JP2526294Y2 - Surface acoustic wave device - Google Patents
Surface acoustic wave deviceInfo
- Publication number
- JP2526294Y2 JP2526294Y2 JP11917589U JP11917589U JP2526294Y2 JP 2526294 Y2 JP2526294 Y2 JP 2526294Y2 JP 11917589 U JP11917589 U JP 11917589U JP 11917589 U JP11917589 U JP 11917589U JP 2526294 Y2 JP2526294 Y2 JP 2526294Y2
- Authority
- JP
- Japan
- Prior art keywords
- surface acoustic
- input
- acoustic wave
- output
- common bus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【考案の詳細な説明】 (産業上の利用分野) 本考案は、高耐電力の弾性表面波装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a surface acoustic wave device having high withstand power.
(従来の技術) 第2図は、従来の多変換器構成の弾性表面波装置の一
例を示す概略平面図であり、圧電基板1上に、すだれ状
の電極指が対向して組み合わさって構成され且つ入力さ
れた電気信号を弾性表面波に変換する複数の入力側弾性
表面波変換器(以下、入力側変換器と称する)2−1〜
2−5と、すだれ状の電極指が対向して組み合わさって
構成され且つ各入力側変換器が励振した弾性表面波を受
けて電気信号に変換する複数の出力側弾性表面波変換器
(以下、出力側変換器と称する)3−1〜3−6とを、
弾性表面波の伝搬方向に交互に配置し、各入力側変換器
2−1〜2−5の一端を入力側共通バス電極10に接続し
更にこの入力側共通バス電極10を介して入力端子4に接
続すると共に他端を接地し、各出力側変換器3−1〜3
−6の一端を出力側共通バス電極11に接続し更にこの出
力側共通バス電極11を介して出力端子5に接続すると共
に他端を接地したものである。(Prior Art) FIG. 2 is a schematic plan view showing an example of a conventional surface acoustic wave device having a multi-transducer configuration, in which interdigital electrode fingers are combined on a piezoelectric substrate 1 so as to face each other. A plurality of input-side surface acoustic wave converters (hereinafter, referred to as input-side converters) 2-1 to convert the input and input electric signals into surface acoustic waves
A plurality of output surface acoustic wave converters (hereinafter, referred to as “surface acoustic wave converters”) configured by combining 2-5 and interdigital electrode fingers facing each other and receiving surface acoustic waves excited by each input side transducer and converting the surface acoustic waves into electric signals. , Output side converter) 3-1 to 3-6,
One end of each of the input-side converters 2-1 to 2-5 is connected to the input-side common bus electrode 10 alternately in the propagation direction of the surface acoustic wave, and the input terminal 4 is connected via the input-side common bus electrode 10. , And the other end is grounded.
One end of -6 is connected to the output-side common bus electrode 11, further connected to the output terminal 5 via the output-side common bus electrode 11, and the other end is grounded.
入力端子4に供給された電気信号は入力側共通バス電
極10を通って各入力側変換器2−1〜2−5に分配さ
れ、各入力側変換器2−1〜2−5は圧電基板1上に弾
性表面波を励振する。この弾性表面波は各入力側変換器
2−1〜2−5の両側に、その電極指と垂直方向に伝搬
する。前記弾性表面波が各出力側変換器3−1〜3−6
に達すると、その電極指の間に電位差が生じ、その電位
差は出力側共通バス電極11を通して出力端子5から電気
信号として取り出される。The electric signal supplied to the input terminal 4 is distributed to each of the input converters 2-1 to 2-5 through the input common bus electrode 10, and each of the input converters 2-1 to 2-5 includes a piezoelectric substrate. Excitation of a surface acoustic wave on 1 This surface acoustic wave propagates to both sides of each of the input-side converters 2-1 to 2-5 in a direction perpendicular to the electrode fingers. The surface acoustic waves are output from the respective output-side converters 3-1 to 3-6.
, A potential difference is generated between the electrode fingers, and the potential difference is extracted as an electric signal from the output terminal 5 through the output-side common bus electrode 11.
なお、第2図に示す弾性表面波装置において、出力端
子5の方から電気信号を供給した場合、上述の動作と同
様にして、入力端子4から電気信号を取り出すことがで
きる。この場合、第2図の、出力側変換器3−1〜3−
6は入力側変換器として動作し、入力側変換器2−1〜
2−5は出力側変換器として動作する。In the surface acoustic wave device shown in FIG. 2, when an electric signal is supplied from the output terminal 5, the electric signal can be extracted from the input terminal 4 in the same manner as the above-described operation. In this case, the output converters 3-1 to 3- in FIG.
6 operates as an input side converter, and the input side converters 2-1 to 2-1.
2-5 operates as an output side converter.
(考案が解決しようとする課題) しかしながら、上記構成の弾性表面波装置では、入力
端子4および出力端子5から素子を見たときのインピー
ダンスを50Ωにするため、各入力側変換器2−1〜2−
5と入力端子4を結ぶ入力側共通バス電極10の線幅およ
び各出力側変換器3−1〜3−6と出力端子5を結ぶ出
力側共通バス電極11の線幅が制限される。なお、この線
幅は圧電基板1の厚さとその誘電率の関数であり、例え
ば厚さ0.35mmのLiTa O3基板では、線幅は約40μmとな
る。(Problem to be Solved by the Invention) However, in the surface acoustic wave device having the above-described configuration, the input-side converters 2-1 to 2-1 have an impedance of 50Ω when the element is viewed from the input terminal 4 and the output terminal 5. 2-
The line width of the input-side common bus electrode 10 connecting the terminal 5 to the input terminal 4 and the line width of the output-side common bus electrode 11 connecting the output-side converters 3-1 to 3-6 and the output terminal 5 are limited. The line width is a function of the thickness of the piezoelectric substrate 1 and its dielectric constant. For example, in the case of a 0.35 mm-thick LiTaO 3 substrate, the line width is about 40 μm.
一方、各入力側変換器に分配される電力は等しいの
で、入力側共通バス電極に流れる電流は部分的に異な
る。例えば、第2図において、入力側共通バス電極10の
a点の電流はb点の電流の2倍であり、出力側共通バス
電極11のc点の電流はd点の電流の3倍となる。On the other hand, since the power distributed to each input-side converter is equal, the current flowing through the input-side common bus electrode is partially different. For example, in FIG. 2, the current at point a of the input-side common bus electrode 10 is twice the current at point b, and the current at point c of the output-side common bus electrode 11 is three times the current at point d. .
そのため、電流の多く流れる部分が溶解しやすくな
る。Therefore, a portion where a large amount of current flows easily melts.
すなわち、弾性表面波装置に印加しうる電力は、所定
のインピーダンスを得るために線幅が決まる入力側また
は出力側共通バス電極の一部分の溶解により制限され、
大電力の通電が不可能であるという欠点があった。That is, the power that can be applied to the surface acoustic wave device is limited by the dissolution of a part of the input-side or output-side common bus electrode whose line width is determined to obtain a predetermined impedance,
There is a drawback that it is impossible to supply high power.
本発明は、以上に述べた大電力の通電が不可能である
という欠点を除去し、耐電力性の向上を図った弾性表面
波装置を提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface acoustic wave device that eliminates the above-described drawback that high power cannot be supplied and improves power durability.
(課題を解決するための手段) 本考案は上記目的を達成するために、 圧電基板上に、すだれ状の電極指が対向して組み合わ
さって構成され且つ入力された電気信号を弾性表面波に
変換する複数の入力側弾性表面波変換器と、すだれ状の
電極指が対向して組み合わさって構成され且つ前記各入
力側弾性表面波変換器が励振した弾性表面波を受けて電
気信号に変換する複数の出力側弾性表面波変換器とを、
弾性表面波の伝搬方向に交互に配置し、各入力側弾性表
面波変換器の一端を入力側共通バス電極に接続し更に該
入力側共通バス電極を介して入力端子に接続すると共に
他端を接地し、且つ各出力側弾性表面波変換器の一端を
出力側共通バス電極に接続し更に該出力側共通バス電極
を介して出力端子に接続すると共に他端を接地してなる
多変換器構成の弾性表面波装置において、 前記入力側共通バス電極における前記入力端子に近い
部分または前記出力側共通バス電極における前記出力端
子に近い部分の線幅を広くしたものである。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a piezoelectric substrate in which interdigitated electrode fingers are combined to face each other, and converts an input electric signal into a surface acoustic wave. A plurality of input-side surface acoustic wave transducers to be converted and interdigital electrode fingers are combined to face each other, and receive the surface acoustic waves excited by each of the input-side surface acoustic wave converters to convert them into electric signals. A plurality of output surface acoustic wave converters,
The input side surface acoustic wave converters are alternately arranged in the propagation direction of the surface acoustic wave, one end of each input side surface acoustic wave converter is connected to the input side common bus electrode, and the other end is connected to the input terminal via the input side common bus electrode. A multi-converter configuration in which each output side surface acoustic wave converter is grounded, one end of each output side surface acoustic wave converter is connected to an output side common bus electrode, and further connected to an output terminal via the output side common bus electrode, and the other end is grounded. In the surface acoustic wave device of (1), a line width of a portion of the input-side common bus electrode near the input terminal or a portion of the output-side common bus electrode near the output terminal is widened.
(作用) 入力端子に供給される電気信号は、入力側共通バス電
極を通して各入力側弾性表面波変換器に分配される。こ
の場合、前記入力側共通バス電極のうち前記入力端子に
近い部分には大きい電流が流れるが、その部分の線幅は
広げられているので、電流密度の増大が抑圧される。(Operation) The electric signal supplied to the input terminal is distributed to each input-side surface acoustic wave converter through the input-side common bus electrode. In this case, a large current flows in a portion of the input-side common bus electrode close to the input terminal, but since the line width of the portion is widened, an increase in current density is suppressed.
また、各出力側弾性表面波変換器の信号電流は出力側
共通バス電極を通して出力端子に集められるので、該出
力端子に近い部分に大きい電流が流れる。しかし、この
場合も、前記出力側共通バス電極のうち前記出力端子近
傍の部分の線幅が広げられているので、電流密度の増大
は抑圧される。In addition, since the signal current of each output-side surface acoustic wave converter is collected at the output terminal through the output-side common bus electrode, a large current flows in a portion near the output terminal. However, also in this case, since the line width of the portion near the output terminal of the output-side common bus electrode is increased, the increase in current density is suppressed.
従って、本考案に係る弾性表面波装置の耐電力性は向
上する。Therefore, the power durability of the surface acoustic wave device according to the present invention is improved.
(実施例) 第1図は本考案に係わる多変換器構成の弾性表面波装
置の一実施例を示す概略平面図である。第1図におい
て、圧電基板1、入力側弾性表面波変換器(以下、入力
側変換器と称する)2−1〜2−5、出力側弾性表面波
変換器(以下、出力側変換器と称する)3−1〜3−
6、入力端子4、出力端子5等は第2図に示す同一番号
を付したものと同等であり、配置も同様であるが、各入
力側変換器2−1〜2−5の一端の入力端子4とを接続
する入力側共通バス電極6のうち入力端子4と該入力端
子4に最も近い入力側変換器2−2,2−3,2−4との間の
部分8の線幅と、各出力側変換器3−1〜3−6の一端
と出力端子5とを接続する出力側共通バス電極7のうち
出力端子5と該出力端子5に最も近い出力側変換器3−
3,3−4との間の部分9の線幅をそれぞれ広くしてあ
る。(Embodiment) FIG. 1 is a schematic plan view showing an embodiment of a surface acoustic wave device having a multi-converter structure according to the present invention. In FIG. 1, a piezoelectric substrate 1, an input-side surface acoustic wave converter (hereinafter, referred to as an input-side converter) 2-1 to 2-5, and an output-side surface acoustic wave converter (hereinafter, referred to as an output-side converter). ) 3-1 to 3-
6, the input terminal 4, the output terminal 5, etc. are the same as those given the same numbers as shown in FIG. 2 and the arrangement is also the same, but the input at one end of each of the input side converters 2-1 to 2-5. The line width of a portion 8 of the input-side common bus electrode 6 connecting the terminal 4 between the input terminal 4 and the input-side converter 2-2, 2-3, 2-4 closest to the input terminal 4 The output terminal 5 of the output-side common bus electrode 7 connecting one end of each of the output-side converters 3-1 to 3-6 and the output terminal 5 and the output-side converter 3-
The line width of the portion 9 between 3, 3 and 4 is widened.
第1図における入力側共通バス電極6の線幅が40μ
m、入力端子4に近い部分8の線幅60μmである場合
に、入力端子4に1Wの電力を入力すると、該入力端子4
に流れ込む電流Iは I=(P/Z)1/2=(1/50)1/2=0.1414(A) となり、各入力側変換器2−1〜2−5には、 I′=I/5=0.1414/5=0.02828(A) の電流が流れる。従って、入力側共通バス電極6に流れ
る電流I6、入力端子に近い部分8に流れる電流I8は、そ
れぞれ、 I6=0.02828(A)、I8=I6×2=0.05656(A)とな
る。電極の溶解は電極抵抗による発熱が原因である。前
記電流I8が流れる部分8の線幅(a)が40μm、膜厚
(b)が5000Å、抵抗率(ρ)が2.4×10-8Ω・cm、長
さ(C)が1mmであるとすると抵抗Rは、 となるから、この部分で熱となるエネルギーEは E=RI8 2=3.839×10-5(J) となる。仮に、このエネルギーで電極が溶解するとす
る。入力端子4に近い部分8の線幅を40μmから60μm
に広げると、電極抵抗は2/3に減少するから、この電極
に流すことのできる最大の電流は前記電流I8の 倍になる。従って、入力端子4に供給可能な電力は3/2
倍となり、耐電力性が向上する。The line width of the input common bus electrode 6 in FIG.
m, when the line width of the portion 8 near the input terminal 4 is 60 μm, inputting 1 W of power to the input terminal 4
Is I = (P / Z) 1/2 = (1/50) 1/2 = 0.1414 (A), and each input-side converter 2-1 to 2-5 has I ′ = I / 5 = 0.1414 / 5 = 0.02828 (A). Accordingly, the current I 8 flowing in the input side common bus current I 6 flowing through the electrode 6, closer to the input terminal portion 8, respectively, I 6 = 0.02828 (A) , I 8 = I 6 × 2 = 0.05656 (A) and Become. Dissolution of the electrodes is caused by heat generated by the electrode resistance. If the line width (a) of the portion 8 where the current I 8 flows is 40 μm, the film thickness (b) is 5000 °, the resistivity (ρ) is 2.4 × 10 −8 Ω · cm, and the length (C) is 1 mm. Then, the resistance R becomes Since the energy E to be heat in this portion becomes E = RI 8 2 = 3.839 × 10 -5 (J). It is assumed that the electrode is melted by this energy. The line width of the portion 8 close to the input terminal 4 should be 40 μm to 60 μm.
Upon spreading, because the electrode resistance is reduced to 2/3, the maximum current that can flow to the electrodes of the current I 8 Double. Therefore, the power that can be supplied to the input terminal 4 is 3/2
And the power durability is improved.
一方、入力側また出力側共通バス電極の一部の線幅拡
大により入力端子4、出力端子5における入力インピー
ダンスが変動する。しかし、その変動は許容できる範囲
にある。例えば、入力側変換器5個、出力側変換器6
個、計11個の弾性表面波変換器からなる弾性表面波装置
についての実測によると、入力側及び出力側共通バス電
極が全て40μmである場合の入力インピーダンス(Rは
実数部、×は虚数部)は通過帯域の信号に対して、47.5
Ω<R<53.0Ω、−5.3Ω<×<−2.6Ωであるが、本考
案を採用して入力端子に近い入力側共通バス電極の部分
を60μmに広げた場合の入力インピーダンスは、46.0Ω
<R<49.0Ω、−5.8<×<−3.4Ωであり、インピーダ
ンスの変化は許容範囲にある。インピーダンスの不整合
の度合を図る目安となるリターンロスについても、フィ
ルタ通過帯域の信号に対して10dB以上あり、インピーダ
ンスの不整合は発生していない。また、出力端子に近い
出力側共通バス電極の部分を広げた場合についても、同
様のことが言える。On the other hand, the input impedance at the input terminal 4 and the output terminal 5 fluctuates due to an increase in the line width of a part of the input-side and output-side common bus electrodes. However, the variation is in an acceptable range. For example, five input converters and six output converters
According to the actual measurement of a surface acoustic wave device composed of a total of 11 surface acoustic wave converters, the input impedance (R is a real part, × is an imaginary part) when the input and output common bus electrodes are all 40 μm. ) Is 47.5 for the passband signal.
Although Ω <R <53.0Ω and −5.3Ω <× <−2.6Ω, the input impedance when the input-side common bus electrode near the input terminal is extended to 60 μm by adopting the present invention is 46.0Ω.
<R <49.0Ω, −5.8 <× <−3.4Ω, and the change in impedance is within an allowable range. The return loss, which is a measure to measure the degree of impedance mismatch, is 10 dB or more with respect to the signal in the filter pass band, and no impedance mismatch occurs. The same can be said for the case where the portion of the output-side common bus electrode near the output terminal is expanded.
また、上述の11個の弾性表面波変換器からなる弾性表
面波装置において、入力2Wの通電でも入力側または出力
側共通バス電極の溶解は認められず、明らかに耐電力性
が向上している。なお、前記実施例では、入力端子に近
い入力側共通バス電極の部分の線幅及び出力端子に近い
出力側共通バス電極の部分の線幅の両者を広くした場合
について示しているが、いずれか一方の線幅を広くする
のみでも耐電力性の向上に寄与し得る。In addition, in the surface acoustic wave device including the above-described 11 surface acoustic wave converters, even when the input power of 2 W is supplied, the input or output common bus electrode is not melted, and the power durability is clearly improved. . In the above-described embodiment, both the line width of the portion of the input-side common bus electrode near the input terminal and the line width of the portion of the output-side common bus electrode near the output terminal are shown. Enlarging the line width on one side can also contribute to improving the power durability.
(考案の効果個 以上、詳細に説明したように本考案によれば、多変換
器構成の弾性表面波装置において、電流密度が最も高く
なる入出力端子に近い入力側または出力側共通バス電極
の線幅を広げたので、電流密度を低減することができ、
耐電力性が向上する。(Effects of the Invention As described in detail above, according to the present invention, in a surface acoustic wave device having a multi-transducer configuration, the input or output common bus electrode close to the input / output terminal where the current density is highest is obtained. Since the line width has been increased, the current density can be reduced,
Power durability is improved.
本考案により、従来、弾性表面波装置の適用が不可能
であるといわれていたワットオーダーの電力を扱うシス
テムへの弾性表面装置の応用が可能となった。According to the present invention, it has become possible to apply a surface acoustic wave device to a system that handles power in the order of watts, which was conventionally said to be impossible to apply the surface acoustic wave device.
第1図は本考案の実施例を示す概略平面図、第2図は従
来の弾性表面波装置の概略平面図である。 1…圧電基板、2−1〜2−5…入力側弾性表面波変換
器、3−1〜3−6…出力側弾性表面波変換器、4…入
力端子、5…出力端子、6…入力側共通バス電極、7…
出力側共通バス電極。FIG. 1 is a schematic plan view showing an embodiment of the present invention, and FIG. 2 is a schematic plan view of a conventional surface acoustic wave device. DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate, 2-1 to 2-5 ... Input surface acoustic wave converter, 3-1 to 3-6 ... Output surface acoustic wave converter, 4 ... Input terminal, 5 ... Output terminal, 6 ... Input Side common bus electrode, 7 ...
Output common bus electrode.
Claims (1)
て組み合わさって構成され且つ入力された電気信号を弾
性表面波に変換する複数の入力側弾性表面波変換器と、
すだれ状の電極指が対向して組み合わさって構成され且
つ前記各入力側弾性表面波変換器が励振した弾性表面波
を受けて電気信号に変換する複数の出力側弾性表面波変
換器とを、弾性表面波の伝搬方向に交互に配置し、各入
力側弾性表面波変換器の一端を入力側共通バス電極に接
続し更に該入力側共通バス電極を介して入力端子に接続
すると共に他端を接地し、且つ各出力側弾性表面波変換
器の一端を出力側共通バス電極に接続し更に該出力側共
通バス電極を介して出力端子に接続すると共に他端を接
地してなる多変換器構成の弾性表面波装置において、 前記入力側共通バス電極における前記入力端子に近い部
分または前記出力側共通バス電極における前記出力端子
に近い部分の線幅を広くしたことを特徴とする弾性表面
波装置。1. A plurality of input-side surface acoustic wave converters, each of which is formed by combining interdigital electrode fingers on a piezoelectric substrate and converts an input electric signal into a surface acoustic wave;
A plurality of output surface acoustic wave converters, which are configured by interdigitated electrode fingers facing each other and receive surface acoustic waves excited by the input surface acoustic wave converters and convert the surface acoustic waves into electrical signals, The input side surface acoustic wave converters are alternately arranged in the propagation direction of the surface acoustic wave, one end of each input side surface acoustic wave converter is connected to the input side common bus electrode, and the other end is connected to the input terminal via the input side common bus electrode. A multi-converter configuration in which each output side surface acoustic wave converter is grounded, one end of each output side surface acoustic wave converter is connected to an output side common bus electrode, and further connected to an output terminal via the output side common bus electrode, and the other end is grounded. The surface acoustic wave device according to claim 1, wherein a line width of a portion of the input-side common bus electrode near the input terminal or a portion of the output-side common bus electrode near the output terminal is widened.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11917589U JP2526294Y2 (en) | 1989-10-13 | 1989-10-13 | Surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11917589U JP2526294Y2 (en) | 1989-10-13 | 1989-10-13 | Surface acoustic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0359724U JPH0359724U (en) | 1991-06-12 |
JP2526294Y2 true JP2526294Y2 (en) | 1997-02-19 |
Family
ID=31667311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11917589U Expired - Lifetime JP2526294Y2 (en) | 1989-10-13 | 1989-10-13 | Surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2526294Y2 (en) |
-
1989
- 1989-10-13 JP JP11917589U patent/JP2526294Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0359724U (en) | 1991-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58171120A (en) | Acoustic surface wave device | |
US4079342A (en) | Fanned multistrip coupler filters | |
JP2003526240A (en) | Surface wave converter with optimized reflection | |
JPH06260881A (en) | Surface acoustic wave convolver | |
JP2526294Y2 (en) | Surface acoustic wave device | |
EP0063839B1 (en) | Acoustic wave bandpass electrical filters | |
US4370633A (en) | Acoustic wave bandpass electrical filters | |
JPS6247207A (en) | Convolver apparatus | |
JPH03204212A (en) | Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter | |
JP2714189B2 (en) | Surface acoustic wave filter and communication device using the same | |
JPH0633423Y2 (en) | Black cell | |
JP2853094B2 (en) | Surface acoustic wave device | |
JP2806429B2 (en) | Surface acoustic wave convolver | |
JPH0720619Y2 (en) | Black cell | |
JP2505863B2 (en) | Surface acoustic wave convolver | |
JPH11274887A (en) | Surface acoustic wave converter | |
JPS6130338Y2 (en) | ||
JP3436812B2 (en) | Surface acoustic wave converter | |
JPH0422210A (en) | Surface acoustic wave element | |
Dmitriev | Theory and analysis of a hybrid SAW-resonator filter with enhanced out-of-band suppression | |
JP3226645B2 (en) | Surface acoustic wave filter | |
JPH05226961A (en) | Internal reflection type unidirectinal surface acoustic wave converter having floating electrode and surface acoustic wave function element | |
JPS621311A (en) | Surface acoustic wave device | |
JPH03119815A (en) | Internal reflection type unidirectional surface acoustic wave converter with floating electrode | |
CA1276284C (en) | Surface elastic wave device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |