JPH0633371A - Production of preform for fiber-reinforced composite material - Google Patents
Production of preform for fiber-reinforced composite materialInfo
- Publication number
- JPH0633371A JPH0633371A JP20737892A JP20737892A JPH0633371A JP H0633371 A JPH0633371 A JP H0633371A JP 20737892 A JP20737892 A JP 20737892A JP 20737892 A JP20737892 A JP 20737892A JP H0633371 A JPH0633371 A JP H0633371A
- Authority
- JP
- Japan
- Prior art keywords
- preform
- fibers
- fiber
- particles
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繊維強化複合材料用、
特に繊維強化金属用のプリフォームの製造法に関する。FIELD OF THE INVENTION The present invention relates to a fiber-reinforced composite material,
In particular, it relates to a method for producing a preform for fiber-reinforced metal.
【0002】[0002]
【従来の技術および課題】繊維強化金属(FRM)は金属
に繊維を複合させることにより金属単独では達成できな
い物性を実現するものである。従来かかるFRMとして
はボロン、炭化ケイ素、アルミナ、グラファイト、ガラ
ス等の繊維を強化繊維として用いるものが知られてお
り、アルミニウム合金やマグネシウム合金などの金属マ
トリックスに高い引張強度や剛性および低い熱膨張係数
を与える。2. Description of the Related Art Fiber reinforced metal (FRM) realizes physical properties which cannot be achieved by metal alone by compounding fiber with metal. Conventionally, such FRMs are known to use fibers such as boron, silicon carbide, alumina, graphite, and glass as reinforcing fibers, and have high tensile strength and rigidity and a low thermal expansion coefficient in a metal matrix such as aluminum alloy or magnesium alloy. give.
【0003】このようなFRMを製造する場合、一般に
FRM中の繊維が片寄り繊維分布の粗な部分と密な部分
が生じやすい。このため、FRM中の繊維体積率(Vf)
の制御が困難となり、特にVfが小さい場合には強化繊
維が均一に分散したFRMは得難い。又、連続繊維のみ
で強化したFRMでは強度の異方性も大きい。When manufacturing such an FRM, generally, the fibers in the FRM are biased and a rough portion and a dense portion of the fiber distribution are likely to occur. Therefore, the fiber volume ratio (Vf) in FRM
Is difficult to control, and especially when Vf is small, it is difficult to obtain an FRM in which reinforcing fibers are uniformly dispersed. Further, FRM reinforced only with continuous fibers has a large anisotropy of strength.
【0004】このため、特開昭61−266666号お
よび特開昭61−295346号公報には、強化繊維に
無機粒子を付着させ、これをFRM強化用繊維とするこ
とによりマトリクス金属中で良好な繊維分散が得て、所
望の強度とすることが開示されている。Therefore, in JP-A-61-266666 and JP-A-61-295346, inorganic particles are adhered to reinforcing fibers, which are used as FRM reinforcing fibers to obtain good results in a matrix metal. It is disclosed that a fiber dispersion is obtained to give the desired strength.
【0005】かかる製造法において、無機粒子の役割
は、マトリクス中での繊維同士の接触を防いで繊維間の
スペーサーとなり、繊維の分散をはかることにある。し
かしながら、用いる無機粒子の粒径が小さい場合は、無
機粒子を大量に使用しなければスペーサ効果は得られな
い。また、粒径の小さな粒子は凝集しやすく、均一な繊
維分散は得られ難い。一方、粒径が大きい場合はスペー
サー効果も大きく、凝集もあまり生じないものの、繊維
間に塊状の脆性材料が存在することとなり、クラックの
進展が起きやすく繊維表面にキズも発生しやすいため、
FRM強度も向上しない。In such a manufacturing method, the role of the inorganic particles is to prevent the fibers from contacting each other in the matrix and serve as spacers between the fibers to disperse the fibers. However, when the particle size of the inorganic particles used is small, the spacer effect cannot be obtained unless a large amount of inorganic particles are used. In addition, particles having a small particle size are easily aggregated, and it is difficult to obtain a uniform fiber dispersion. On the other hand, if the particle size is large, the spacer effect is also large, and aggregation does not occur much, but since there is a lumpy brittle material between the fibers, cracks easily occur and scratches are likely to occur on the fiber surface,
The FRM strength is also not improved.
【0006】本発明の目的は、強化繊維が均一に分散さ
れた繊維強化複合材料用のプリフォームの製造法を提供
することにある。An object of the present invention is to provide a method for producing a preform for a fiber-reinforced composite material in which reinforcing fibers are uniformly dispersed.
【0007】[0007]
【課題を解決するための手段】本発明は、無機粒子およ
び有機粒子を含む懸濁液に連続無機繊維を浸漬し、つい
でこの繊維を成形した後、焼成することを特徴とする繊
維強化複合材料用プリフォームの製造法を提供すること
にある。The present invention relates to a fiber-reinforced composite material characterized by immersing continuous inorganic fibers in a suspension containing inorganic particles and organic particles, molding the fibers, and then firing the fibers. It is to provide a method of manufacturing a preform for use.
【0008】本発明では強化用繊維として従来FRM用
の強化繊維として使用しされている耐熱性を有する各種
繊維を用いることができ、Al2O3、Al2O3−SiO2、
SiC、Si−Ti−C、Si3N4、セラミック繊維(オキ
シナイトライドガラスファイバー)などが使用できる。In the present invention, various heat-resistant fibers conventionally used as reinforcing fibers for FRM can be used as the reinforcing fibers, and Al 2 O 3 , Al 2 O 3 --SiO 2 ,
SiC, Si-Ti-C, Si 3 N 4, such as ceramic fibers (oxynitride glass fibers) can be used.
【0009】これら繊維のプリフォームの成形時に用い
られる好ましい有機粒子としては、例えばポリメチルメ
タクリレート、エポキシ樹脂、ナイロン、ポリスチレ
ン、セルロース、デンプンなどの粒子が挙げられる。こ
れらは単独で、あるいは混合して用いてもよい。これら
有機粒子の平均粒径は0.1〜20μmであるのが好ま
しい。粒子径がこれより小さいとスペンサーとしての効
果が少なく、一方これより大きいとVfが小さくなりす
ぎてFRMの性能が低下する。Examples of preferable organic particles to be used at the time of molding the preform of these fibers include particles of polymethylmethacrylate, epoxy resin, nylon, polystyrene, cellulose, starch and the like. These may be used alone or in combination. The average particle size of these organic particles is preferably 0.1 to 20 μm. If the particle size is smaller than this, the effect as a spencer is small, while if it is larger than this, Vf becomes too small and the performance of the FRM deteriorates.
【0010】また、無機粒子としては、炭化物、窒化
物、酸化物、硼化物などがいずれも用いられる。これら
は、ウィスカー、短繊維、粉末のいずれの形態でもよ
く、例えば、チタン酸カリウムウィスカー、SiC(炭化
ケイ素)ウィスカー、SiCパウダー、Si3N4ウィスカ
ー、Si3N4パウダー、TiB2ウィスカー、Al2O3ウィ
スカー、Al2O3パウダーなどが用いられる。As the inorganic particles, any of carbides, nitrides, oxides, borides and the like can be used. These may be in the form of whiskers, short fibers or powders, for example, potassium titanate whiskers, SiC (silicon carbide) whiskers, SiC powders, Si 3 N 4 whiskers, Si 3 N 4 powders, TiB 2 whiskers, Al. 2 O 3 whiskers, Al 2 O 3 powder, etc. are used.
【0011】これら有機粒子および無機粒子を含む懸濁
液を調製するには、これらを水などの分散媒に分散させ
撹拌すればよい。無機粒子および有機粒子の配合量は、
無機粒子100重量部に対して有機粒子50〜300重
量部を配合し撹拌するのが好ましい。これより有機粒子
が少ないと、スペーサーの効果が少なく、一方、有機粒
子がこれより多いとVfが低くなり優れた複合材料が得
られない。これら無機粒子および有機粒子の繊維に対す
る付着量は10〜50重量%であるのが好ましい。To prepare a suspension containing these organic particles and inorganic particles, these may be dispersed in a dispersion medium such as water and stirred. The blending amount of the inorganic particles and the organic particles is
It is preferable to mix 50 to 300 parts by weight of organic particles with 100 parts by weight of inorganic particles and stir. If the amount of organic particles is smaller than this, the effect of the spacer is small, while if the amount of organic particles is larger than this, Vf becomes low and an excellent composite material cannot be obtained. The amount of these inorganic particles and organic particles attached to the fibers is preferably 10 to 50% by weight.
【0012】このような懸濁を含浸させたプリフォーム
は、50〜100℃にて乾燥してプリフォームに成形
し、ついで有機粒子の分解温度以上で焼成して有機粒子
を分解する。得られたプリフォームは、各繊維間が無機
粒子によりブリッジされており、有機粒子は除去されて
いる。The preform impregnated with such a suspension is dried at 50 to 100 ° C. to form a preform, and then fired at a decomposition temperature of the organic particles or higher to decompose the organic particles. In the obtained preform, the fibers were bridged by the inorganic particles, and the organic particles were removed.
【0013】なお、無機粒子によるブリッジをより強固
にするためSiO2ゾル(SiO2分で1〜10重量%)を
配合してもよい。また、常温強度を向上させるためPV
A、セルロース、でんぷんなどの有機バインダーを1〜
10重量%加えてもよい。In order to strengthen the bridge of the inorganic particles, SiO 2 sol (1 to 10% by weight in SiO 2 content) may be added. In addition, PV is used to improve room temperature strength.
1 to 1 of organic binders such as A, cellulose and starch
You may add 10 weight%.
【0014】このようにして、得られたプリフォームか
らFRM、FRPなど複合材料を製造するには、従来公
知の方法をいずれも用いることができる。金属をマトリ
ックスとする場合、アルミニウム、アルミニウム合金、
チタン合金、マグネシウム合金などがいずれも用いられ
る。例えば、強化繊維を500〜600℃に加熱したモ
ールド中に入れ、800℃に加熱熔融したアルミニウム
合金を流し入れて10〜100MPa程度で加圧し、冷
却凝固させる。In order to manufacture a composite material such as FRM or FRP from the thus obtained preform, any conventionally known method can be used. When metal is used as matrix, aluminum, aluminum alloy,
Both titanium alloys and magnesium alloys are used. For example, the reinforcing fiber is put into a mold heated to 500 to 600 ° C., an aluminum alloy heated and melted to 800 ° C. is poured, and the aluminum alloy is pressurized at about 10 to 100 MPa and is cooled and solidified.
【0015】[0015]
【作用】プリフォーム成形時には主に有機粒子がスーペ
ーサーとして作用するが、有機物であるためガラス繊維
表面に損傷を与えることはない。つぎに、このプリフォ
ーム体を焼成すると有機粒子は熱分解揮散するが、無機
粒子が繊維同士をブリッジするため堅固なプリフォーム
体が維持できる。このため、必要な無機粒子は少量で済
み、良好な繊維配列が得られる。The organic particles mainly act as a spacer during molding of the preform, but since they are organic substances, they do not damage the glass fiber surface. Next, when the preform body is fired, the organic particles are thermally decomposed and volatilized, but since the inorganic particles bridge the fibers, a solid preform body can be maintained. Therefore, a small amount of inorganic particles is required, and a good fiber arrangement can be obtained.
【0016】[0016]
【実施例】つぎに実施例により本発明をさらに具体的に
説明する。EXAMPLES Next, the present invention will be described more specifically by way of examples.
【0017】実施例1 (プリフォーム成形用懸濁液の調製法)水500gにチ
タン酸カリウムウィスカー(チタン工業(株)製HT−3
00)30gとポリメチルメタクリレート粒子(松本油
脂(株)製 平均粒径8μm)50gを加え、これに分散
剤としてポイズ520(花王(株)製)1.5gを添加し
て充分撹拌した。この懸濁液を400メッシュのフィル
ターに通してプリフォーム成形用懸濁液とした。Example 1 (Preparation Method of Preform Molding Suspension) Potassium titanate whiskers (HT-3 manufactured by Titanium Industry Co., Ltd.) were added to 500 g of water.
00) and 50 g of polymethylmethacrylate particles (average particle size 8 μm, manufactured by Matsumoto Yushi Co., Ltd.), and 1.5 g of Poise 520 (manufactured by Kao Co., Ltd.) as a dispersant was added to the mixture, followed by thorough stirring. This suspension was passed through a 400-mesh filter to give a preform-forming suspension.
【0018】(プリフォームの成形法)図1に示すよう
に、成形後、繊維体積含有率Vf=40%になるように
設定し、合糸したオキシナイトライドガラス繊維ロービ
ング1に前記懸濁液2を含浸させた後、内寸8mm×1
6mmの型3内を通しながら乾燥させた。(Forming Method for Preform) As shown in FIG. 1, after the molding, the volume ratio Vf of the fiber is set to 40%, and the suspension is added to the oxynitride glass fiber roving 1 which is spun. After impregnating with 2, the inner size is 8 mm x 1
It was dried while passing through a 6 mm mold 3.
【0019】(FRMの製造方法)得られた前記プリフ
ォームを35mm長に切断し、500℃にて1時間大気
中で熱処理を行った。これにより、常温でスペーサーの
役割を果たしていたポリメチルメタクリレート粒子が分
解揮散し、チタン酸カリウムウィスカーが繊維間をブリ
ッジした構造を有するプリフォーム体となった。該プリ
フォームを内型40φの金型内に入れ、500℃まで昇
温した。ついで、850℃で熔解した純アルミニウム溶
液を注ぎ入れ、油圧プレス装置により50MPaで加圧
鋳造した。(Method for manufacturing FRM) The obtained preform was cut into a length of 35 mm and heat-treated at 500 ° C. for 1 hour in the atmosphere. As a result, the polymethylmethacrylate particles, which served as a spacer at room temperature, were decomposed and volatilized, and a preform body having a structure in which potassium titanate whiskers bridged the fibers was obtained. The preform was placed in a die having an inner die of 40φ and heated to 500 ° C. Then, a pure aluminum solution melted at 850 ° C. was poured in, and pressure casting was performed at 50 MPa with a hydraulic press machine.
【0020】(強度測定)上記FRMより2mm(厚)
×5mm(幅)×30mm(長)の試料片を切り出し、
引張り試験を行った。5本の試料の強度は123±5k
g/mm2、曲げ弾性率9900kg/mm2であった。
図2に得られた繊維強化金属の断面写真を示す。(Strength measurement) 2 mm (thickness) from the above FRM
Cut out a sample piece of × 5 mm (width) × 30 mm (length),
A tensile test was performed. The strength of 5 samples is 123 ± 5k
The elastic modulus was g / mm 2 and the flexural modulus was 9900 kg / mm 2 .
FIG. 2 shows a cross-sectional photograph of the fiber-reinforced metal obtained.
【0021】比較例1 実施例1において有機物粒子を含まない懸濁液を用いた
以外は全く同様にしてFRMを製造し、その強度を測定
した。曲げ強度55kg/mm2、曲げ弾性率9500k
g/mm2であった。Comparative Example 1 An FRM was manufactured in exactly the same manner as in Example 1 except that the suspension containing no organic particles was used, and the strength thereof was measured. Flexural strength 55 kg / mm 2 , flexural modulus 9500 k
It was g / mm 2 .
【0022】[0022]
【発明の効果】本発明によればプリフォーム製造時に
は、やわらかい有機物粒子がスペーサーの役割を果た
し、乾燥、焼結後は、無機物粒子がスペーサーとなる。
このため、無機物粒子は小粒径のものを少量使用するだ
けで均一な繊維配列を有するプリフォームがえられる。
したがって、このプリフォームを用いて製造した複合材
料は強度が優れている。According to the present invention, the soft organic particles serve as a spacer during the production of the preform, and the inorganic particles become the spacer after drying and sintering.
Therefore, a preform having a uniform fiber arrangement can be obtained by using a small amount of inorganic particles having a small particle size.
Therefore, the composite material produced using this preform has excellent strength.
【図1】本発明のプリフォームの製造法を示す概略説明
図である。FIG. 1 is a schematic explanatory view showing a method for producing a preform of the present invention.
【図2】本発明の製造法にて得られたプリフォームを用
いて製造した繊維強化金属の断面の金属組織を示す断面
顕微鏡写真である。FIG. 2 is a cross-sectional micrograph showing a metal structure of a cross section of a fiber-reinforced metal produced by using the preform obtained by the production method of the present invention.
1:ロービング 2:懸濁液 3:型 1: Roving 2: Suspension 3: Mold
Claims (1)
連続無機繊維を浸漬し、ついでこの繊維を成形した後、
焼成することを特徴とする繊維強化複合材料用プリフォ
ームの製造法。1. A continuous inorganic fiber is immersed in a suspension containing inorganic particles and organic particles, and the fiber is then molded.
A method for producing a preform for a fiber-reinforced composite material, which comprises firing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20737892A JP3104420B2 (en) | 1992-07-10 | 1992-07-10 | Manufacturing method of preform for fiber reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20737892A JP3104420B2 (en) | 1992-07-10 | 1992-07-10 | Manufacturing method of preform for fiber reinforced composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0633371A true JPH0633371A (en) | 1994-02-08 |
JP3104420B2 JP3104420B2 (en) | 2000-10-30 |
Family
ID=16538741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20737892A Expired - Fee Related JP3104420B2 (en) | 1992-07-10 | 1992-07-10 | Manufacturing method of preform for fiber reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3104420B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9270043B2 (en) | 2012-03-16 | 2016-02-23 | Nhk Spring Co., Ltd. | Connector |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5458915B2 (en) * | 2010-01-29 | 2014-04-02 | 宇部興産株式会社 | Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with the fiber bundle |
WO2023176540A1 (en) * | 2022-03-17 | 2023-09-21 | 積水化学工業株式会社 | Particle-bearing fiber bundle, particle-bearing fiber bundle aggregate, and fiber-reinforced composite |
-
1992
- 1992-07-10 JP JP20737892A patent/JP3104420B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9270043B2 (en) | 2012-03-16 | 2016-02-23 | Nhk Spring Co., Ltd. | Connector |
Also Published As
Publication number | Publication date |
---|---|
JP3104420B2 (en) | 2000-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6180258B1 (en) | Metal-matrix composites and method for making such composites | |
Aghajanian et al. | The fabrication of metal matrix composites by a pressureless infiltration technique | |
US6309994B1 (en) | Fiber reinforced composite having an aluminum phosphate bonded matrix | |
RU2176628C2 (en) | Composite material (variants) and method or preparing thereof, method of treating fibrous semi-finished product (variants) | |
US5132257A (en) | Composite ceramic sintered body and process for production thereof | |
JPH05105521A (en) | Carbon-fiber reinforced silicon nitride-based nano-composite material and its production | |
US4917941A (en) | Fiber- and filament-containing ceramic preform and composite | |
US5464583A (en) | Method for manufacturing whisker preforms and composites | |
JP2535768B2 (en) | High heat resistant composite material | |
JP3104420B2 (en) | Manufacturing method of preform for fiber reinforced composite material | |
JP3094148B2 (en) | Manufacturing method of lightweight refractory | |
JPS61291460A (en) | Manufacture of fiber reinforced silicon carbide ceramic | |
JP3830733B2 (en) | Particle-dispersed silicon material and manufacturing method thereof | |
JPH0313194B2 (en) | ||
JP3775893B2 (en) | Preform and manufacturing method thereof | |
US5273941A (en) | Fiber reinforced silicon carbide ceramics and method of producing the same | |
JP4217278B2 (en) | Method for producing metal-ceramic composite material | |
JP4217279B2 (en) | Method for producing metal-ceramic composite material | |
JP3828622B2 (en) | Method for producing metal-ceramic composite material | |
JP3171287B2 (en) | Fiber molding for reinforced metal and method for producing the same | |
JPH11264032A (en) | Production of metal-ceramics composite material for casting | |
JPH1180860A (en) | Production of metal-ceramics composite material | |
JPH1129831A (en) | Preform for metal matrix composite, and its production | |
JP4279370B2 (en) | Method for producing metal-ceramic composite material | |
JPH04103734A (en) | Sintered fibrous preform for manufacturing metal matrix composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |