JPH063341A - Self-traveling flaw detecting device - Google Patents

Self-traveling flaw detecting device

Info

Publication number
JPH063341A
JPH063341A JP4162574A JP16257492A JPH063341A JP H063341 A JPH063341 A JP H063341A JP 4162574 A JP4162574 A JP 4162574A JP 16257492 A JP16257492 A JP 16257492A JP H063341 A JPH063341 A JP H063341A
Authority
JP
Japan
Prior art keywords
plate
self
inspected
truck
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4162574A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nagakura
義之 永倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4162574A priority Critical patent/JPH063341A/en
Publication of JPH063341A publication Critical patent/JPH063341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To enable a self-traveling flaw detecting device to perform highly accurate flaw detection when the device is actuated after the device is carried onto a plate to be inspected and moved to a starting position by providing ultrasonic transmitters-receivers which transmit and receive surface waves for measuring the distances to the edges of the plate to be measured. CONSTITUTION:Ultrasonic transmitters-receivers 16A and 16A' which are mounted on the front face of a self-traveling truck 12 and transmit and receive surface waves in the advancing direction of the truck 12 perform position measurement in the advancing direction and meandering control when the truck 12 advances in the direction shown by the arrow A. In addition, ultrasonic transmitters-receivers 14A and 14A' which are mounted on one side face of the truck 12 and transmit and receive surface waves in the direction perpendicular to the advancing direction of the truck 12 perform position measurement and meandering control in the direction perpendicular to the advancing direction of the truck 12 from the distance to the edge 10A of a plate 10 to be inspected. Since the meandering of the truck 12 is prevented by the actions of the transmitters-receivers 14a and 14A' and 16A and 16A' mounted on the truck 12 in the advancing direction and the direction perpendicular to the advancing direction two sets by two sets, the plate 10 can be inspected for flaw with high accuracy by means of a flaw detecting sensor 18A mounted on the front section of the truck 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、短形又は正方形の平面
状鋼板などでなる金属板の表面品質や内部品質を非破壊
的に検査する自走探傷装置に係わり、特に、渦流探傷、
磁気探傷、超音波探傷などを必要とする、被検査板上の
スタート点に置き起動させるだけで被検査板の板面若し
くは板内を無軌道で自走しながら全面探傷若しくはピッ
チ探傷する自走探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-propelled flaw detector for nondestructively inspecting the surface quality and the internal quality of a metal plate made of a flat steel plate of a short or square shape, and in particular, an eddy current flaw detector,
Self-propelled flaw detection requiring magnetic flaw detection, ultrasonic flaw detection, etc. Regarding the device.

【0002】[0002]

【従来の技術】金属板の表面品質や内部品質を非破壊的
に検査する装置として超音波探傷装置が従来から知られ
ている。このような超音波探傷装置には、例えば、特開
昭51−10882号や特開昭59−133457号で
開示されているような固定式のものと、例えば、特開昭
62−30952号で開示されているような可搬式のも
のがある。
2. Description of the Related Art An ultrasonic flaw detector is conventionally known as a device for nondestructively inspecting the surface quality and internal quality of a metal plate. Such ultrasonic flaw detectors include, for example, a fixed type as disclosed in JP-A-51-10882 and JP-A-59-133457, and one disclosed in JP-A-62-30952. Some are portable as disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記固
定式の超音波探傷装置の場合、検査すべき平板状鋼板な
どを超音波探傷装置の方へ運ぶ必要があるうえ、超音波
探傷装置の設備や駆動に一定の条件が付されていた。こ
のため、検査できる鋼板の厚さなどに厳しい制限があっ
た。
However, in the case of the fixed type ultrasonic flaw detector, it is necessary to carry a flat steel plate or the like to be inspected to the ultrasonic flaw detector, and in addition to the equipment of the ultrasonic flaw detector, The drive was subject to certain conditions. For this reason, there are severe restrictions on the thickness of the steel sheet that can be inspected.

【0004】一方、可搬式の超音波探傷装置の場合、装
置ガイドなどを設置しなければならないため、汎用性に
欠けるうえ、探傷するまで時間がかかり、更に、後処理
にも人手を要するようになっていた。
On the other hand, in the case of a portable ultrasonic flaw detector, since a device guide and the like must be installed, it lacks versatility, and it takes time to detect flaws, and further, post-processing requires manpower. Was becoming.

【0005】又、上記従来例などの超音波探傷装置にお
いては、広範な鋼板を無軌道で超音波探傷する場合、探
傷センサである探触子を手や台車に固定し手動で探傷す
ることが行われていた。このため、探傷検査線の直線性
や探触子位置の精度が得にくくなるうえ、手動操作とい
う人力による負荷がかかる問題点があった。
Further, in the ultrasonic flaw detectors such as the above-mentioned conventional examples, when performing ultrasonic flaw detection on a wide range of steel plates without a track, it is possible to fix the probe as a flaw detection sensor to a hand or a trolley and perform the flaw detection manually. It was being appreciated. Therefore, it is difficult to obtain the linearity of the flaw detection inspection line and the accuracy of the probe position, and there is a problem that a manual operation requires a manual load.

【0006】一方、ガイド式無人探傷装置やレール式無
人探傷装置も知られているが、これらの場合には、ガイ
ドやレールなどの付帯設備を準備して設置しなければな
らず、人手が必要となるため、実用性に乏しいという問
題点があった。
On the other hand, although guide type unmanned flaw detectors and rail type unmanned flaw detectors are also known, in these cases, auxiliary equipment such as guides and rails must be prepared and installed, which requires manpower. Therefore, there is a problem that it is not practical.

【0007】このような事情により、省力化と高い探傷
精度を達成できる自走探傷装置の出現が強く望まれてい
た。又、このような自走探傷装置には、必要な場所にい
つでも持ち運びできる可搬的な装置であることも要請さ
れていた。
Under these circumstances, the advent of a self-propelled flaw detector capable of achieving labor saving and high flaw detection accuracy has been strongly desired. Further, such a self-propelled flaw detector has also been required to be a portable device that can be carried to a required place at any time.

【0008】本発明は、かかる状況に鑑み、上述のよう
な従来例の問題点などを解消せんとして成されたもので
あり、被検査板の上に運び、スタート位置に移動して起
動させるだけで、該被検査板を高精度に全面探傷若しく
はピッチ探傷できるような自走探傷装置を提供すること
を目的とする。
In view of the above situation, the present invention has been made to solve the above-mentioned problems of the conventional example. It is simply carried on a plate to be inspected, moved to a start position and activated. It is therefore an object of the present invention to provide a self-propelled flaw detection apparatus capable of performing flaw detection on the entire surface of the plate to be inspected or pitch detection with high accuracy.

【0009】[0009]

【課題を解決するための手段】本発明は、被検査板の板
面を自走して走査する探傷装置において、被検査板の端
縁までの距離を測定するための表面波を送受信する超音
波送受信子を設けることにより、前記課題を解決したも
のである。
DISCLOSURE OF THE INVENTION The present invention is a flaw detector for moving and scanning a plate surface of a plate to be inspected by transmitting and receiving surface waves for measuring the distance to the edge of the plate to be inspected. The above problem is solved by providing a sound wave transmitter / receiver.

【0010】又、本発明は、被検査板の板面を自走して
走査する探傷装置において、被検査板の一方の側縁に平
行に前進若しくは後進する走行装置と、該走行装置の走
行距離を測定する装置と、被検査板の側縁からの左右方
向又は左右前後方向の距離を測定するための表面波を送
受信する超音波送受信子とを設けることにより、前記課
題を解決したものである。
Further, according to the present invention, in a flaw detector for moving and scanning a plate surface of a plate to be inspected, a traveling device that moves forward or backward parallel to one side edge of the plate to be inspected, and the traveling of the traveling device. By providing a device for measuring a distance and an ultrasonic wave transmitter / receiver for transmitting and receiving a surface wave for measuring the distance in the left-right direction or the left-right front-back direction from the side edge of the plate to be inspected, the above-mentioned problems are solved. is there.

【0011】[0011]

【作用】本発明において、自走台車に装着された、被検
査板の端縁までの距離を測定するための超音波送受信子
(以下、表面波センサと称する)により、直交4方向又
は直交2方向における板端からの距離を求めて、被検査
板上での走行台車の座標位置が制御される。このような
位置制御により、探傷センサ、表面波センサ、及び探傷
機器を搭載した自走台車について、全面探傷若しくはピ
ッチ探傷に必要な直進制御や位置制御を行うことができ
る。
In the present invention, the ultrasonic wave transmitter / receiver (hereinafter referred to as a surface wave sensor) for measuring the distance to the edge of the plate to be inspected, which is mounted on the self-propelled carriage, is used in the orthogonal 4 directions or the orthogonal 2 directions. The coordinate position of the traveling vehicle on the plate to be inspected is controlled by obtaining the distance from the plate edge in the direction. By such position control, it is possible to perform the straight-ahead control and the position control necessary for the full-face flaw detection or the pitch flaw detection for the self-propelled carriage equipped with the flaw detection sensor, the surface wave sensor, and the flaw detection device.

【0012】この場合、表面波センサから発信される表
面波の周波数が高い程、又パルス長が短い程、距離分解
能が高くなるが、反面、被検査板の板面凹凸や付着物等
の汚れによる表面波の減衰量も大きくなり、該表面波の
到達距離が短くなる。従って、本発明に係る自走探傷装
置を広い被検査板の探傷に使用する場合や距離分解能を
向上させる必要がある場合には、被検査板の板面を平滑
にし、且つ板面の清掃などを十分に行うことが望まし
い。
In this case, the higher the frequency of the surface wave transmitted from the surface wave sensor and the shorter the pulse length, the higher the distance resolution, but on the other hand, the unevenness of the plate surface of the plate to be inspected or stains such as adhered substances. The attenuation amount of the surface wave due to is also increased, and the arrival distance of the surface wave is shortened. Therefore, when the self-propelled flaw detector according to the present invention is used for flaw detection of a wide inspection plate or when it is necessary to improve the distance resolution, the plate surface of the inspection plate is smoothed and the plate surface is cleaned. It is desirable to carry out sufficiently.

【0013】前記表面波センサは、自走台車の例えば4
つの端面又は直交する2つの端面に対して1個又は複数
個装着され、被検査板の各板端からの距離を測定する。
この場合、自走台車の幅方向両隅と長さ方向両隅の4個
所に表面波センサを装着し、相互の距離補正を行うこと
によって自走台車の蛇行を防止し、もって、自走台車の
直進性精度を向上させることができる。
The surface wave sensor is, for example, 4
One or a plurality of them are attached to one end face or two end faces orthogonal to each other, and the distance from each plate end of the plate to be inspected is measured.
In this case, surface wave sensors are attached to the four corners of the self-propelled carriage in the widthwise corners and the lengthwise both corners to prevent the meandering of the self-propelled carriage by compensating the mutual distances. The straightness accuracy of can be improved.

【0014】なお、必要に応じて被検査板の4つの板端
からの各距離を求めるが、通常は、互いに直交する2つ
の板端からの各距離を求めて自走台車の位置制御や直進
制御を行う。表面波センサを自走台車のどの位置に装着
するかは、被検査板の板面状況や自走台車の状態などに
より任意に選択でき、例えば次の第1〜第3の装着方法
からいずれかが選択される。
It should be noted that the distances from the four plate ends of the plate to be inspected are calculated as required, but normally, the distances from the two plate ends orthogonal to each other are calculated to control the position of the self-propelled carriage or to move straight. Take control. The position of the surface traveling wave sensor to be mounted on the self-propelled carriage can be arbitrarily selected according to the plate surface condition of the plate to be inspected, the state of the self-propelled carriage, etc., for example, one of the following first to third mounting methods. Is selected.

【0015】即ち、第1の装着方法は、図1に示す如
く、被検査板10のX方向(自走台車12の直進方向)
を自走台車12の走行車輪で検出し、該X方向と直交す
るY方向の内、一方向(図では下方)だけを1個の表面
波センサ14で検出するように、表面波センサを走行台
車に装着する方法である。
That is, the first mounting method is, as shown in FIG. 1, the X direction of the plate 10 to be inspected (the straight traveling direction of the self-propelled carriage 12).
Is detected by the traveling wheels of the self-propelled carriage 12, and the surface wave sensor travels so that one surface wave sensor 14 detects only one direction (downward in the figure) of the Y direction orthogonal to the X direction. This is a method of mounting on a dolly.

【0016】第2の装着方法は、図2に示す如く、上記
X方向と直交するY方向において、2個の表面波センサ
14A、14Bを走行台車の両端にそれぞれ逆向きに装
着する方法である。この方法は、被検査板10の板幅が
大きく、表面波の端面エコーの減衰が大の場合に好適で
ある。
As shown in FIG. 2, the second mounting method is a method in which two surface wave sensors 14A and 14B are mounted in opposite directions on both ends of the traveling carriage in the Y direction orthogonal to the X direction. . This method is suitable when the plate 10 to be inspected has a large width and the end face echo of the surface wave is largely attenuated.

【0017】第3の装着方法は、図3に示す如く、Y方
向だけでなく、X方向にも、例えば2個の表面波センサ
16A、16Bを装着して、X方向の位置も表面波によ
り知る方法である。この場合、Y方向の表面波センサ1
4は、図1のように1個又は図2のように2個のいずれ
でも良い。
In the third mounting method, as shown in FIG. 3, for example, two surface wave sensors 16A and 16B are mounted not only in the Y direction but also in the X direction, and the position in the X direction also depends on the surface wave. A way to know. In this case, the surface wave sensor 1 in the Y direction
The number 4 may be one as shown in FIG. 1 or two as shown in FIG.

【0018】ところで、自走台車には被検査板の探傷に
必要な探傷センサが装着されるが、全面探傷若しくはピ
ッチ探傷を行うために、例えば走行台車の直進方向両端
に2個の探傷センサが装着され、被検査板の板端ではこ
れら2個の探傷センサが同時に作動して自走台車の機構
部などに起因する未探傷域をカバーする。
By the way, the self-propelled carriage is equipped with a flaw detection sensor necessary for flaw detection of the plate to be inspected. In order to perform flaw detection on the entire surface or pitch, for example, two flaw detection sensors are provided at both ends in the straight traveling direction of the traveling carriage. The two flaw detection sensors are mounted on the plate edge of the plate to be inspected at the same time, and cover the undetected area caused by the mechanical portion of the self-propelled carriage.

【0019】又、自走台車の幅方向には、複数の探傷セ
ンサを該台車幅以上となるように装着するか、被検査板
の横方向板端の近傍において探傷センサを横方向に移動
させながら探傷することにより、未探傷域をカバーす
る。
Further, in the width direction of the self-propelled carriage, a plurality of flaw detection sensors are mounted so as to have a width equal to or larger than the width of the carriage, or the flaw detection sensors are moved laterally in the vicinity of the lateral plate edge of the plate to be inspected. While performing flaw detection, it covers the undetected area.

【0020】なお、自走台車が直進方向の板端に達した
時には、例えば横方向移動車輪によって必要量だけ横方
向に移動するか、あるいは自走台車を持ち上げて横方向
に移動させる尺取り虫機構によって自走台車を横方向に
移動させることができる。
When the self-propelled carriage reaches the plate edge in the straight direction, it is moved laterally by a required amount, for example, by laterally moving wheels, or by a scale insect mechanism for lifting the self-propelled carriage and moving it laterally. The self-propelled carriage can be moved laterally.

【0021】更に、探傷に必要な全ての機器と電源等を
自走台車に搭載させるか否かも任意であり、例えば、電
源電圧や検出信号等を各ケーブルを介して有線で送受し
てもよく、検出信号だけを無線で送受信するようにして
もよい。
Further, it is also optional whether or not all the equipment and power source necessary for flaw detection are mounted on the self-propelled carriage. For example, the power source voltage, the detection signal and the like may be transmitted and received by wire through each cable. Alternatively, only the detection signal may be wirelessly transmitted and received.

【0022】本発明に係る自走探傷装置は、無人、無軌
道で所定の全面探傷若しくはピッチ探傷を行うが、これ
らの探傷動作は被検査板の探傷条件に従い繰り返し実施
することにより完了する。
The self-propelled flaw detector according to the present invention performs a predetermined whole-face flaw detection or pitch flaw detection unmanned and without orbit, and these flaw detection operations are completed by repeating the flaw detection conditions of the plate to be inspected.

【0023】[0023]

【実施例】以下、本発明の実施例について図面を参照し
て詳しく説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0024】図4は、本実施例を用いて被検査板10の
板端10Aまでの距離を表面波センサ14によって計測
する原理を模式的に示す距離計測模式図であり、図中、
(a)は縦断面図、(b )は平面図、(c )は表面波セ
ンサ14を構成する表面波発生受信用超音波送受信子で
送受信される超音波信号を示している。
FIG. 4 is a distance measurement schematic diagram showing the principle of measuring the distance to the plate edge 10A of the plate 10 to be inspected by the surface wave sensor 14 according to this embodiment.
(A) is a vertical cross-sectional view, (b) is a plan view, and (c) shows ultrasonic signals transmitted and received by the surface wave generating and receiving ultrasonic wave transmitter / receiver constituting the surface wave sensor 14.

【0025】図4において、被検査板10の上に位置す
る表面波センサ14から発信された表面波、即ち図1
(c )の送信エコーTは、被検査板10の上を直進す
る。この表面波は、被検査板10の板端10Aに達する
と、一部が板端で直角方向に迂回するが、その殆どが板
端の直交方向、即ち直進してきた方向へ戻り、再び表面
波センサ14で、端面エコーWとして受信される。従っ
て、被検査板10の板端10Aに直交するように、即ち
最短距離になるように、表面波センサ14を装着すれ
ば、被検査板10の板端10Aまでの距離x を、例えば
図1(c )の超音波信号T、Wから、下式(1)に従っ
て求めることができる。
In FIG. 4, the surface wave emitted from the surface wave sensor 14 located on the inspection plate 10, that is, FIG.
The transmission echo T in (c) goes straight on the plate 10 to be inspected. When this surface wave reaches the plate edge 10A of the plate 10 to be inspected, a part of the surface wave detours in the direction perpendicular to the plate edge, but most of it returns to the direction orthogonal to the plate edge, that is, the direction straight ahead, and the surface wave again. The sensor 14 receives the end surface echo W. Therefore, if the surface wave sensor 14 is mounted so as to be orthogonal to the plate edge 10A of the plate 10 to be inspected, that is, the shortest distance, the distance x to the plate edge 10A of the plate 10 to be inspected is, for example, as shown in FIG. It can be obtained from the ultrasonic signals T and W in (c) according to the following equation (1).

【0026】x =(1/2)・T・C …(1) 但し、T:時間(sec ) C:表面波の音速(m /sec )X = (1/2) .T.C (1) where T: time (sec) C: sound velocity of surface wave (m / sec)

【0027】なお、超音波の周波数は0.5〜5MHz
が妥当であり、被検査板10の板面状況や測定距離に応
じて選定される。又、表面波の音速Cは、被検査板10
が鋼の場合、約2950(m /sec )である。
The frequency of ultrasonic waves is 0.5 to 5 MHz.
Is appropriate and is selected according to the surface condition of the plate 10 to be inspected and the measurement distance. In addition, the sound velocity C of the surface wave is
In case of steel, it is about 2950 (m 2 / sec).

【0028】図5は本実施例を用いて被検査板を探傷す
るときの構成斜視図であり、図中、図1と同一記号には
同一意味を持たせて使用し、ここでの重複説明は省略す
る。又、16A、16A′は、自走台車12の前面側に
装着され、該台車12の直進方向に表面波を送受信する
超音波送受信子、14A、14A′は、自走台車12の
側面側に装着され、該台車12の直進方向と直交する方
向に表面波を送受信する超音波送受信子、18Aは、自
走台車12の前方部に装着され、被検査板10を探傷す
る探傷センサ、20は、探傷器記録計や駆動制御盤など
でなる探傷機器である。
FIG. 5 is a perspective view of the structure when a plate to be inspected is inspected by using this embodiment. In the figure, the same symbols as those in FIG. Is omitted. Further, 16A and 16A 'are mounted on the front surface side of the self-propelled carriage 12, ultrasonic transducers 14A and 14A' for transmitting and receiving surface waves in the straight traveling direction of the self-propelled carriage 12, and 14A and 14A 'on the side surface side of the self-propelled carriage 12. An ultrasonic wave transmitter / receiver 18A that is mounted and transmits / receives a surface wave in a direction orthogonal to the straight traveling direction of the carriage 12, 18A is a flaw detection sensor that is mounted on the front portion of the self-propelled carriage 12, and inspects the plate 10 to be inspected. The flaw detection equipment is a flaw detection recorder and a drive control panel.

【0029】なお、自走台車12の後方部にも探傷セン
サ18Aと同一の探傷センサ18B(図5では図示せ
ず)が装着されており、これらの探傷センサ18A、1
8Bによって進行方向における板端10Bの未探傷域を
走査する。この場合、最初に探傷センサ18A、18B
が自走台車12の長さの分だけ被検査板10を走査し、
その後、進行方向の探傷センサ18Aだけで被検査板1
0を走査するようにして、自走台車12の進行方向長さ
内で未探傷域が発生するのを防止している。これらの探
傷センサ18A、18Bは、通常、走行台車12に1個
又は複数個装着されるが、1個だけの場合、即ち例えば
探傷センサ18Aだけの場合には、自走台車12の直進
方向と直交する板端10Aで直進方向に移動させ、該直
進方向端部に未探傷域が残らないようにすることができ
る。
A flaw detection sensor 18B (not shown in FIG. 5) identical to the flaw detection sensor 18A is also mounted on the rear portion of the self-propelled carriage 12, and these flaw detection sensors 18A, 1
8B scans the undetected area of the plate edge 10B in the traveling direction. In this case, first, the flaw detection sensors 18A and 18B
Scans the inspected plate 10 by the length of the self-propelled carriage 12,
After that, only the inspection sensor 18A in the traveling direction is used to inspect the plate 1
By scanning 0, an undetected area is prevented from being generated within the length of the self-propelled carriage 12 in the traveling direction. Usually, one or a plurality of these flaw detection sensors 18A and 18B are mounted on the traveling carriage 12, but when there is only one, that is, for example, only with the flaw detection sensor 18A, the direction of travel of the self-propelled carriage 12 is It is possible to move in the straight traveling direction at the plate ends 10A which are orthogonal to each other, so that no undetected flaw region remains at the end portion of the straight traveling direction.

【0030】図5において、自走台車12は太線矢印方
向Aに直進し、表面波センサ16A、16A′によって
直進方向の位置計測と蛇行制御を行う。又、表面波セン
サ14A、14A′によって測定される被検査板10の
端縁10Aまでの距離から、自走台車12の進行方向と
直交する方向の位置計測と蛇行制御を行う。このよう
に、自走台車12の直進方向とその直交方向とにそれぞ
れ2個ずつ装着された表面波センサ14A、14
A、′、16A、16A′が作動することにより、自走
台車12の蛇行防止が図られている。
In FIG. 5, the self-propelled carriage 12 travels straight in the direction A of the bold line arrow, and the surface wave sensors 16A and 16A 'measure the position in the straight travel direction and perform meandering control. Further, position measurement and meandering control in a direction orthogonal to the traveling direction of the self-propelled carriage 12 are performed from the distance to the edge 10A of the plate to be inspected 10 measured by the surface wave sensors 14A and 14A '. As described above, the surface acoustic wave sensors 14A and 14A mounted on the self-propelled carriage 12 two in each of the straight traveling direction and the orthogonal direction thereof.
The self-propelled carriage 12 is prevented from meandering by the operation of A, ', 16A, 16A'.

【0031】図6乃至図8は、本実施例の構成説明図で
あり、図6は平面図、図7は側面図、図8は正面図であ
る。又、図6乃至図8において、図4や図5と同一記号
は同一意味を持たせて使用し、ここでの重複説明は省略
する。なお、16B、16B′は自走台車12の後方部
両端に装着され、該台車12の後方に表面波を送受信す
る表面波センサ、14B、14B′は自走台車12の側
面側両端に装着され、該台車12の直進方向と直交する
方向に表面波を送受信する表面波センサ、22A、22
Bは、走行台車12に装着され、該台車12を幅方向に
移動させる車輪などでなる横方向移動機構である。
6 to 8 are explanatory views of the structure of this embodiment, FIG. 6 is a plan view, FIG. 7 is a side view, and FIG. 8 is a front view. Further, in FIGS. 6 to 8, the same symbols as those in FIGS. 4 and 5 are used with the same meanings, and the duplicated description is omitted here. Reference numerals 16B and 16B 'are attached to both ends of the rear portion of the self-propelled carriage 12, surface wave sensors for transmitting and receiving surface waves to the rear of the self-propelled carriage 12, and 14B and 14B' are attached to both side ends of the self-propelled carriage 12. , Surface acoustic wave sensors 22A, 22 for transmitting and receiving surface acoustic waves in a direction orthogonal to the straight traveling direction of the carriage 12.
B is a lateral movement mechanism that is mounted on the traveling carriage 12 and that includes wheels that move the carriage 12 in the width direction.

【0032】該横方向移動機構22A、22Bは、自走
台車12に装着され、該自走台車12が直進方向の板端
10Bに達したら、自走台車12を持ち上げて尺取り虫
状に必要量だけ横方向に移動させる。なお、このような
横方向の移動は、横移動車輪だけで行ってもよい。
The lateral movement mechanisms 22A and 22B are mounted on the self-propelled carriage 12, and when the self-propelled carriage 12 reaches the plate edge 10B in the straight traveling direction, the self-propelled carriage 12 is lifted up to a necessary amount in a worm-like shape. Move it laterally. Note that such lateral movement may be performed only by the laterally moving wheels.

【0033】又、自走台車12の4隅に装着された表面
波センサ14A、14A′、14B、14B′、16
A、16A′、16B、16B′を全て作動させるか否
かは、要求する走査精度によって決める。
The surface wave sensors 14A, 14A ', 14B, 14B', 16 mounted on the four corners of the self-propelled carriage 12 are also provided.
Whether all A, 16A ', 16B, 16B' are activated depends on the required scanning accuracy.

【0034】前記実施例を用いて、グラインダ仕上表
面、Ra 40程度の厚鋼板を探傷したところ、表面波セ
ンサの超音波の周波数を2MHz とした場合、被検査板
である厚鋼板の端縁までの距離5m まで十分なS/N比
が得られた。又、端面エコーを用いて距離を測定した場
合、距離分解能は8mmであった。これを補うため、探傷
のXY方向走査幅に対して10mmのオーバーラップを設
定して、探傷洩れを防止することができた。
When the grinder finish surface and a thick steel plate having a Ra of about 40 were inspected using the above-mentioned embodiment, when the frequency of the ultrasonic wave of the surface wave sensor was 2 MHz, the edges of the thick steel plate to be inspected were detected. A sufficient S / N ratio was obtained up to a distance of 5 m. Further, when the distance was measured using the end surface echo, the distance resolution was 8 mm. In order to compensate for this, it was possible to prevent the flaw leakage by setting an overlap of 10 mm with respect to the scanning width of the flaw detection in the XY directions.

【0035】[0035]

【発明の効果】以上詳しく説明したような本発明によれ
ば、オフラインで被検査板を探傷する非破壊的検査にお
いて、該被検査板の上に運びスタート位置に移動して起
動させるだけで、該被検査板を無人無軌道で高精度に全
面探傷若しくはピッチ探傷できる自走探傷装置が実現す
る。
According to the present invention as described in detail above, in a non-destructive inspection for flaw detection of a plate to be inspected off-line, it is carried on the plate to be inspected, moved to a start position, and activated. A self-propelled flaw detection device capable of performing flawless and high-precision flaw detection on the plate to be inspected over the entire surface or pitch is realized.

【0036】又、自走台車の位置制御が比較的単純な機
構で実施できるため、取扱いも簡単で且つ制御精度も高
いという利点がある。
Further, since the position control of the self-propelled carriage can be carried out by a relatively simple mechanism, there is an advantage that the handling is easy and the control accuracy is high.

【0037】従って、前記従来例などにおいて必要とさ
れていた装置組立てや分解能に費やしていた工数が不要
となり、所定の探傷センサ等を自走台車に装着するだけ
で、被検査板の板面や板内における渦流探傷、磁気探
傷、若しくは超音波探傷などが無人、無軌道で可能とな
り、その結果、省力化が達成できる等のメリットが得ら
れる。
Therefore, the man-hours required for assembling the device and the resolution, which are required in the above-mentioned conventional example, become unnecessary, and the plate surface of the plate to be inspected or Eddy current flaw detection, magnetic flaw detection, ultrasonic flaw detection, etc. in the plate can be performed unmanned and without orbit, and as a result, advantages such as labor saving can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による表面波センサの配置例を示す平面
FIG. 1 is a plan view showing an arrangement example of a surface acoustic wave sensor according to the present invention.

【図2】同じく他の配置例を示す平面図FIG. 2 is a plan view showing another example of arrangement.

【図3】同じく更に他の配置例を示す平面図FIG. 3 is a plan view showing still another arrangement example.

【図4】本発明により被検査板の板端までの距離を表面
波によって計測する原理を模式的に示す距離計測模式図
FIG. 4 is a distance measurement schematic diagram schematically showing the principle of measuring the distance to the plate edge of the plate to be inspected by a surface wave according to the present invention.

【図5】本発明の実施例を用いて被検査板を探傷すると
きの構成斜視図
FIG. 5 is a perspective view of a configuration when a plate to be inspected is inspected by using the embodiment of the present invention.

【図6】本発明の実施例の構成を示す平面図FIG. 6 is a plan view showing the configuration of an embodiment of the present invention.

【図7】同じく側面図FIG. 7 is a side view of the same.

【図8】同じく正面図FIG. 8 is a front view of the same.

【符号の説明】[Explanation of symbols]

10…被検査板 10A、10B…板端 12…自走台車 14、14A、14A′、14B、14B′、16A、
16A′、16B、16B′…超音波送受信子(表面波
センサ) 18A、18B…探傷センサ 20…探傷機器
10 ... Inspected plate 10A, 10B ... Plate edge 12 ... Self-propelled carriage 14, 14A, 14A ', 14B, 14B', 16A,
16A ', 16B, 16B' ... Ultrasonic wave transmitter / receiver (surface wave sensor) 18A, 18B ... Flaw detection sensor 20 ... Flaw detection equipment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検査板の板面を自走して走査する探傷装
置であって、 前記被検査板の端縁までの距離を測定するための表面波
を送受信する超音波送受信子を具備することを特徴とす
る自走探傷装置。
1. A flaw detection device for self-propelled scanning of a plate surface of a plate to be inspected, comprising an ultrasonic wave transceiver for transmitting and receiving a surface wave for measuring a distance to an edge of the plate to be inspected. A self-propelled flaw detector characterized by:
【請求項2】被検査板の板面を自走して走査する探傷装
置であって、 前記被検査板の一方の側縁に平行に前進若しくは後進す
る走行装置と、 該走行装置の走行距離を測定する装置と、 被検査板の側縁からの左右方向又は左右前後方向の距離
を測定するための表面波を送受信する超音波送受信子
と、 を具備することを特徴とする自走探傷装置。
2. A flaw detection device for self-propagating and scanning a plate surface of a plate to be inspected, the traveling device moving forward or backward in parallel to one side edge of the plate to be inspected, and a traveling distance of the traveling device. A self-propelled flaw detector, comprising: a device for measuring a surface wave; and an ultrasonic wave transmitter / receiver for transmitting and receiving a surface wave for measuring a distance in a left-right direction or a left-right front-back direction from a side edge of a plate to be inspected. .
JP4162574A 1992-06-22 1992-06-22 Self-traveling flaw detecting device Pending JPH063341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162574A JPH063341A (en) 1992-06-22 1992-06-22 Self-traveling flaw detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162574A JPH063341A (en) 1992-06-22 1992-06-22 Self-traveling flaw detecting device

Publications (1)

Publication Number Publication Date
JPH063341A true JPH063341A (en) 1994-01-11

Family

ID=15757179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162574A Pending JPH063341A (en) 1992-06-22 1992-06-22 Self-traveling flaw detecting device

Country Status (1)

Country Link
JP (1) JPH063341A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111753A (en) * 2006-10-31 2008-05-15 Osaka Univ Rail inspection device
JP2010286308A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Millimeter-wave imaging system and imaging method of the same
CN111474240A (en) * 2020-06-02 2020-07-31 中车唐山机车车辆有限公司 Nondestructive testing guiding device and scanning method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416708A (en) * 1990-05-10 1992-01-21 Mitsubishi Electric Corp Surface acoustic wave probe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416708A (en) * 1990-05-10 1992-01-21 Mitsubishi Electric Corp Surface acoustic wave probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111753A (en) * 2006-10-31 2008-05-15 Osaka Univ Rail inspection device
JP2010286308A (en) * 2009-06-10 2010-12-24 Nippon Telegr & Teleph Corp <Ntt> Millimeter-wave imaging system and imaging method of the same
CN111474240A (en) * 2020-06-02 2020-07-31 中车唐山机车车辆有限公司 Nondestructive testing guiding device and scanning method

Similar Documents

Publication Publication Date Title
US4375165A (en) System for inspecting welded joints in pipe lines by means of ultrasonic waves
US6584847B1 (en) Ultrasonic detector and method for ultrasonic detection
JP2844541B2 (en) Method and apparatus for laterally positioning a member moving along a rail
GB1559469A (en) Method and apparatus for automatic ultrasonic flaw detection
CN113490896A (en) Self-propelled inspection device and inspection method for metal plate, and method for manufacturing metal plate
JPS61133856A (en) Method and apparatus for diagnosing underground pipeline
EP1209444B1 (en) Thickness measuring device for cylindrical tank bottom plate
WO2015001625A1 (en) Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure
JPH063341A (en) Self-traveling flaw detecting device
US6940295B2 (en) Apparatus and methods for non-destructive inspection using microwave sensing
JP2009058238A (en) Method and device for defect inspection
JPH05172798A (en) Plate surface flaw detection device
JP2742493B2 (en) Flaw detector for self-supporting traveling plate
RU2621216C1 (en) Intra tube method of ultrasonic testing of welds
JP2003014706A (en) Method and apparatus for inspection of welding of tank steel plate
JP3033438B2 (en) Ultrasonic flaw detection method for piping
JP2003057215A (en) Automatic ultrasonic flaw detection method and apparatus of welded section
JP2002228431A (en) Device and method for measuring sheet thickness of tank bottom sheet
JP2881658B2 (en) Ultrasonic testing equipment for pipe structures
JPS6310783B2 (en)
JPH06160358A (en) Automatic ultrasonic flaw detector
JPS6131962A (en) Inspecting instrument of piping
JP3469877B2 (en) Steel plate thickness measurement method
JPH04366761A (en) Method for ultrasonic inspection
JPH05187852A (en) Method and device for measuring coordinate of scanning truck