緩速部の屈曲路位
置には前記垂直なシール部を横断し前記溢水路内に開口
するエア抜き穴が形成してあり、前記両壁板外面には、
隆起部がスペーサとして成形してあることを特徴とする
冷却塔用合成樹脂製熱交換体。
1. A thin hollow body made of synthetic resin, which is flat as a whole, has a liquid flow-down passage inside, and a cylindrical circulating cooling water supply port opening to the outside is formed at the center of the upper edge of the hollow body. A cylindrical circulating cooling water discharge port that opens to the outside is also provided in the center of the lower edge of the liquid flow passage that is the lower edge of the hollow body on the same axis as the supply port. Most of the width is a slow-flowing liquid slowing part, and the slow-flowing liquid slowing part is hierarchically spread over a plurality of stages with a horizontally long obstructing seal part formed by closely adhering both wall plates of the hollow body to each other. Distributed along the opposite sides of the hollow body, and each one of these baffle seals is displaced to form a meandering flow path between the baffle seals. It is formed at a distance from the side edge, and further has the supply port and the discharge port. Two vertical seal portions extending over the hollow body are formed in the central portion of the hollow body, and one lateral overflow channel is formed between the side edge and the vertical seal portion. One central overflow channel is formed between the two vertical vertical seal sections, and the spilling liquid slowing section is divided into two fluid channels by the central overflow channel, and the upper ends of these vertical seal sections are separated. Is in the shape of a weir, through which each lateral overflow channel, central overflow channel and the uppermost liquid reservoir of each fluid passage communicate with each other, and the meandering slow-moving portion An air bleeding hole is formed at the bent road position so as to cross the vertical seal portion and open into the overflow channel.
A heat exchanger made of synthetic resin for a cooling tower, characterized in that a raised portion is formed as a spacer.
【請求項2】前記中空体を真空乃至ブロー成形品としあ
る特許請求の範囲第1項記載の冷却塔用合成樹脂製熱交
換体。
2. The heat exchange element made of synthetic resin for a cooling tower according to claim 1, wherein the hollow body is a vacuum or blow molded product.
【請求項3】特許請求の範囲第1項記載の冷却塔用合成
樹脂製熱交換体における上下隣接する水平な方向に長い
邪魔シール部間の蛇行流路の両壁板は、この両壁板のほ
ゞ全面にわたり下流側ほど上位に45度前後傾斜した平
行な畝を内外に形成した波板状としてあることを特徴と
する冷却塔用合成樹脂製熱交換体。
3. The both wall plates of the meandering flow path between the vertically long adjacent horizontal obstruction seal parts in the synthetic resin heat exchange element for a cooling tower according to claim 1, A heat exchanger made of synthetic resin for a cooling tower, characterized in that it has a corrugated plate shape in which parallel ridges inclined 45 degrees forward and backward are formed inward and outward over the entire surface of Noho.
【請求項4】冷却塔本体内に配管した散水装置から密閉
式熱交換器上に散布水を散布し、負荷部からこの熱交換
器内に供給され流れる昇温した循環冷却水を間接的に冷
却し、自身昇温した散布水を空気流と直接接触し気化の
潜熱で冷却し前記散水装置に供給し循環使用すると共に
所定温度に冷却した循環冷却水を負荷部へ供給し循環使
用する冷却塔において、 特許請求の範囲第1項記載の冷却塔用合成樹脂製熱交換
体を隆起部を相互嵌合乃至当接して若干の間隙を置いて
所定枚数並列配置し、隣接する熱交換体間に狭幅の空気
流通路を形成して構成してなることを特徴とする冷却
塔、
4. The spray water is sprayed from a sprinkler installed in the cooling tower main body onto the closed heat exchanger, and the heated circulating cooling water supplied from the load part into the heat exchanger is indirectly supplied. Cooling, the sprayed water that has risen in temperature is directly contacted with the air flow, cooled by latent heat of vaporization, supplied to the water spraying device and circulated for use, and the circulating cooling water cooled to a predetermined temperature is supplied to the load part for circulation and use In the tower, a predetermined number of synthetic resin heat exchange elements for a cooling tower according to claim 1 are arranged in parallel with a slight gap therebetween by fitting or abutting raised portions with each other, and between adjacent heat exchange elements. A cooling tower, characterized in that a narrow airflow passage is formed in
【請求項5】前記供給口から中央溢水路の上端に向け
て、窪みが形成してあり、この窪み内に着脱自在な短管
からなる継ぎ管の上端は循環冷却水供給用のパイプに連
通してあり、この継ぎ管の下端は閉じており、前記窪み
内への挿入時にこの下端は前記窪みの底に位置し中央溢
水路の上端から若干離反し、この継ぎ管の下端寄りでこ
の継ぎ管の周壁には直径方向で対を為す循環冷却水分配
穴が2個穿設してあるとともに、前記継ぎ管の上端寄り
には、半径方向に張り出した陣傘状の冷却水侵入防止を
兼ねるエア抜き用帽子部が形成されていることを特徴と
する特許請求の範囲第4項記載の冷却塔。
5. A recess is formed from the supply port toward the upper end of the central overflow channel, and the upper end of a connecting pipe consisting of a detachable short pipe communicates with a pipe for supplying circulating cooling water in the recess. The lower end of this joint pipe is closed, and when it is inserted into the recess, the lower end is located at the bottom of the recess and slightly separated from the upper end of the central overflow channel. Circular cooling water distribution holes forming a pair in the diameter direction are formed in the peripheral wall of the pipe, and the pipe-like cooling water that protrudes in the radial direction is also provided near the upper end of the joint pipe to prevent the entry of cooling water. The cooling tower according to claim 4, wherein an air-releasing cap portion is formed.
【請求項6】前記熱交換体の吐出口には、吐出管の上端
が嵌合し一体に接着され、この吐出管の下端は、冷却塔
の散布水用下部水槽内に設置された外気開口型の循環冷
却水用膨張タンクに接続されこのタンクを介してこの吐
出口が負荷部に連通していることを特徴とする特許請求
の範囲第4項記載の冷却塔。
6. An upper end of a discharge pipe is fitted and integrally bonded to a discharge port of the heat exchange element, and a lower end of the discharge pipe is an outside air opening installed in a lower water tank for sprayed water of a cooling tower. 5. The cooling tower according to claim 4, wherein the cooling tower is connected to an expansion tank for circulating cooling water of a mold, and the discharge port communicates with the load section through this tank.
【請求項7】前記冷却塔はカウンターフロー式としてあ
る特許請求の範囲第4項、第5項又は第6項記載の冷却
塔。
7. The cooling tower according to claim 4, 5, or 6, wherein the cooling tower is of a counter flow type.
【請求項8】前記冷却塔はクロスフロー式としてある特
許請求の範囲第4項、第5項又は第6項記載の冷却塔。
8. The cooling tower according to claim 4, 5, or 6, wherein the cooling tower is of a cross flow type.
JP13909188A 1988-06-06 1988-06-06 Cooling tower using synthetic resin heat exchanger for cooling tower and closed heat exchanger composed of this heat exchanger Expired - Fee Related JPH0633963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13909188A JPH0633963B2 (en) 1988-06-06 1988-06-06 Cooling tower using synthetic resin heat exchanger for cooling tower and closed heat exchanger composed of this heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13909188A JPH0633963B2 (en) 1988-06-06 1988-06-06 Cooling tower using synthetic resin heat exchanger for cooling tower and closed heat exchanger composed of this heat exchanger

