JPH06338605A - Solid-state image pick-up device and manufacture thereof - Google Patents

Solid-state image pick-up device and manufacture thereof

Info

Publication number
JPH06338605A
JPH06338605A JP5128874A JP12887493A JPH06338605A JP H06338605 A JPH06338605 A JP H06338605A JP 5128874 A JP5128874 A JP 5128874A JP 12887493 A JP12887493 A JP 12887493A JP H06338605 A JPH06338605 A JP H06338605A
Authority
JP
Japan
Prior art keywords
substrate
photodiode
type
peripheral circuit
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5128874A
Other languages
Japanese (ja)
Inventor
Takuya Umeda
卓也 梅田
Hiroyuki Okada
裕幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP5128874A priority Critical patent/JPH06338605A/en
Publication of JPH06338605A publication Critical patent/JPH06338605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To realize the wide band spectral characteristics of photodiode and high precision threshold value controllability of peripheral circuit MOSFET. CONSTITUTION:A p-type implanted layer is formed on the substrate deep part on the whole surface of a picture element part A and peripheral circuit part B by accelerated ion implantation furthermore, a shallow p-type implanted layer is formed on the substrate surface on the whole surface of the picture element part A and the peripheral circuit part B by ion implantation, layer, the p-type implanted layer is diffused at the heat-treatment temperature of 900 deg.-1100 deg.C so that the dual structured p-type wells comprising the p-type well 1 on the substrate surface and the other p-type well 2 on the substrate deep part may be formed. Thus, an n-type impurity region 4 of photodiode is deeply formed so as to intrude into a p-type well 2 in the substrate deep part realizing the wide band spectral characteristics of photodiode furthermore enabling the threshold value of MOSFET in the peripheral circuit part B to be independently controlled also realizing the high precision threshold value controllability of the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、CCD固体撮像装置
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CCD solid-state image pickup device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、ビデオカメラの小型化、高解像度
化に伴い、CCD固体撮像素子の微細化が必要となって
いる。このため、高加速イオン注入、低温熱処理により
不純物領域を形成する方法が有力になっている。この技
術を用いれば、それぞれ、n型不純物領域、p型不純物
領域からの不純物種の拡散を抑制することができ、より
微小な領域に目的の不純物領域を形成することが可能と
なる。また、低温化により、電気炉体からの重金属汚染
も低減でき、高いS/N比のCCD固体撮像素子が可能
となる。従来の技術でも、この方法を採用し、CCD固
体撮像素子のp型ウェルを高加速イオン注入、低温ドラ
イブインで基板深部に形成している。
2. Description of the Related Art In recent years, miniaturization of CCD solid-state image pickup devices has become necessary as video cameras become smaller and have higher resolution. Therefore, a method of forming an impurity region by high-acceleration ion implantation and low-temperature heat treatment has become effective. By using this technique, it is possible to suppress the diffusion of the impurity species from the n-type impurity region and the p-type impurity region, respectively, and it is possible to form the target impurity region in a finer region. Further, by lowering the temperature, contamination of heavy metals from the electric furnace body can be reduced, and a CCD solid-state imaging device with a high S / N ratio can be realized. Also in the conventional technique, this method is adopted, and the p-type well of the CCD solid-state imaging device is formed in the deep portion of the substrate by high-acceleration ion implantation and low-temperature drive-in.

【0003】以下、従来技術の固体撮像素子の構造につ
いて、図5および図6を参照しながら説明する。図5は
従来技術におけるCCD固体撮像装置の断面構造図、図
6は従来技術においてフォトダイオードの分光特性を広
帯域化するためにp型ウェルを基板深部に形成した場合
の周辺回路MOSFETチャネル部断面の不純物分布の
シミュレーション結果を示す図である。
The structure of a conventional solid-state image pickup device will be described below with reference to FIGS. 5 and 6. FIG. 5 is a cross-sectional structural view of a CCD solid-state image pickup device in the prior art, and FIG. 6 is a cross-sectional view of a peripheral circuit MOSFET channel part when a p-type well is formed in a deep portion of a substrate to broaden the spectral characteristics of a photodiode in the prior art. It is a figure which shows the simulation result of an impurity distribution.

【0004】図5において、3はn型シリコン基板、4
は高加速イオン注入法により基板深部まで到達するよう
に形成された信号電荷を蓄積するフォトダイオードのn
型不純物領域、5はフォトダイオードに蓄積された信号
電荷が基板表面で再結合により消滅するのを防ぐp型不
純物領域、6は周辺回路部MOSFETのソース・ドレ
イン、8は分離領域となるp型不純物領域、9はCCD
チャネル部のp型ウェル、10はCCDチャネル部のn
型ウェルである。
In FIG. 5, 3 is an n-type silicon substrate, 4
Is the n of the photodiode that accumulates the signal charge formed to reach the deep portion of the substrate by the high-acceleration ion implantation method.
P-type impurity region, 5 is a p-type impurity region for preventing the signal charges accumulated in the photodiode from disappearing due to recombination on the substrate surface, 6 is a source / drain of the peripheral circuit MOSFET, and 8 is a p-type serving as an isolation region. Impurity region, 9 is CCD
P-type well of the channel part, 10 is n of the CCD channel part
Type well.

【0005】11は第1ゲート酸化膜、12は画素部A
の固体撮像素子の転送ゲート、13は周辺回路部BのM
OSFETのゲート、14は第2ゲート酸化膜、15は
固体撮像素子のアルミ遮光部、16はアルミ配線、17
は保護膜、26は画素部Aおよび周辺回路部Bの全面の
基板深部に高加速イオン注入および低温熱処理により形
成されるp型ウェル、27は周辺回路部BのMOSFE
Tのチャネル部である。
Reference numeral 11 is a first gate oxide film, and 12 is a pixel portion A.
Transfer gate of the solid-state image sensor of the
The gate of the OSFET, 14 is the second gate oxide film, 15 is the aluminum light-shielding portion of the solid-state image sensor, 16 is aluminum wiring, 17
Is a protective film, 26 is a p-type well formed by high-acceleration ion implantation and low-temperature heat treatment in the deep part of the substrate over the entire surface of the pixel portion A and the peripheral circuit portion B, and 27 is a MOSFE of the peripheral circuit portion B.
It is a channel part of T.

【0006】固体撮像素子において、画素部A上面より
入射した光子がアルミ遮光部15のない領域からn型シ
リコン基板3に入り、フォトダイオードのn型不純物領
域4の内部付近で光電変換により光電子に変換されフォ
トダイオードのn型不純物領域4に形成されるポテンシ
ャルの井戸内に蓄積される。この蓄積された電荷をCC
Dチャネル部のn型ウェル10を通して取り出すことに
より画像認識が行われる。このため、上記フォトダイオ
ードのn型不純物領域4が基板表面近くまで到達する構
造であれば青色感度が向上し、基板深部にまで到達する
構造であれば赤色感度が向上する。
In the solid-state image pickup device, photons incident from the upper surface of the pixel portion A enter the n-type silicon substrate 3 from a region without the aluminum light-shielding portion 15, and are converted into photoelectrons by photoelectric conversion near the inside of the n-type impurity region 4 of the photodiode. It is converted and accumulated in a potential well formed in the n-type impurity region 4 of the photodiode. CC this accumulated charge
Image recognition is performed by taking out through the n-type well 10 of the D channel portion. Therefore, blue sensitivity is improved if the n-type impurity region 4 of the photodiode reaches the vicinity of the substrate surface, and red sensitivity is improved if the structure reaches the deep portion of the substrate.

【0007】従来の技術においては、電気炉体からの重
金属汚染を防ぎ、各拡散層からの過度の拡散による不純
物分布のボヤケを防ぎ微細化を可能にするため、プロセ
ス全般を低温化している。そのため、フォトダイオード
のn型不純物領域4の拡散が抑えられるので、従来技術
の固体撮像装置では、上記フォトダイオードのn型不純
物領域4を形成するためのリン注入の加速エネルギーを
500KeV以上、p型ウェル26を形成するためのボ
ロン注入の加速エネルギーを1MeV以上と高加速化し
ている。
In the prior art, the temperature of the entire process is lowered in order to prevent heavy metal contamination from the electric furnace body and prevent blurring of the impurity distribution due to excessive diffusion from each diffusion layer to enable miniaturization. Therefore, since diffusion of the n-type impurity region 4 of the photodiode is suppressed, in the conventional solid-state imaging device, the acceleration energy of the phosphorus implantation for forming the n-type impurity region 4 of the photodiode is 500 KeV or more, and the p-type The acceleration energy of boron implantation for forming the well 26 is increased to 1 MeV or more.

【0008】[0008]

【発明が解決しようとする課題】上記従来の技術には以
下の問題がある。従来技術において、p型ウェル26の
形成のためのボロン注入を1MeV程度の加速エネルギ
ーで行った場合、上記フォトダイオードのn型不純物領
域4が十分基板深部に達する構造にならず、赤色感度が
十分ではない。このため、より基板深部にフォトダイオ
ードのn型不純物領域4が到達する構造にするため、p
型ウェル26の形成のためのボロン注入の加速エネルギ
ーを1.4MeV以上と高くする必要がある。
The above-mentioned conventional techniques have the following problems. In the prior art, when the boron implantation for forming the p-type well 26 is performed with an acceleration energy of about 1 MeV, the structure in which the n-type impurity region 4 of the photodiode does not sufficiently reach the deep portion of the substrate is obtained, and the red sensitivity is sufficient. is not. Therefore, in order to make the n-type impurity region 4 of the photodiode reach a deeper portion of the substrate, p
It is necessary to increase the acceleration energy of boron implantation for forming the mold well 26 to 1.4 MeV or more.

【0009】しかしながら、上記ボロン注入の加速エネ
ルギーを1.4MeV以上と高くすると、図6に示すよ
うに、周辺回路部BのMOSFETのチャネル部の基板
表面でp型不純物の濃度(p型不純物分布30)が低下
し、n型不純物領域の表出部28の出現、または不純物
濃度(不純物分布29)の低下が起こり、周辺回路部B
のMOSFETのしきい値が所望の値に設定できない。
なお、26は基板深部に構成するp型ウェル、28は周
辺回路部BのMOSFETのチャネル部27の基板表面
での反転領域、29は周辺回路部BのMOSFETのチ
ャネル部27の断面での不純物分布、30は周辺回路部
BのMOSFETチャネル部27の断面のp型不純物分
布である。
However, if the acceleration energy of the boron implantation is increased to 1.4 MeV or more, as shown in FIG. 6, the concentration of p-type impurities (p-type impurity distribution) on the substrate surface of the channel portion of the MOSFET in the peripheral circuit portion B is increased. 30), the exposed portion 28 of the n-type impurity region appears, or the impurity concentration (impurity distribution 29) decreases, and the peripheral circuit portion B
The threshold value of the MOSFET cannot be set to a desired value.
Reference numeral 26 is a p-type well formed in the deep portion of the substrate, 28 is an inversion region on the substrate surface of the MOSFET channel portion 27 of the peripheral circuit portion B, and 29 is an impurity in the cross section of the MOSFET channel portion 27 of the peripheral circuit portion B. A distribution 30 is a p-type impurity distribution in the cross section of the MOSFET channel portion 27 of the peripheral circuit portion B.

【0010】また、周辺回路部BのMOSFETのしき
い値を所望の値に設定するため、基板表面で上記p型ウ
ェル26の濃度を確保しようとすると、p型ウェル26
の形成のためのボロン注入の加速エネルギーを低下させ
なければならず、フォトダイオードのn型不純物領域4
が基板深部に十分達せず、赤色感度が低下する。このた
め、フォトダイオードの分光特性が劣化する。
Further, in order to set the threshold value of the MOSFET in the peripheral circuit section B to a desired value, if an attempt is made to secure the concentration of the p-type well 26 on the substrate surface, the p-type well 26 will be
The acceleration energy of boron implantation for forming the n-type impurity region 4 of the photodiode must be reduced.
Does not reach the substrate deep enough, and the red sensitivity is reduced. Therefore, the spectral characteristics of the photodiode are deteriorated.

【0011】このように、従来技術では、広帯域な分光
特性と周辺回路のMOSFETの高精度のしきい値制御
性を両立させることはできない。この発明は、上記従来
技術の問題を解決するもので、広帯域な分光特性のフォ
トダイオードと周辺回路MOSFETの高精度のしきい
値制御性を実現できるCCD固体撮像装置およびその製
造方法を提供することを目的とする。
As described above, according to the conventional technique, it is not possible to achieve both the broadband spectral characteristic and the highly accurate threshold controllability of the MOSFET in the peripheral circuit. The present invention solves the above-mentioned problems of the prior art, and provides a CCD solid-state imaging device capable of realizing highly accurate threshold controllability of a photodiode having a spectral characteristic in a wide band and a peripheral circuit MOSFET, and a manufacturing method thereof. With the goal.

【0012】[0012]

【課題を解決すための手段】この発明の固体撮像装置
は、n型半導体基板の主面上の基板表面部と基板深部に
二つのピークを持つようにp型ウェルを形成し、フォト
ダイオードのn型不純物領域を基板深部のp型ウェルに
侵入するように深く形成したことを特徴とする。
According to the solid-state image pickup device of the present invention, a p-type well is formed so as to have two peaks at a substrate surface portion and a substrate deep portion on the main surface of an n-type semiconductor substrate, and The n-type impurity region is deeply formed so as to penetrate into the p-type well in the deep part of the substrate.

【0013】この発明の固体撮像装置の製造方法は、n
型半導体基板の画素部と周辺回路部の全面に、イオン注
入法により、30KeV〜150KeVの注入エネルギ
ーでボロンを注入するとともに、1.4MeV〜2.0
MeVの注入エネルギーでボロンを注入し、900℃〜
1100℃の熱処理温度の熱処理を行うことにより、基
板表面と基板深部に二つのピークを持つp型不純物ウェ
ルを形成し、この後、フォトダイオードのn型不純物領
域を基板深部のp型ウェルに侵入するように深く形成す
ることを特徴とする。
The method of manufacturing a solid-state image pickup device according to the present invention comprises:
The entire surface of the pixel portion and the peripheral circuit portion of the semiconductor substrate is ion-implanted with boron at an implantation energy of 30 KeV to 150 KeV, and at the same time 1.4 MeV to 2.0 MeV.
Boron is injected at an injection energy of MeV, and the temperature is 900 ° C or higher.
By performing heat treatment at a heat treatment temperature of 1100 ° C., a p-type impurity well having two peaks is formed on the surface of the substrate and the deep portion of the substrate, and then the n-type impurity region of the photodiode enters the p-type well in the deep portion of the substrate. It is characterized in that it is deeply formed.

【0014】[0014]

【作用】この発明によれば、基板深部に形成されるp型
ウェルの濃度、深さ、基板表面近くの浅いp型ウェルの
濃度、分布をそれぞれ独立に制御することが可能とな
り、この結果、基板深部に形成されるp型ウェルの分布
を制御してフォトダイオードを基板深部のp型ウェルに
侵入するように深く形成することにより、フォトダイオ
ードの分光特性を広帯域化すると同時に、基板表面近く
に形成されるp型ウェルの濃度を調整することにより、
周辺回路MOSFETのしきい値を制御することができ
る。
According to the present invention, it is possible to independently control the concentration and depth of the p-type well formed in the deep portion of the substrate, and the concentration and distribution of the shallow p-type well near the substrate surface. By controlling the distribution of the p-type well formed in the deep part of the substrate and forming the photodiode deep so as to penetrate into the p-type well in the deep part of the substrate, the spectral characteristics of the photodiode can be broadened and at the same time near the surface of the substrate. By adjusting the concentration of the p-type well formed,
The threshold value of the peripheral circuit MOSFET can be controlled.

【0015】[0015]

【実施例】以下、この発明の一実施例について、図面を
参照しながら説明する。図1はこの発明の一実施例にお
けるCCD固体撮像装置の断面構造図である。図1にお
いて、画素部Aは固体撮像装置のうち光電変換を行うフ
ォトダイオードとCCD転送領域からなる画素部分を示
し、周辺回路部Bは固体撮像装置のうち周辺回路のMO
SFET部分を示し、1は基板表面近傍に形成するp型
ウェル、2は基板深部に形成するp型ウェル、3はn型
シリコン基板、4は信号電荷が蓄積されるフォトダイオ
ードのn型不純物領域、5はフォトダイオードに蓄積さ
れた電子が表面再結合により消滅し信号電荷が減少する
のを防ぐp型不純物領域、である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional structural view of a CCD solid-state image pickup device according to an embodiment of the present invention. In FIG. 1, a pixel portion A shows a pixel portion in the solid-state image pickup device which is composed of a photodiode for performing photoelectric conversion and a CCD transfer region, and a peripheral circuit portion B shows an MO of the peripheral circuit in the solid-state image pickup device.
SFET portion is shown, 1 is a p-type well formed near the surface of the substrate, 2 is a p-type well formed in the deep part of the substrate, 3 is an n-type silicon substrate, and 4 is an n-type impurity region of a photodiode in which signal charges are accumulated Reference numeral 5 denotes a p-type impurity region which prevents the electrons accumulated in the photodiode from disappearing due to surface recombination and reducing the signal charge.

【0016】6は周辺回路MOSFETのソース・ドレ
イン、7は周辺回路MOSFETのチャネル部、8は固
体撮像素子の分離領域となるp型不純物領域、9はCC
Dチャネル部のp型ウェル、10はCCDチャネル部の
n型ウェル、11は第1ゲート酸化膜、12は固体撮像
素子の転送ゲート、13は周辺回路MOSFETのゲー
ト、14は第2ゲート酸化膜、15は固体撮像素子のア
ルミ遮光部、16はアルミ配線部、17は保護膜であ
る。
Reference numeral 6 is a source / drain of the peripheral circuit MOSFET, 7 is a channel portion of the peripheral circuit MOSFET, 8 is a p-type impurity region serving as an isolation region of the solid-state image pickup device, and 9 is CC.
P-type well of D channel part, 10 n-type well of CCD channel part, 11 first gate oxide film, 12 transfer gate of solid-state imaging device, 13 gate of peripheral circuit MOSFET, 14 second gate oxide film , 15 is an aluminum light-shielding portion of the solid-state imaging device, 16 is an aluminum wiring portion, and 17 is a protective film.

【0017】図2は、この発明の一実施例における固体
撮像装置の周辺回路部BのMOSFETのチャネル部分
の断面不純物分布のシミュレーション結果を示す図であ
る。図2において、20はこの発明の一実施例における
周辺回路MOSFETチャネル部断面のp型不純物濃度
分布、21はこの発明の一実施例における周辺回路MO
SFETチャネル部断面の不純物分布を示す。
FIG. 2 is a diagram showing a simulation result of the cross-sectional impurity distribution of the channel portion of the MOSFET in the peripheral circuit portion B of the solid-state image pickup device in one embodiment of the present invention. In FIG. 2, reference numeral 20 is a p-type impurity concentration distribution in the cross section of the peripheral circuit MOSFET channel portion in one embodiment of the present invention, and 21 is the peripheral circuit MO in one embodiment of the present invention.
The impurity distribution of the SFET channel part cross section is shown.

【0018】図3はこの発明の一実施例における固体撮
像素子のフォトダイオード部断面と従来技術における固
体撮像素子のフォトダイオード部断面の不純物分布、お
よび信号電荷がない場合の電位分布のシミュレーション
結果の比較を示す図である。図3において、22は従来
技術における固体撮像素子フォトダイオード部断面での
不純物濃度分布、23はこの発明の一実施例における固
体撮像素子フォトダイオード部断面での不純物濃度分
布、24は従来技術における固体撮像素子フォトダイオ
ード部断面での信号電荷がない場合の電位分布、25は
この発明の一実施例における固体撮像素子フォトダイオ
ード部断面での信号電荷がない場合の電位分布、26は
従来技術における基板深部に形成するp型ウェルを示
す。
FIG. 3 shows a simulation result of the impurity distribution in the photodiode section cross section of the solid-state image sensor according to one embodiment of the present invention and the photodiode section cross section of the conventional solid-state image sensor, and the potential distribution when there is no signal charge. It is a figure which shows comparison. In FIG. 3, reference numeral 22 is an impurity concentration distribution in the cross section of the solid-state imaging device photodiode portion in the conventional technique, 23 is an impurity concentration distribution in the cross-section of the solid-state imaging device photodiode portion in one embodiment of the present invention, and 24 is a solid state in the conventional technique. Potential distribution when there is no signal charge in the cross section of the imaging device photodiode, 25 is a potential distribution when there is no signal charge in the cross section of the solid-state imaging device photodiode part in one embodiment of the present invention, and 26 is the substrate in the prior art. The p-type well formed in the deep portion is shown.

【0019】この発明の一実施例における固体撮像装置
の構造は、図1に示すように、p型ウェル2をフォトダ
イオードの分光特性が広帯域化するように十分深い位置
に形成し、さらに、基板表面での不純物分布を制御する
ため、p型ウェル1を基板表面近傍に形成した2重構造
のp型ウェルを用いる。これにより、図2に示すよう
に、周辺回路部Bの基板表面の不純物濃度を周辺回路部
BのMOSFETのしきい値が目的の値を得るのに十分
な濃度に形成でき、また同時に、図3に示すように従来
技術の不純物分布22に比べて、この発明の一実施例に
おけるフォトダイオード部断面の不純物分布23のほう
が、フォトダイオードのn型不純物領域4、p型ウェル
2ともに基板深部に形成でき、その結果、信号電荷がな
い場合にフォトダイオード部に形成されるポテンシャル
の井戸を基板深部に深く形成できる。
In the structure of the solid-state image pickup device according to one embodiment of the present invention, as shown in FIG. 1, the p-type well 2 is formed at a position deep enough to broaden the spectral characteristics of the photodiode, and further, the substrate is formed. In order to control the impurity distribution on the surface, a p-type well having a double structure in which the p-type well 1 is formed near the substrate surface is used. As a result, as shown in FIG. 2, the impurity concentration on the substrate surface of the peripheral circuit section B can be formed to a concentration sufficient for the threshold value of the MOSFET of the peripheral circuit section B to obtain a desired value, and at the same time, the figure As shown in FIG. 3, as compared with the impurity distribution 22 of the prior art, the impurity distribution 23 in the photodiode section in one embodiment of the present invention has the n-type impurity region 4 and the p-type well 2 of the photodiode located deeper in the substrate. As a result, the potential well formed in the photodiode portion when there is no signal charge can be deeply formed deep in the substrate.

【0020】このように、基板表面近傍と基板深部にそ
れぞれ独立に制御できるp型ウェル1,2を形成した2
重のp型ウェル構造を用いることにより、周辺回路MO
SFETの高いしきい値制御性と広帯域なフォトダイオ
ードの分光特性を同時に可能にするCCD固体撮像装置
を実現できる。この発明の一実施例における固体撮像装
置の製造方法を図4を参照して説明する。まず、図4
(a)に示すように、p型ウェル注入層18が、高エネ
ルギーイオン注入法により、1.4MeV〜2.0Me
Vの加速エネルギー、1.8×1011/cm2 〜2.4
×1011 /cm2 のドーズ量で画素部Aおよび周辺回
路部Bの全面にボロンを注入して形成される。
In this way, the p-type wells 1 and 2 which can be independently controlled are formed near the surface of the substrate and in the deep portion of the substrate.
By using the double p-type well structure, the peripheral circuit MO
It is possible to realize a CCD solid-state imaging device that simultaneously enables the high threshold controllability of the SFET and the spectral characteristics of the photodiode in a wide band. A method of manufacturing the solid-state imaging device according to the embodiment of the present invention will be described with reference to FIG. First, FIG.
As shown in (a), the p-type well implantation layer 18 is formed by high-energy ion implantation to obtain 1.4 MeV to 2.0 Me.
V acceleration energy, 1.8 × 10 11 / cm 2 to 2.4
It is formed by implanting boron on the entire surface of the pixel portion A and the peripheral circuit portion B at a dose amount of × 10 11 / cm 2 .

【0021】上記の注入エネルギーの下限値はシミュレ
ーションにより上記のフォトダイオード部に形成される
ポテンシャルの井戸の下端境界が基板表面より2.4μ
m以上になる条件より最適化したものであり、上限値は
イオン注入機の使用可能上限値より決まる値である。ま
た、注入ドーズ量は、固体撮像素子の動作時の基板電位
が8〜10Vになるようにシミュレーション、実験によ
り最適化したものである。
The lower limit of the implantation energy is determined by simulation so that the lower boundary of the potential well formed in the photodiode portion is 2.4 μm from the substrate surface.
The upper limit is a value determined by the upper limit that can be used by the ion implanter. The implantation dose is optimized by simulation and experiment so that the substrate potential during operation of the solid-state imaging device is 8 to 10V.

【0022】つぎに、図4(b)に示すように、p型ウ
ェル注入層19が、イオン注入法により、30KeV〜
150KeVの加速エネルギー、1×1011/cm2
5×1011/cm2 のドーズ量で画素部A、周辺回路部
Bの全面にボロンを注入し形成される。上記の注入エネ
ルギーの下限値はイオン注入機の使用可能下限値より決
まる値であり、上限値はフォトダイオードに蓄積される
最大電荷量、CCD特性等に大きな影響を与えず基板表
面の濃度制御が可能になるようシミュレーション、実験
により最適化されたものである。なお、上記p型ウェル
注入層1とp型ウェル注入層2の形成順序は入れ替わっ
てもよい。
Next, as shown in FIG. 4B, the p-type well implantation layer 19 is formed with an ion implantation method of 30 KeV.
Acceleration energy of 150 KeV, 1 × 10 11 / cm 2 ~
Boron is implanted into the entire surface of the pixel portion A and the peripheral circuit portion B at a dose amount of 5 × 10 11 / cm 2 . The lower limit value of the implantation energy is determined by the lower limit value of the ion implanter, and the upper limit value does not affect the maximum charge amount accumulated in the photodiode, CCD characteristics, etc. It is optimized by simulation and experiment to be possible. The order of forming the p-type well injection layer 1 and the p-type well injection layer 2 may be exchanged.

【0023】さらに上記工程の後、イオン注入により生
じた結晶欠陥の回復、周辺回路部Bの基板表面の不純物
濃度制御のために、900℃〜1100℃の熱処理温度
で不活性ガス雰囲気中で20分〜360分の熱処理を行
う。熱処理温度の下限値は、結晶欠陥の回復効率、基板
表面でのp型ウェル1の拡散速度からシミュレーショ
ン、実験により最適化されたものであり、上限値は電気
炉体からの重金属汚染を低減する条件から実験により最
適化されたものである。また、熱処理時間は、結晶欠陥
の回復度合、基板表面のp型ウェル1の濃度の観点から
シミュレーション、実験により最適化されたものであ
る。
Further, after the above steps, in order to recover the crystal defects caused by the ion implantation and to control the impurity concentration on the substrate surface of the peripheral circuit section B, the heat treatment temperature is set to 900 ° C. to 1100 ° C. in an inert gas atmosphere. Heat treatment is performed for 3 minutes to 360 minutes. The lower limit value of the heat treatment temperature is optimized by simulation and experiment from the recovery efficiency of crystal defects and the diffusion rate of the p-type well 1 on the substrate surface, and the upper limit value reduces heavy metal contamination from the electric furnace body. It is the one optimized by experiments from the conditions. The heat treatment time is optimized by simulation and experiment from the viewpoint of the degree of recovery of crystal defects and the concentration of the p-type well 1 on the substrate surface.

【0024】上記熱処理工程により結晶欠陥の回復、p
型ウェルの形成を終了した後、図4(c)に示すよう
に、固体撮像素子CCDチャネル部のp型ウェル9、固
体撮像素子CCDチャネル部のn型ウェル10、分離領
域となるp型不純物領域8、フォトダイオードのn型不
純物領域4、周辺回路部BのMOSFETのソース・ド
レイン6、ゲート電極12等を形成し、さらに、配線、
保護膜等を形成し固体撮像装置を完成する。
Recovery of crystal defects by the heat treatment step, p
After the formation of the mold well, as shown in FIG. 4C, the p-type well 9 of the CCD channel section of the solid-state image sensor, the n-type well 10 of the CCD channel section of the solid-state image sensor, and the p-type impurity to be the separation region are formed. The region 8, the n-type impurity region 4 of the photodiode, the source / drain 6 of the MOSFET in the peripheral circuit portion B, the gate electrode 12 and the like are formed, and wiring,
A protective film and the like are formed to complete the solid-state imaging device.

【0025】以上のように、この発明の2重構造のp型
ウェル1,2を用いることにより、フォトダイオードの
n型不純物領域4に形成されるポテンシャルの井戸の下
端境界が基板表面より2.4μm〜2.8μmとなり、
従来技術のp型ウェルの場合の2.1μmと比べてポテ
ンシャルの井戸を大幅に基板深部に達するように形成で
きる。
As described above, by using the double-structured p-type wells 1 and 2 of the present invention, the lower boundary of the potential well formed in the n-type impurity region 4 of the photodiode is 2. 4 μm to 2.8 μm,
The potential well can be formed so as to reach a large depth in the substrate, as compared with 2.1 μm in the case of the p-type well of the prior art.

【0026】これにより、フォトダイオードの赤色感度
が20%以上向上し、フォトダイオードの分光特性が大
幅に向上する。また同時に、周辺回路部BのMOSFE
Tのしきい値制御も固体撮像素子の特性に影響を与える
ことなく独立して容易に行える。また、従来技術のフォ
トマスクをそのまま使用するので、マスク合わせ誤差等
による不良の増加、フォトマスク増加によるコストの増
加は起こらない。
As a result, the red sensitivity of the photodiode is improved by 20% or more, and the spectral characteristics of the photodiode are significantly improved. At the same time, the MOSFE of the peripheral circuit section B is
The threshold value control of T can be easily performed independently without affecting the characteristics of the solid-state image pickup device. Further, since the conventional photomask is used as it is, increase in defects due to mask alignment error and the like and increase in cost due to increase in photomask do not occur.

【0027】[0027]

【発明の効果】この発明のCCD固体撮像装置およびそ
の製造方法によれば、基板深部に形成されるp型ウェル
の濃度、深さ、基板表面近くの浅いp型ウェルの濃度、
分布をそれぞれ独立に制御することが可能となる。この
結果、基板深部に形成されるp型ウェルの分布を制御し
てフォトダイオードを基板深部のp型ウェルに侵入する
ように深く形成することにより、フォトダイオードの分
光特性を広帯域化すると同時に、基板表面近くに形成さ
れるp型ウェルの濃度を調整することにより、周辺回路
部のMOSFETのしきい値を制御することができる。
According to the CCD solid-state imaging device and the manufacturing method thereof of the present invention, the concentration and depth of the p-type well formed in the deep portion of the substrate, the concentration of the shallow p-type well near the substrate surface,
It is possible to control the distribution independently. As a result, by controlling the distribution of the p-type well formed in the deep portion of the substrate and forming the photodiode deep so as to penetrate into the p-type well in the deep portion of the substrate, the spectral characteristics of the photodiode are broadened and at the same time the substrate is By adjusting the concentration of the p-type well formed near the surface, the threshold value of the MOSFET in the peripheral circuit section can be controlled.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例におけるCCD固体撮像装
置の断面構造図である。
FIG. 1 is a sectional structural view of a CCD solid-state image pickup device according to an embodiment of the present invention.

【図2】この発明の一実施例における固体撮像装置の周
辺回路部BのMOSFETのチャネル部分の断面の不純
物分布のシミュレーション結果を示す図である。
FIG. 2 is a diagram showing a simulation result of impurity distribution in a cross section of a channel portion of a MOSFET in a peripheral circuit portion B of a solid-state imaging device according to an embodiment of the present invention.

【図3】この発明の一実施例における固体撮像素子のフ
ォトダイオード部断面と従来技術における固体撮像素子
のフォトダイオード部断面の不純物分布、および信号電
荷がない場合の電位分布のシミュレーション結果の比較
を示す図である。
FIG. 3 is a comparison of the simulation results of the impurity distribution in the photodiode section cross section of the solid-state image sensor according to the embodiment of the present invention and the photodiode section cross section of the conventional solid-state image sensor, and the potential distribution in the absence of signal charges. FIG.

【図4】(a)〜(c)は、この発明の一実施例におけ
る固体撮像装置の製造工程の工程順断面構造図である。
4A to 4C are cross-sectional structural views in order of the manufacturing steps of the solid-state imaging device according to the embodiment of the present invention.

【図5】従来技術における固体撮像装置の断面構造図で
ある。
FIG. 5 is a cross-sectional structure diagram of a solid-state imaging device in the related art.

【図6】従来技術においてフォトダイオードの分光特性
を広帯域化するため、p型ウェルを基板深部深くに形成
した場合の周辺回路MOSFETチャネル部断面の不純
物分布のシミュレーション結果を示す図である。
FIG. 6 is a diagram showing a simulation result of an impurity distribution in a cross section of a peripheral circuit MOSFET channel portion in the case where a p-type well is formed deep in a deep portion of a substrate in order to broaden the spectral characteristic of a photodiode in a conventional technique.

【符号の説明】[Explanation of symbols]

1 基板表面部のp型ウェル 2 基板深部のp型ウェル 3 n型シリコン基板 4 フォトダイオードのn型不純物領域 5 p型不純物領域 6 MOSFETのソース・ドレイン 7 MOSFETのチャネル部 8 p型不純物領域 10 CCDチャネル部のn型ウェル 1 p-type well on substrate surface 2 p-type well on deep substrate 3 n-type silicon substrate 4 n-type impurity region of photodiode 5 p-type impurity region 6 source / drain of MOSFET 7 channel part of MOSFET 8 p-type impurity region 10 CCD channel n-type well

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フォトダイオードおよびCCD転送チャ
ネルならびに周辺回路部をn型半導体基板に形成したC
CD固体撮像装置であって、前記n型半導体基板の主面
上の基板表面部と基板深部に二つのピークを持つように
p型ウェルを形成し、前記フォトダイオードのn型不純
物領域を前記基板深部の前記p型ウェルに侵入するよう
に深く形成したことを特徴とする固体撮像装置。
1. A C in which a photodiode, a CCD transfer channel, and a peripheral circuit section are formed on an n-type semiconductor substrate.
In the CD solid-state imaging device, a p-type well is formed so as to have two peaks in a substrate surface portion on a main surface of the n-type semiconductor substrate and a substrate deep portion, and an n-type impurity region of the photodiode is formed on the substrate. A solid-state imaging device, which is deeply formed so as to penetrate into the deep p-type well.
【請求項2】 フォトダイオードおよびCCD転送チャ
ネルならびに周辺回路部をn型半導体基板に形成したC
CD固体撮像装置の製造方法であって、画素部と周辺回
路部全面に、イオン注入法により、30KeV〜150
KeVの注入エネルギーでボロンを注入するとともに、
1.4MeV〜2.0MeVの注入エネルギーでボロン
を注入し、900℃〜1100℃の熱処理温度の熱処理
を行うことにより、基板表面と基板深部に二つのピーク
を持つp型不純物ウェルを形成し、この後、フォトダイ
オードのn型不純物領域を前記基板深部の前記p型ウェ
ルに侵入するように深く形成することを特徴とする固体
撮像装置の製造方法。
2. A C formed by forming a photodiode, a CCD transfer channel and a peripheral circuit section on an n-type semiconductor substrate.
A method for manufacturing a CD solid-state image pickup device, comprising: 30 KeV-150 by ion implantation on the entire surface of a pixel portion and a peripheral circuit portion.
While injecting boron with an injection energy of KeV,
Boron is implanted with an implantation energy of 1.4 MeV to 2.0 MeV and heat treatment at a heat treatment temperature of 900 ° C. to 1100 ° C. is performed to form a p-type impurity well having two peaks on the substrate surface and the substrate deep portion, Thereafter, the n-type impurity region of the photodiode is deeply formed so as to penetrate into the p-type well in the deep portion of the substrate.
JP5128874A 1993-05-31 1993-05-31 Solid-state image pick-up device and manufacture thereof Pending JPH06338605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5128874A JPH06338605A (en) 1993-05-31 1993-05-31 Solid-state image pick-up device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5128874A JPH06338605A (en) 1993-05-31 1993-05-31 Solid-state image pick-up device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06338605A true JPH06338605A (en) 1994-12-06

Family

ID=14995502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5128874A Pending JPH06338605A (en) 1993-05-31 1993-05-31 Solid-state image pick-up device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06338605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095830A1 (en) * 2001-05-22 2002-11-28 Sony Corporation Production method for solid imaging device
US6853044B1 (en) * 1999-06-29 2005-02-08 Hynix Semiconductor Inc. Image sensor with improved dynamic range by applying negative voltage to unit pixel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853044B1 (en) * 1999-06-29 2005-02-08 Hynix Semiconductor Inc. Image sensor with improved dynamic range by applying negative voltage to unit pixel
WO2002095830A1 (en) * 2001-05-22 2002-11-28 Sony Corporation Production method for solid imaging device
US6746939B2 (en) 2001-05-22 2004-06-08 Sony Corporation Production method for solid imaging device

Similar Documents

Publication Publication Date Title
JP3530159B2 (en) Solid-state imaging device and method of manufacturing the same
US8580595B2 (en) Solid-state image sensing device and camera system the same
JP4960058B2 (en) Amplification type solid-state image sensor
US6046069A (en) Solid-state image pick-up device and method for manufacturing the same
JPH08316465A (en) Semiconductor device and manufacture thereof
JP2003101004A (en) Solid-state image pickup device and manufacturing method therefor
JPH06338605A (en) Solid-state image pick-up device and manufacture thereof
US20080160731A1 (en) Method for fabricating cmos image sensor
JP2000164849A (en) Photoelectric transfer device, solid-state image pickup device using the same and manufacture of the same
JPH06342798A (en) Semiconductor device and manufacture thereof
JPH01245528A (en) Manufacture of solid-state image sensing device
JP2964541B2 (en) Vertical overflow drain type solid-state imaging device
CN105990389B (en) Solid-state imaging element and method for manufacturing the same
JPH08288492A (en) Solid-state image pickup device and its manufacture
JP2000077647A (en) Solid-state image pickup device and its manufacture
JP3159557B2 (en) Method of manufacturing semiconductor device, solid-state imaging device, and method of manufacturing the same
JP2526512B2 (en) Method of manufacturing solid-state imaging device
CN105990388B (en) Solid-state imaging element and method for manufacturing the same
JP2604251B2 (en) Solid-state imaging device
KR940009647B1 (en) Manufacturing method of solid state image sensor
KR100240188B1 (en) Solid state image pickup device and manufacturing method thereof
KR940008027B1 (en) Ccd solid state imager and fabricating method thereof
JPH06244401A (en) Solid-state image pickup device and manufacture thereof
JPH05251680A (en) Manufacture of solid state image sensing element
JPH06310702A (en) Solid state image pickup device and fabrication thereof