JP2604251B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2604251B2
JP2604251B2 JP1298318A JP29831889A JP2604251B2 JP 2604251 B2 JP2604251 B2 JP 2604251B2 JP 1298318 A JP1298318 A JP 1298318A JP 29831889 A JP29831889 A JP 29831889A JP 2604251 B2 JP2604251 B2 JP 2604251B2
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
well
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1298318A
Other languages
Japanese (ja)
Other versions
JPH03159172A (en
Inventor
満 沖川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1298318A priority Critical patent/JP2604251B2/en
Publication of JPH03159172A publication Critical patent/JPH03159172A/en
Application granted granted Critical
Publication of JP2604251B2 publication Critical patent/JP2604251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はnpn構造の撮像部を備える固体撮像素子に関
する。
The present invention relates to a solid-state imaging device having an npn-structure imaging unit.

(ロ)従来の技術 固体撮像素子の撮像部に強い光が入射して多量の電荷
が発生すると、過剰な電荷がその周辺に拡散したり、ま
た後続の転送サイクルで転送しきれずに何サイクルにも
わたって転送されて残像およびブルーミングと称される
画像欠陥を生ずる。
(B) Conventional technology When strong light is incident on the imaging section of a solid-state imaging device and a large amount of electric charge is generated, excessive electric charge is diffused to the periphery thereof, and in many cycles without being able to be completely transferred in a subsequent transfer cycle. It is transferred across and produces image defects called afterimages and blooming.

第3図(A)(B)はそのような過剰電荷を抜き取
り、ブルーミングを抑制するための縦型オーバーフロー
構造を説明しており、縦型オーバーフロー構造の不純物
分布の概略を説明する第3図(A)を参照すると、その
ようなnpn構造の不純物分布は、n型Si基板に数十〜百
数十keVのエネルギーでボロンをイオン注入し、1500℃
程度の温度で長時間熱処理することによりpウェルを形
成し、しかる後にホトダイオードあるいは転送チャネル
のためのn型不純物領域を形成して得られる。
FIGS. 3A and 3B illustrate a vertical overflow structure for extracting such excess charge and suppressing blooming, and FIGS. 3A and 3B schematically illustrate an impurity distribution of the vertical overflow structure. Referring to A), such an impurity distribution of the npn structure can be obtained by implanting boron at an energy of several tens to one hundred and several tens keV into an n-type Si substrate at 1500 ° C.
This is obtained by forming a p-well by performing a heat treatment at a temperature of about a long time and then forming an n-type impurity region for a photodiode or a transfer channel.

斯る構造の固体撮像素子は第3図(B)に示すような
ポテンシャルプロフィールを呈し、n型Si結晶中にホト
ンによる電子−正孔対が生ずると、マジョリティキャリ
アである正孔は基板に逃げ、Siに対してマイノリティキ
ャリアである電荷(電子)が図にa−b−cで示すポテ
ンシャル井戸に集められる。そして、この電荷が転送さ
れて出力されることにより光学像が検知される。また、
過剰な電荷はc点からn型Si基板にオーバーフローし
て、ブルーミングが抑制される。
Solid-state imaging device斯Ru structure exhibits a potential profile as shown in FIG. 3 (B), by photons in the n-type S i crystal electron - the hole pairs occurs, holes in the substrate are majority carriers relief, the charge is minority carrier relative to S i (electrons) are collected in the potential well shown by a-b-c in FIG. An optical image is detected by transferring and outputting the charge. Also,
Excess charge overflows from the point c to the n-type Si substrate, and blooming is suppressed.

(ハ)発明が解決しようとする課題 第3図(B)にa−b−cで示すポテンシャル井戸の
断面積(現実の固体撮像素子では体積となる)は固体撮
像素子の撮像部の光感度を与える。従って、固体撮像素
子を高感度とするためには基板深部で、即ち、より大き
いxでポテンシャルの山cが形成されなければならな
い。
(C) Problems to be Solved by the Invention The sectional area of the potential well indicated by abc in FIG. 3B (which is a volume in an actual solid-state imaging device) is the light sensitivity of the imaging unit of the solid-state imaging device. give. Therefore, in order to increase the sensitivity of the solid-state imaging device, the potential c must be formed deep in the substrate, that is, at a larger x.