Publications (2)

Publication Number Publication Date
JPH01310294A JPH01310294A (en) 1989-12-14
JPH0633963B2 true JPH0633963B2 (en) 1994-05-02

Family

ID=15237279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13909188A Expired - Fee Related JPH0633963B2 (en) 1988-06-06 1988-06-06 Cooling tower using synthetic resin heat exchanger for cooling tower and closed heat exchanger composed of this heat exchanger

Country Status (1)

Country Link
JP (1) JPH0633963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201308439D0 (en) 2013-05-10 2013-06-19 Applied Design & Eng Ltd Shelves for open-fronted display units

Also Published As

Publication number Publication date
JPH01310294A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
US4252752A (en) Heat exchange unit in particular for an atmospheric heat exchanger
US5514325A (en) Process for cooling and calibrating elongated objects made of plastic together with cooling and calibrating device
CN105258549B (en) A kind of water circulation evaporation and heat-exchange cooling condenser
KR940010980B1 (en) Cross flow cooling tower
US5431858A (en) Energy conserving fluid flow distribution system with internal strainer aNd method of use for promoting uniform water distribution
JPH0633963B2 (en) Cooling tower using synthetic resin heat exchanger for cooling tower and closed heat exchanger composed of this heat exchanger
JP2750376B2 (en) cooling tower
CN206410556U (en) Mixed flow open cooling tower
JP2660209B2 (en) Crossflow cooling tower with white smoke prevention function
JP3944974B2 (en) Water tower
JPS6178425A (en) Cooling and carbonic acid adding container
JP2579527B2 (en) Countercurrent cooling tower to prevent white smoke
JP2794027B2 (en) cooling tower
JP2579515B2 (en) Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger
JP2617756B2 (en) Crossflow cooling tower with white smoke prevention function
JPH0449492Y2 (en)
JP2512323Y2 (en) Cross flow type cooling tower
JPH05240596A (en) Synthetic resin heat exchanging module for cooling tower and cross-flow type cooling tower using said heat exchanging module
JPH08626Y2 (en) Cross flow type cooling tower
JPH0391693A (en) Cross flow type cooling tower with white smoke preventive function
JP2794026B2 (en) Indirect heat exchanger
JPH0449491Y2 (en)
JP2533556Y2 (en) Square countercurrent cooling tower
JP2740807B2 (en) Manufacturing method of indirect heat exchanger
JP2813922B2 (en) Crossflow cooling tower

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees