JPH0633423Y2 - Black cell - Google Patents

Black cell

Info

Publication number
JPH0633423Y2
JPH0633423Y2 JP11427686U JP11427686U JPH0633423Y2 JP H0633423 Y2 JPH0633423 Y2 JP H0633423Y2 JP 11427686 U JP11427686 U JP 11427686U JP 11427686 U JP11427686 U JP 11427686U JP H0633423 Y2 JPH0633423 Y2 JP H0633423Y2
Authority
JP
Japan
Prior art keywords
electrode
width
positive electrode
elastic wave
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11427686U
Other languages
Japanese (ja)
Other versions
JPS6321869U (en
Inventor
幸一郎 三須
修三 和高
勉 永塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11427686U priority Critical patent/JPH0633423Y2/en
Publication of JPS6321869U publication Critical patent/JPS6321869U/ja
Application granted granted Critical
Publication of JPH0633423Y2 publication Critical patent/JPH0633423Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、弾性波と光との相互作用を利用して周波数
分析を行うために用いられるブラッグセルに関するもの
である。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to a Bragg cell used for performing frequency analysis by utilizing the interaction between elastic waves and light.

〔従来の技術〕[Conventional technology]

第4図は、例えば文献:1983,フォースインターナショナ
ル コンファレンス オン インテグレィテッド オプ
ティクス アンド オプティカル ファイバー コミニ
ュケーション,テクニカル ダイジェスト 29C5−5
40〜41頁(1983 Fourth International Conference
on Integrated Optics and Optical fiber Com
munication,Technical Digest 29C5−5,pp.40〜41)
に示されている従来のこの種のブラッグセルを示す図で
ある。
Figure 4 shows, for example, Literature: 1983, Force International Conference on Integrated Optics and Optical Fiber Communication, Technical Digest 29C5-5.
Pages 40-41 (1983 Fourth International Conference
on Integrated Optics and Optical fiber Com
munication, Technical Digest 29C5-5, pp.40-41)
FIG. 3 shows a conventional Bragg cell of this type shown in FIG.

図中、1は圧電体基板であり、2は圧電体基板1の表面
に設けられたすだれ状電極である。3は櫛形の正電極、
4は櫛歯が正電極3の櫛歯と並列になるように設けられ
た櫛形の接地電極、5は正電極3の櫛歯部および接地電
極4の櫛歯部に併設された折れ曲り形状を有する中間電
位電極(以下、ドッグレッグ電極という)であり、すだ
れ状電極2はこれらにより構成されている。6は正電極
3と接地電極4間に接続された交流の信号源、7は弾性
波である。従来のこの種のブラッグセルでは、すだれ状
電極2のドツグレッグ電極5と正電極3との併設幅w
を、ドツグレッグ電極5と接地電極4との併設幅w
等しくしていた。なお、8は光導電波路、9は光導電波
路8中を伝搬する光、9Aは入射光、9Bはその回折光、9C
はその非回折光である。
In the figure, 1 is a piezoelectric substrate, and 2 is a comb-shaped electrode provided on the surface of the piezoelectric substrate 1. 3 is a comb-shaped positive electrode,
Reference numeral 4 is a comb-shaped ground electrode provided so that the comb teeth are parallel to the comb teeth of the positive electrode 3, and 5 is a bent shape provided adjacent to the comb teeth of the positive electrode 3 and the ground electrode 4. It is an intermediate potential electrode (hereinafter, referred to as a dog leg electrode), and the interdigital electrode 2 is composed of these. Reference numeral 6 is an AC signal source connected between the positive electrode 3 and the ground electrode 4, and 7 is an elastic wave. In the conventional Bragg cell of this type, the width w 1 of the dove-leg electrode 5 of the interdigital electrode 2 and the positive electrode 3 is set side by side.
Was set to be equal to the width w 1 of the doggleg electrode 5 and the ground electrode 4. 8 is a photoconductive waveguide, 9 is light propagating in the photoconductive waveguide 8, 9A is incident light, 9B is diffracted light thereof, and 9C is
Is the non-diffracted light.

次に動作について説明する。折れ曲り形状を有するドツ
グレッグ電極5を用いたすだれ状電極2の特性は、電極
配列間隔がすべて同一の場合について、文献:アイイ−
イ−イ−トランザクション.エムテ−テ−−22,No.8,19
74年763頁〜768頁(IEEE Trans.MTT−22,No.8,1974,pp7
63〜768)にて述べられている。すなわち、信号源6の
電気信号は、正電極3と接地電極4との間に電位差を生
じさせる。このとき、ドツグレッグ電極5は、正電極3
側の併設部と接地電極4側の併設部とに、入力電圧を分
圧する。このときの分圧比は、それぞれの併設幅によっ
て決まり、各併設部にて励振される弾性波7の振幅は、
各併設部に印加される電圧に比例する。電極の配列間隔
がすべて同一の場合には、正電極3側の併設幅と接地電
極4側の併設幅との比率に無関係に、各併設部で励振さ
れる弾性波7の位相は等しい。これは、電極の配列間隔
がどの電極についても同一であるので、静電極3側の併
設部および接地電極4側の併設部で、ともに印加電圧の
位相が等しいからである。
Next, the operation will be described. The characteristics of the interdigital electrodes 2 using the dough-legged electrodes 5 having a bent shape are the same when the electrode arrangement intervals are all the same.
EE transaction. Mt-22, No.8, 19
1974, pages 763-768 (IEEE Trans.MTT-22, No.8,1974, pp7
63-768). That is, the electric signal of the signal source 6 causes a potential difference between the positive electrode 3 and the ground electrode 4. At this time, the dogleg electrode 5 is connected to the positive electrode 3
The input voltage is divided between the side adjacent part and the ground electrode 4 side adjacent part. The division ratio at this time is determined by the width of each side, and the amplitude of the elastic wave 7 excited in each side is
It is proportional to the voltage applied to each part. When the electrode arrangement intervals are all the same, the phases of the elastic waves 7 excited at the respective side portions are the same regardless of the ratio between the side width of the positive electrode 3 side and the side width of the ground electrode 4 side. This is because the arrangement intervals of the electrodes are the same for all the electrodes, and therefore the applied voltage phases are the same in both the side electrode on the static electrode 3 side and the side electrode on the ground electrode 4 side.

さて、すだれ状電極2をブラッグセル用として用いる場
合には、第4図に示すように、広帯域にわたり弾性波7
を励振するために電極配列間隔を変化させて用いる。こ
の結果、1つのドツグレッグ電極5に注目すると、これ
に隣り合った2つの正電極3との間の2つの間隔が、同
じドツグレッグ電極5に隣り合った2つの接地電極4と
の間の2つの間隔に一部等しくならず、正電極3側と接
地電極4側とが非対称な構造となる。このため、正電極
3側の併設部と接地電極4側の併設部とで励振される弾
性波7に、振幅差,位相差が生じる。
Now, when the interdigital transducer 2 is used for a Bragg cell, as shown in FIG.
In order to excite, the electrode array interval is changed and used. As a result, when focusing on one dogleg electrode 5, two gaps between two positive electrodes 3 adjacent to each other are two gaps between two ground electrodes 4 adjacent to the same dogleg electrode 5. The intervals are not partly equal, and the positive electrode 3 side and the ground electrode 4 side are asymmetrical. Therefore, the elastic wave 7 excited between the side portion on the positive electrode 3 side and the side portion on the ground electrode 4 side has an amplitude difference and a phase difference.

ところで、光導波路8中を伝搬する光9は、弾性波7と
の音響光学相互作用によりその一部が回折されて、入射
光9Aの方向と異なる方向へ伝搬する。この回折光9Bの方
向と非回折光9Cの方向とのなす角度は弾性波7の周波数
に依存するために、回折光9Bの方向と非回折光9Cの方向
とのなす角を知ることにより、信号源6の周波数を知る
ことができる。
By the way, a part of the light 9 propagating in the optical waveguide 8 is diffracted by the acousto-optic interaction with the elastic wave 7 and propagates in a direction different from the direction of the incident light 9A. Since the angle formed by the direction of the diffracted light 9B and the direction of the non-diffracted light 9C depends on the frequency of the elastic wave 7, by knowing the angle formed by the direction of the diffracted light 9B and the direction of the non-diffracted light 9C, The frequency of the signal source 6 can be known.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

従来のブラッグセルは以上のように構成されているの
で、すだれ状電極2により励振される弾性波7には場所
によって振幅差,位相差がある。
Since the conventional Bragg cell is configured as described above, the elastic wave 7 excited by the interdigital electrode 2 has an amplitude difference and a phase difference depending on the location.

回折した時点での(第4図における弾性波7と光9の重
なり部分に対応)回折した光の振幅は弾性波7の振幅に
依存する。また、回折した光の位相は弾性波7の位相に
依存する。
The amplitude of the diffracted light at the time of diffraction (corresponding to the overlapping portion of the elastic wave 7 and the light 9 in FIG. 4) depends on the amplitude of the elastic wave 7. The phase of the diffracted light depends on the phase of the elastic wave 7.

回折光9Bは、上記重なり部分で回折した各光のベクトル
和として表現される。交差幅wの部分で励振された弾
性波7の位相と交差幅wの部分で励振された弾性波7
の位相とが異なると、回折した各光の中に位相が互いに
異なるものが出てくる。例えば、互いに逆相のものも出
てくる。すると、それらのベクトル和である回折光9Bの
強度は、弾性波7の振幅および位相が均一である場合に
比べて小さくなってしまう。その結果、周波数分析の際
の信号対雑音比が悪化するなどの問題点があった。
The diffracted light 9B is expressed as the vector sum of the lights diffracted at the overlapping portion. The phase of the elastic wave 7 excited at the intersection width w 1 and the phase of the elastic wave 7 excited at the intersection width w 2
If the phase of the light is different, some of the diffracted lights have different phases. For example, some are in opposite phase. Then, the intensity of the diffracted light 9B, which is the vector sum thereof, becomes smaller than that when the elastic wave 7 has a uniform amplitude and phase. As a result, there was a problem that the signal-to-noise ratio during frequency analysis deteriorated.

この考案は上記のような問題点を解消するためになされ
たもので、ドツグレッグ電極の正電極側併設部と接地電
極側併設部とで励振される弾性波の振幅差,位相差を低
減し、より大きな回折光強度を得て、より大きな信号対
雑音比を有するブラッグセルを得ることを目的とする。
The present invention has been made to solve the above problems, and reduces the amplitude difference and phase difference of elastic waves excited between the positive electrode side adjoining portion and the ground electrode side adjoining portion of the doggreg electrode, The purpose is to obtain a larger diffracted light intensity and obtain a Bragg cell having a larger signal to noise ratio.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係るブラッグセルでは、ドツグレッグ電極の
正電極側併設部の併設幅wと、接地電極側併設部の併
設幅wとが異なるようにしてすだれ状電極を構成する
ことにより、より大きな回折光強度を得て、より大きな
信号対雑音比を有するようにしたものである。
The Bragg cell according to this invention, the hotel's width w 1 of the positive electrode side features of Dotsugureggu electrode, by forming the interdigital electrode and to the hotel's width w 2 of the ground-electrode-site portion is different, larger diffraction The light intensity is obtained so as to have a larger signal-to-noise ratio.

〔作用〕[Action]

この考案におけるブラッグセルでは、ドツグレッグ電極
の正電極側併設部の併設幅wと接地電極側併設部の併
設幅wとを異ならせることにより、正電極側の併設部
と接地電極側の併設部で励振される弾性波の振幅差およ
び位相差を低減することができることを利用している。
In the Bragg cell according to the present invention, the adjoining width w 1 of the adjoining portion of the positive electrode side of the Dot Greg electrode and the adjoining width w 2 of the adjoining portion of the ground electrode side are made different, so that the adjoining portion on the positive electrode side and the adjoining portion on the ground electrode side are different. The fact that it is possible to reduce the amplitude difference and the phase difference of the elastic wave excited by is utilized.

〔実施例〕〔Example〕

以下、この考案の一実施例を図について説明する。第1
図において、第4図と同符号の部分は従来例と同様のも
のであり、2Aは圧電体基板1の表面上に設けられたすだ
れ状電極、3Aはそれの正電極、4Aは同じく接地電極、5A
は同じくドツグレッグ電極、7Aは弾性波である。このす
だれ状電極2Aは、符号3A〜5Aで示される構成要素から構
成され、その形状および配置は従来例のものに類似して
いる。しかし、すだれ状電極2Aは、ドツグレッグ電極5A
と接地電極4Aとの併設部の併設幅wと、ドツグレッグ
電極5Aと正電極2Aとの併設部の併設幅wとが異なるよ
うに構成されている。
An embodiment of the present invention will be described below with reference to the drawings. First
In the figure, the same reference numerals as those in FIG. 4 are the same as those in the conventional example. 2A is a comb-shaped electrode provided on the surface of the piezoelectric substrate 1, 3A is its positive electrode, and 4A is also a ground electrode. , 5A
Is also a Douglegg electrode and 7A is an elastic wave. The interdigital transducer 2A is composed of the components indicated by reference numerals 3A to 5A, and its shape and arrangement are similar to those of the conventional example. However, the interdigital transducer 2A is replaced with the dogleg electrode 5A.
Ground features width w 1 of the hotel portion of the electrode 4A, and features a width w 2 of the hotel of the Dotsugureggu electrode 5A and the positive electrode 2A are configured differently with.

次に、この実施例の動作について説明する。従来と同様
に、信号源6の電気信号は、正電極3Aと接地電極4Aとの
間に電位差を生じさせる。このとき、ドツグレッグ電極
5Aは、正電極3Aとの併設部と接地電極4Aとの併設部とに
入力電圧を分圧する。電極配列間隔を変化させたすだれ
状電極2Aでは、正電極3Aとの併設部で励振される弾性波
7Aと、接地電極4Aとの併設部で励振される弾性波7Aとの
間に振幅差,位相差が生じるが、この振幅差,位相差
は、前述したように、併設幅w,wの比率を変化させ
ることにより調整することができる。すなわち、併設幅
.wを調整することにより、各併設部にて励振され
る弾性波7Aの振幅差,位相差を低減することができる。
この結果、各併設部にて励振された弾性波7Aにより回折
された光9Bの振幅差,位相差も同様に低減され、より大
きな回折光9Bの強度が得られ、より大きな信号対雑音比
を得ることができる。
Next, the operation of this embodiment will be described. As in the conventional case, the electric signal of the signal source 6 causes a potential difference between the positive electrode 3A and the ground electrode 4A. At this time, the dogleg electrode
The 5A divides the input voltage between the side portion with the positive electrode 3A and the side portion with the ground electrode 4A. In the interdigital electrode 2A with the electrode arrangement interval changed, the elastic wave excited at the side of the positive electrode 3A
Although an amplitude difference and a phase difference occur between 7A and the elastic wave 7A excited at the side of the ground electrode 4A, the amplitude difference and the phase difference are, as described above, the side widths w 1 and w 2. It can be adjusted by changing the ratio of. That is, by adjusting the adjoining width w 1 .w 2 , it is possible to reduce the amplitude difference and phase difference of the elastic waves 7A excited in each adjoining part.
As a result, the amplitude difference and the phase difference of the light 9B diffracted by the elastic wave 7A excited in each juxtaposed part are similarly reduced, and a larger intensity of the diffracted light 9B is obtained, and a larger signal-to-noise ratio is obtained. Obtainable.

第2図(a)において、7a,7bは併設幅w,wに各々
対応して非光入射側に向けてすだれ状電極2Aの一端から
各々発生する弾性波7Aの一部、7c,7dは併設幅w,w
の各々に対応して光入射側に向けてすだれ状電極7Aの他
端から各々発生する弾性波の他部、10はドツグレッグ電
極5Aを1つとその併設部分を示す1ドツグレッグ電極併
設部、11は入力電源端子である。第2図(b)におい
て、12〜15は音響端子、A〜A,B〜Bはインピ
ーダンス値、C,Cは容量値、1:1は変成器の変成比
を示したものである。第2図(a)に示す1ドツグレッ
グ電極併設部10を第2図(b)に示すような等価回路に
置換えて考え、この等価回路を縦続接続することにより
すだれ状電極2Aの弾性波7A励振特性を求める。第2図
(b)に示した特価回路の各素子値は、使用する圧電体
基板1および電極配列間隔,併設幅により決定され、こ
れらの関係は、「弾性表面波工学」電子通信学会編p.63
にて詳しく述べられている。第2図(b)における各端
子と第2図(a)における弾性波との対応関係は、端子
12a,12bは弾性波7a,端子13a,13bは弾性波7b,端子14a,14
bは弾性波7c,端子15a,15bは弾性波7dにそれぞれ対応し
ている。従来の形状によれば、A,A,B,B
,A,B,Bとの差異によって、弾性波7a,7b間、
および弾性波7c,7d間に、位相差および振幅差があっ
た。しかし、併設幅w,wに比例する容量値C,C
の値を調整すれば、位相差および振幅差を小さくでき
る。
In FIG. 2 (a), 7a and 7b are part of elastic waves 7A respectively generated from one end of the interdigital transducer 2A toward the non-light incident side, corresponding to the combined widths w 1 and w 2 , 7c, 7d is the combined width w 1 , w 2
Corresponding to each of the other portions of the elastic wave generated from the other end of the interdigital electrode 7A toward the light incident side, 10 is one dogleg leg electrode 5A and one dogleg leg electrode adjoining portion showing its adjoining portion, 11 is Input power supply terminal. In FIG. 2 (b), 12 to 15 are acoustic terminals, A 1 to A 4 , B 1 to B 4 are impedance values, C 1 and C 2 are capacitance values, and 1: 1 is a transformer conversion ratio. It is a thing. The 1-dogleg-electrode-attached portion 10 shown in FIG. 2 (a) is replaced by an equivalent circuit as shown in FIG. 2 (b), and the equivalent circuit is cascaded to generate elastic wave 7A excitation of the interdigital transducer 2A. Find characteristics. Each element value of the special price circuit shown in FIG. 2 (b) is determined by the piezoelectric substrate 1 to be used, the electrode arrangement interval, and the width of the side by side, and the relationship between them is described in “Surface Acoustic Wave Engineering” edited by The Institute of Electronics, Communication and Communication, p. .63
In detail. The correspondence between each terminal in FIG. 2 (b) and the elastic wave in FIG. 2 (a) is
12a and 12b are elastic waves 7a, terminals 13a and 13b are elastic waves 7b, terminals 14a and 14
b corresponds to the elastic wave 7c, and terminals 15a and 15b correspond to the elastic wave 7d, respectively. According to the conventional shape, due to the difference between A 1 , A 3 , B 1 , B 3 and A 2 , A 4 , B 2 , B 4 , between the elastic waves 7a, 7b,
There was a phase difference and an amplitude difference between the elastic waves 7c and 7d. However, the capacitance value C 1 which is proportional to the features width w 1, w 2, C 2
By adjusting the value of, the phase difference and the amplitude difference can be reduced.

「弾性表面波工学」によれば、第2図(b)における下
側の等価回路の電気的等価インピーダンスは、 で表される。上側の等価回路の電気的等価インピーダン
スは、 で表される。ここで、Z,Zは音響インピーダンス、
ωは中心角周波数、Kは電気機械結合係数、hは圧
電定数である。
According to “Surface acoustic wave engineering”, the electrical equivalent impedance of the lower equivalent circuit in FIG. It is represented by. The electrical equivalent impedance of the upper equivalent circuit is It is represented by. Where Z 1 and Z 2 are acoustic impedances,
ω 0 is the central angular frequency, K 2 is the electromechanical coupling coefficient, and h is the piezoelectric constant.

等価回路中の各容量値が併設幅w,wに依存するため
に、併設幅w,wの比率を変えることにより、等価回
路各容量値も変化し、その結果として、端子(12a,12
b),(13a,13b),(14a,14b),(15a,15b)における
弾性波の振幅および位相が変化する。従って、wとw
との比率を様々に変化させて電気的等価インピーダン
スR,Rを算出し、算出結果にもとづいて位相差およ
び振幅差を検定すれば、位相差および振幅差を小さくす
るwとwとの比率が求められる。
For each capacitance value in the equivalent circuit depends on the features width w 1, w 2, by changing the ratio of the hotel's width w 1, w 2, the equivalent circuit the capacitance value is also changed, as a result, the terminal ( 12a, 12
b), (13a, 13b), (14a, 14b), (15a, 15b) change the amplitude and phase of the elastic wave. Therefore, w 1 and w
By varying the ratio with 2 variously, the electrical equivalent impedances R 1 and R 2 are calculated, and if the phase difference and the amplitude difference are tested based on the calculation results, w 1 and w that reduce the phase difference and the amplitude difference are obtained. The ratio with 2 is obtained.

第3図に位相に関する計算結果例を示す。これは、弾性
波7c,7d間の位相差、すなわち、端子(14a,14b),(15
a,15b)間の位相差を示している。第3図(a)は従来
例のように併設幅w,wの比(w/w)が1の場
合、第3図(b)は併設幅w,wの比が2.5の場合に
ついての計算結果例である。併設幅w,wの比を1か
らずらすことにより、位相差を低域できることがわか
る。振幅差については、計算結果から同様に併設幅w
,wの比を1からずらすことにより低減できることが
わかった。また、位相差,振幅差は併設幅w,wの比
を変えることにより調整できることもわかった。すなわ
ち、この考案に係るブラッグセルでは、併設幅w,w
の比を1からずらすことにより、従来に比べ正電極3A側
の併設部と接地電極4A側の併設部で励振される弾性波7A
の位相差および振幅差を低減でき、より大きな回折光9A
強度を得ることができる。
FIG. 3 shows an example of calculation results regarding the phase. This is the phase difference between the elastic waves 7c and 7d, that is, the terminals (14a, 14b), (15
The phase difference between a and 15b) is shown. In FIG. 3 (a), when the ratio (w 1 / w 2 ) of the added widths w 1 and w 2 is 1 as in the conventional example, in FIG. 3 (b), the ratio of the added widths w 1 and w 2 is This is an example of calculation results for the case of 2.5. It can be seen that the phase difference can be lowered by shifting the ratio of the adjacent widths w 1 and w 2 from 1. Regarding the amplitude difference, the side width w is also calculated from the calculation results.
It was found that it can be reduced by shifting the ratio of 1 and w 2 from 1. It was also found that the phase difference and the amplitude difference can be adjusted by changing the ratio of the combined widths w 1 and w 2 . That is, in the Bragg cell according to the present invention, the combined widths w 1 , w 2
By shifting the ratio of 1 from 1, the elastic wave 7A excited at the side part on the positive electrode 3A side and the side part on the ground electrode 4A side compared to the conventional one
The larger diffracted light 9A can reduce the phase difference and amplitude difference of
Strength can be obtained.

なお、以上は、第1図に示す一実施例の場合について説
明したが、この考案はこれに限らず、各電極どうしは、
すべて互いに平行である必要はなく、各電極がわずかず
つ傾斜した場合に適用してもよい。また、各ドツグレッ
グ電極5Aについて、正電極3Aとの併設部の併設幅w
接地電極4との併設部の併設幅wの比率はすべての電
極で同じである必要はなく、各電極ごとに変えてもよ
い。
Although the case of the embodiment shown in FIG. 1 has been described above, the invention is not limited to this, and each electrode is
Not all need to be parallel to each other and may be applied when each electrode is slightly tilted. Further, for each dogleg electrode 5A, the ratio of the combined width w 1 of the combined part with the positive electrode 3A and the combined width w 2 of the combined part with the ground electrode 4 does not need to be the same for all electrodes. You may change to.

〔考案の効果〕[Effect of device]

以上のように、この考案によればドツグレッグ電極と正
電極との併設部に併設幅wとドツグレッグ電極と接地
電極との併設部の併設幅wとを異なるようにして形成
したすだれ状電極を設けるように構成したので、上記併
設部により励振された弾性波の振幅差,位相差を調整で
きる。特に、wとwとの比率を1以外の特定の値に
設定すれば、弾性波の振幅差,位相差が低減され、これ
らの弾性波により回折された光の振幅差,位相差も同様
に低減でき、この結果、回折光強度が増大し、より大き
な信号対雑音比を有するものが得られる効果がある。
As described above, according to the present invention, a comb-shaped electrode formed such that the adjoining width w 1 at the adjoining portion of the Dot Greg electrode and the positive electrode and the adjoining width w 2 of the adjoining portion of the Dot Greg electrode and the ground electrode are different from each other. Since it is configured to be provided, it is possible to adjust the amplitude difference and the phase difference of the elastic waves excited by the side-by-side portion. In particular, if the ratio between w 1 and w 2 is set to a specific value other than 1, the amplitude difference and phase difference of elastic waves are reduced, and the amplitude difference and phase difference of light diffracted by these elastic waves are also reduced. Similarly, it can be reduced, and as a result, the intensity of the diffracted light is increased, and the one having a larger signal to noise ratio is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この考案の一実施例によるブラッグセルを示
す構成図、第2図(a)は第1図のすだれ状電極の構造
を示す図、第2図(b)はすだれ状電極の特性を計算す
るための等価回路を示す図、第3図(a)は併設幅
,wの比(w/w)を1とした場合の弾性波の
位相差の計算結果の線図、第3図(b)は併設幅w,w
の比を2.5とした場合の弾性波の位相差の計算結果の
線図、第4図は従来例のブラッグセルを示す図である。 図において、1は圧電体基板、2Aはすだれ状電極、3Aは
正電極、4Aは接地電極、5Aは折れ曲り形状を有する中間
電位電極(ドッグレッグ電極)、6は信号源、7Aは弾性
波、8は光導波路、9は光、10は1ドッグレッグ電極併
設部、11は電気入力端子、12,13,14,15は音響入力端子
である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a configuration diagram showing a Bragg cell according to an embodiment of the present invention, FIG. 2 (a) is a diagram showing the structure of the interdigital electrode of FIG. 1, and FIG. 2 (b) is a characteristic of the interdigital electrode. FIG. 3 (a) is a diagram showing an equivalent circuit for calculating the above, and FIG. 3 (a) is a line of the calculation result of the phase difference of the elastic wave when the ratio (w 1 / w 2 ) of the combined widths w 1 and w 2 is 1. Fig. 3 (b) shows the width w 1 , w
FIG. 4 is a diagram of the calculation result of the phase difference of the elastic wave when the ratio of 2 is 2.5, and FIG. 4 is a diagram showing a Bragg cell of a conventional example. In the figure, 1 is a piezoelectric substrate, 2A is a comb-shaped electrode, 3A is a positive electrode, 4A is a ground electrode, 5A is a bent intermediate potential electrode (dogleg electrode), 6 is a signal source, and 7A is an elastic wave. , 8 is an optical waveguide, 9 is light, 10 is a part with 1 dog leg electrode, 11 is an electric input terminal, and 12, 13, 14, and 15 are acoustic input terminals. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】圧電体基板の表面に光導波路を形成すると
ともに、相対する櫛形の正電極および接地電極と該正電
極の櫛歯部に併設された部分および該接地電極の櫛歯部
に併設された部分を有し折れ曲り形状を成す中間電位電
極とから成るすだれ状電極であって、その電極配置間隔
が広帯域にわたり弾性波を励振するために変化している
弾性波励振用すだれ状電極を設け、上記光導波路を伝搬
する光と上記すだれ状電極への交流電圧の印加により発
生する弾性波との音響光学相互作用を利用して上記交流
の周波数分析を行うためのブラッグセルにおいて、上記
中間電位電極と上記正電極との併設幅が上記中間電位電
極と上記接地電極との併設幅とは異なるように構成した
ことを特徴とするブラッグセル。
1. An optical waveguide is formed on the surface of a piezoelectric substrate, and a comb-shaped positive electrode and a ground electrode facing each other, a portion provided in a comb tooth portion of the positive electrode, and a comb tooth portion of the ground electrode are provided. An interdigital electrode having a bent portion and an intermediate potential electrode having a bent shape, the electrode arrangement interval of which is changed to excite elastic waves over a wide band. In the Bragg cell for performing the frequency analysis of the alternating current by utilizing the acousto-optic interaction between the light propagating through the optical waveguide and the elastic wave generated by the application of the alternating voltage to the interdigital electrode, the intermediate potential is provided. A Bragg cell, characterized in that an adjoining width of the electrode and the positive electrode is different from an adjoining width of the intermediate potential electrode and the ground electrode.
JP11427686U 1986-07-25 1986-07-25 Black cell Expired - Lifetime JPH0633423Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11427686U JPH0633423Y2 (en) 1986-07-25 1986-07-25 Black cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11427686U JPH0633423Y2 (en) 1986-07-25 1986-07-25 Black cell

Publications (2)

Publication Number Publication Date
JPS6321869U JPS6321869U (en) 1988-02-13
JPH0633423Y2 true JPH0633423Y2 (en) 1994-08-31

Family

ID=30996866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11427686U Expired - Lifetime JPH0633423Y2 (en) 1986-07-25 1986-07-25 Black cell

Country Status (1)

Country Link
JP (1) JPH0633423Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371436B (en) * 2006-09-22 2012-05-30 株式会社村田制作所 Longitudinally coupled resonator type surface acoustic wave filter device

Also Published As

Publication number Publication date
JPS6321869U (en) 1988-02-13

Similar Documents

Publication Publication Date Title
US5374908A (en) Surface acoustic wave device for generating an output signal with only a symmetric or only an asymmetric vibration mode acoustic wave
JPH0633423Y2 (en) Black cell
JPH09214284A (en) Surface elastic wave device
JP2000312125A (en) Surface acoustic wave unit
JPS6247206A (en) Surface acoustic wave multimode filter
JP2738179B2 (en) Weighted electrodes for surface acoustic wave filters
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
JP2844968B2 (en) Weighted electrodes for surface acoustic wave filters
KR910003441B1 (en) Saw filter
US6559739B2 (en) String weighted surface acoustic wave transducer
JP3226645B2 (en) Surface acoustic wave filter
JP3296367B2 (en) Internal reflection unidirectional surface acoustic wave device with floating electrode.
JPS616916A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode
JPH03129915A (en) Surface acoustic wave resonator
JPS63266911A (en) Surface acoustic wave filter
JP2526294Y2 (en) Surface acoustic wave device
JP2714189B2 (en) Surface acoustic wave filter and communication device using the same
JPH03119815A (en) Internal reflection type unidirectional surface acoustic wave converter with floating electrode
JP3355039B2 (en) Surface acoustic wave device
JP3132109B2 (en) 2-port SAW resonator
JP2985457B2 (en) Acousto-optic tunable wavelength filter
JPH0720619Y2 (en) Black cell
JPH05259528A (en) Piezoelectric transformer
JPS6130338Y2 (en)
JPH0478212A (en) Electrode structure for surface acoustic wave filter