然るに、従来のイオン注入法により不純物分布は、拡
散法による分布と同様に、基板表面で不純物濃度が高
く、基板内部に不純物濃度が低下する傾向が強く、より
大きいxでポテンシャルの山cを形成するために高濃度
イオン注入および長時間の熱処理を行おうとする場合に
は、ポテンシャルプロフィールは第3図(B)に破線で
示すようなものとなって、ポテンシャルの山cのポテン
シャルも高くなり、ブルーミングの抑制が不充分となる
欠点があった。
However, the impurity distribution by the conventional ion implantation method is similar to the distribution by the diffusion method, and the impurity concentration is high on the substrate surface and the impurity concentration tends to decrease inside the substrate. In order to perform high-concentration ion implantation and long-time heat treatment, the potential profile becomes as shown by the broken line in FIG. 3B, and the potential of the potential peak c also increases. There was a disadvantage that the suppression of blooming was insufficient.

本発明は従来技術に存する上記した課題を解決するこ
と目的とし、ブルーミングを抑制しつつ充分な光感度が
得られる固体撮像素子を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems in the prior art, and an object of the present invention is to provide a solid-state imaging device capable of obtaining sufficient light sensitivity while suppressing blooming.

(ニ)課題を解決するための手段 上記した課題は、n型Si基板表面層に形成されるpウ
ェル内にホトダイオード、埋め込みチャネル等のn型領
域が形成されてnpn構造を備える固体撮像素子におい
て、前記pウェルをSi基板内部に向かって不純物濃度が
高くなる逆分布pウェルとしたことを特徴とする本発明
の固体撮像素子により解決される。
(D) issues means described above for solving the problems, the n-type S i substrate photodiodes in a p-well formed in the surface layer, an n-type region such as the buried channel is formed the solid-state imaging device comprising an npn structure in it is solved by the solid-state imaging device of the present invention, characterized in that the p-well has an inverted distribution p-well in which the impurity concentration increases toward the interior S i substrate.

(ホ)作 用 n型Si基板表面層に形成されるpウェル内にホトダイ
オード、埋め込みチャネル等のn型領域が形成されてnp
n構造を備える固体撮像素子において、前記pウェルをS
i基板内部に向かって不純物濃度が高くなる逆分布pウ
ェルとしたことにより、ポテンシャルの山を高くするこ
となく、ポテンシャル井戸の断面積を大きくすることが
でき、もってブルーミングを抑制しつつ充分な光感度が
得られる固体撮像素子を実現することができる。
(E) Operation An n-type region such as a photodiode or a buried channel is formed in a p-well formed in the surface layer of the n-type Si substrate to form an np
In a solid-state imaging device having an n-structure,
By using an inversely distributed p-well in which the impurity concentration increases toward the inside of the substrate, the cross-sectional area of the potential well can be increased without increasing the peak of the potential, and thus sufficient light can be suppressed while suppressing blooming. A solid-state imaging device with high sensitivity can be realized.

(ヘ)実 施 例 第1図は本発明の固体撮像素子撮像部の断面構造を示
す。n型Si基板(1)の表面層に1MeV以上、好ましくは
3MeV以上の高エネルギーでポロンを注入し、1000℃で、
1h程度の熱処理をしたpウェル(2)、このpウェル
(2)内に形成した埋め込みチャネル(3)、ホトダイ
オード(4)等のn型領域、あるいはp++領域とされる
チャネルストップ(5)、さらにはSiO2を介して形成さ
れるポリシリコンゲート(6)等が示されている。
(F) Embodiment FIG. 1 shows a cross-sectional structure of an imaging section of a solid-state imaging device according to the present invention. 1 MeV or more, preferably on the surface layer of the n-type Si substrate (1)
Inject polon with high energy of 3MeV or more, at 1000 ℃,
A p-well (2) heat-treated for about 1 hour, a buried channel (3) formed in the p-well (2), an n-type region such as a photodiode (4), or a channel stop (5) serving as a p ++ region. ), yet it is shown polysilicon gates (6) or the like is formed through a S i O 2.

ここで、ボロンイオン注入時のエネルギーを1MeV以
上、好ましくは3MeV以上としたのは、1MeV以下のエネル
ギーで不純物を注入した場合には、拡散法によるのと同
様に基板表面層の不純物濃度が比較的高くなるに対し、
1MeV以上、特に3MeV以上でボロンを注入した場合の不純
物分布が深さ方向に不純物濃度が高くなるような逆分布
となる実験結果が得られているためである。さらに比較
的短時間、低温度熱処理を行うのはそのような逆分布を
損なわないようにするためである。なお、高エネルギー
イオン注入はアニールによっても欠陥が残留するとされ
ているものの、そのクリティカルドーズ量は1014cm-2
度であり、ピーク不純物濃度1018cm-3程度では問題のな
いことが確認されている。
Here, the energy at the time of boron ion implantation is set to 1 MeV or more, preferably 3 MeV or more. When the impurity is implanted at an energy of 1 MeV or less, the impurity concentration of the substrate surface layer is compared with that by the diffusion method. , While
This is because experimental results have been obtained in which the impurity distribution when boron is implanted at 1 MeV or more, particularly 3 MeV or more, has an inverse distribution such that the impurity concentration increases in the depth direction. Further, the low-temperature heat treatment is performed for a relatively short time in order not to impair such an inverse distribution. Although high-energy ion implantation is said to leave defects even after annealing, its critical dose is about 10 14 cm -2 , and it has been confirmed that there is no problem with a peak impurity concentration of about 10 18 cm -3. ing.

上記プロセスにより形成される固体撮像素子の第1図
A−A線の不純物分布およびそのポテンシャルプロフィ
ールをそれぞれ第2図(A)(B)に示す。
FIGS. 2A and 2B show the impurity distribution and the potential profile of the solid-state imaging device formed by the above process along the line AA in FIG.

第2図(A)には先に説明したように、そのPウェル
が深さ方向に不純物濃度が高くなる様子が示されてい
る。そのポテンシャルプロフィールは第2図(B)に実
線で示すようなものとなり、破線で示す従来のポテンシ
ャルの山と比較すると、ポテンシャルの山の深さxが大
きくなり、従って光感度が向上しているにもかかわら
ず、その山のポテンシャルが変わららないため、ブルー
ミング抑制機能が低下しないことが理解される。
FIG. 2 (A) shows that the P well has an increased impurity concentration in the depth direction, as described above. The potential profile is as shown by the solid line in FIG. 2 (B), and the depth x of the potential peak is larger than that of the conventional potential peak shown by the broken line, so that the light sensitivity is improved. Nevertheless, it is understood that since the potential of the mountain does not change, the blooming suppression function does not decrease.

(ト)発明の効果 以上述べたように本発明の固体撮像素子は、n型Si
板表面層に形成されるpウェル内にホトダイオード、埋
め込みチャネル等のn型領域が形成されてnpn構造を備
える固体撮像素子において、前記pウェルをSi基板内部
に向かって不純物濃度が高くなる逆分布pウェルとした
ことにより、ポテンシャルの山を高くすることなく、ポ
テンシャル井戸の断面積を大きくすることができ、もっ
てブルーミングを抑制しつつ充分な光感度が得られる固
体撮像素子を実現することができる。
The solid-state imaging device of the present invention as described above the effect of the (g) invention, n-type S i photodiode in a p-well formed in the substrate surface layer, an npn structure is n-type region such as the buried channel is formed in the solid-state imaging device including, by the p-well it has an inverted distribution p-well in which the impurity concentration increases toward the interior S i substrate, without increasing the potential hill, is possible to increase the cross-sectional area of the potential well As a result, a solid-state image sensor capable of obtaining sufficient light sensitivity while suppressing blooming can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の断面構造を説明する図、第2
図(A)(B)はそれぞれ第1図のA−A線の不純物分
布およびポテンシャルプロフィールを説明する図、第3
図(A)(B)はそれぞれ従来例の不純物分布およびポ
テンシャルプロフィールを説明する図である。 (1)……n型Si基板、(2)……pウェル、(3)…
…埋め込みチャネル、(4)〜……ホトダイオード、
(5)……チャネルストップ、(6)……ポリシリコン
ゲート。
FIG. 1 is a view for explaining a sectional structure of an embodiment of the present invention, and FIG.
FIGS. 3A and 3B are diagrams for explaining an impurity distribution and a potential profile along the line AA in FIG.
FIGS. 7A and 7B are diagrams for explaining the impurity distribution and the potential profile of the conventional example. (1) n-type Si substrate, (2) p-well, (3)
... buried channel, (4)-... photodiode,
(5) ... channel stop, (6) ... polysilicon gate.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n型Si基板表面層に形成されるpウェル内
にn型領域となるホトダイオード及び埋め込みチャネル
が形成されてnpn構造を成す固体撮像素子において、 前記pウェル内の不純物分布の勾配が、ピーク濃度部分
から前記Si基板の表面側でピーク濃度部分から深部側よ
りも緩やかに形成されることを特徴とする固体撮像素
子。
1. A solid-state imaging device having an npn structure in which a photodiode serving as an n-type region and a buried channel are formed in a p-well formed in a surface layer of an n-type Si substrate, wherein a gradient of impurity distribution in the p-well is provided. Is formed more gradually on the surface side of the Si substrate from the peak concentration portion than on the deeper side from the peak concentration portion.
JP1298318A 1989-11-16 1989-11-16 Solid-state imaging device Expired - Fee Related JP2604251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298318A JP2604251B2 (en) 1989-11-16 1989-11-16 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298318A JP2604251B2 (en) 1989-11-16 1989-11-16 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH03159172A JPH03159172A (en) 1991-07-09
JP2604251B2 true JP2604251B2 (en) 1997-04-30

Family

ID=17858094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298318A Expired - Fee Related JP2604251B2 (en) 1989-11-16 1989-11-16 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2604251B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323731B2 (en) 2003-12-12 2008-01-29 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793282B2 (en) * 1985-04-15 1995-10-09 株式会社日立製作所 Method for manufacturing semiconductor device
JPS6297369A (en) * 1985-10-23 1987-05-06 Victor Co Of Japan Ltd Solid-state image pickup element
JPS62217656A (en) * 1986-03-19 1987-09-25 Hitachi Ltd Solid state image pick-up element

Also Published As

Publication number Publication date
JPH03159172A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
JP4960058B2 (en) Amplification type solid-state image sensor
US20110234868A1 (en) Photoelectric conversion apparatus and imaging system
JP2001291858A (en) Solid-state image pickup element and method for manufacturing the same
JP2006339658A (en) Pixel formed with doping of transfer gate channel assymetrically
JP2010206178A (en) Photoelectric conversion apparatus, and method of manufacturing photoelectric conversion apparatus
JP2003069005A (en) Solid-state imaging device and method of manufacturing the same
KR102279835B1 (en) A semiconductor device and a method of manufacturing a semiconductor device
JP2604251B2 (en) Solid-state imaging device
CN110176467B (en) CMOS image sensor and method of manufacturing the same
KR20010015399A (en) Process for producing solid image pickup device and solid image pickup device
JPH0774334A (en) Ccd image device and preparation thereof
JP2006186261A (en) Semiconductor device and its manufacturing method
JP6668600B2 (en) Solid-state imaging device and method of manufacturing the same
JP4304302B2 (en) Solid-state image sensor
JP2964541B2 (en) Vertical overflow drain type solid-state imaging device
US9520436B2 (en) Solid-state imaging device and manufacturing method thereof
KR970004049A (en) Light-receiving portion structure of solid-state image sensor and manufacturing method thereof
JPH11274465A (en) Solid image pickup device, light-receiving element, and manufacture of semiconductor
JP2000077647A (en) Solid-state image pickup device and its manufacture
JPS633448B2 (en)
JPH05275674A (en) Solid-state image sensing device and manufacture thereof
US9818789B2 (en) Solid-state imaging device and manufacturing method thereof
JPH06338605A (en) Solid-state image pick-up device and manufacture thereof
KR940009647B1 (en) Manufacturing method of solid state image sensor
KR940008027B1 (en) Ccd solid state imager and fabricating method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees