JPH06333277A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH06333277A
JPH06333277A JP11682293A JP11682293A JPH06333277A JP H06333277 A JPH06333277 A JP H06333277A JP 11682293 A JP11682293 A JP 11682293A JP 11682293 A JP11682293 A JP 11682293A JP H06333277 A JPH06333277 A JP H06333277A
Authority
JP
Japan
Prior art keywords
layer
magneto
recording medium
optical recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11682293A
Other languages
Japanese (ja)
Inventor
Tadao Nomura
忠雄 野村
Katsushi Tokunaga
勝志 徳永
Yoshio Tawara
俵好夫
Kazuhiko Nakayama
和彦 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11682293A priority Critical patent/JPH06333277A/en
Publication of JPH06333277A publication Critical patent/JPH06333277A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve recording and reproducing characteristics and to improve stability of bits in a magneto-optical recording medium having a magnetic film on a substrate by constituting the magnetic film of specified two kinds of layers. CONSTITUTION:The magnetic film of this magneto-optical recording medium consists of two kinds of layers. One of the layers consists of Nd and 3d transition metals or an alloy containing at least one element selected from 3d transition metals. The other layer consists of 3d transition metals or rare earth elements containing at least one of 3d transition metals. The total film thickness of the two layers is <=13nm. By this method, the obtd. medium can be used for high-density recording and reproducing and has excellent bit stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録媒体、特には
磁性膜を希土類元素を含む2層の合金層とからなるもの
とした、高密度な記録再生特性が可能で、ピット安定性
も優れた光磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a magneto-optical recording medium, in particular, a magnetic film comprising two alloy layers containing a rare earth element, which enables high-density recording / reproducing characteristics and pit stability. The present invention relates to an excellent magneto-optical recording medium.

【0002】[0002]

【従来の技術】光磁気記録媒体は大容量、媒体可換、書
換可能などの特長を有しているので記録媒体として注目
されているが、これについてはさらなる大容量化、高密
度化が求められていることから、その一つの手段として
レーザー光の短波長化があげられ、短波長になると再生
時のピット径が小さくできるので、より高密度な記録再
生が可能となる。
2. Description of the Related Art A magneto-optical recording medium has attracted attention as a recording medium because it has a large capacity, a medium replaceable, and a rewritable characteristic. For this, further increase in capacity and density are required. Therefore, shortening the wavelength of the laser beam can be mentioned as one of the means, and the shorter the wavelength, the smaller the pit diameter at the time of reproduction, so that higher density recording / reproduction becomes possible.

【0003】しかし、現在記録体として実用化されてい
るTbFeCoなどの重希土類−3d遷移金属非晶質膜
は短波長ではカー回転角が低下するために、この波長域
では媒体の特性が十分でないという不利がある。これに
対して、希土類としてNdを用いると逆に短波長ではθ
kが大きくなることが知られている[鈴木氏他、日本応
用磁気学学会誌、11(1987),193参照]が、Nd−3d
遷移金属膜はフェロ磁性であるために飽和磁化が大き
く、垂直磁化するには基板加熱などの手段を必要とする
といった問題点を有している。
However, a heavy rare earth-3d transition metal amorphous film such as TbFeCo currently used as a recording medium has a low Kerr rotation angle at a short wavelength, and thus the characteristics of the medium are not sufficient in this wavelength range. There is a disadvantage that. On the other hand, when Nd is used as the rare earth element, conversely at the short wavelength, θ
It is known that k becomes large [see Suzuki et al., Journal of Japan Society for Applied Magnetics, 11 (1987), 193], Nd-3d.
Since the transition metal film is ferromagnetic, it has a large saturation magnetization, and has a problem that a means such as substrate heating is required for perpendicular magnetization.

【0004】[0004]

【発明が解決しようとする課題】そのため、このNd−
3d遷移金属膜(以下Nd含有膜と略記する)を垂直磁
化することもいくつか試みられており、これらは大別す
ると1)重希土類元素の添加、2)多層膜による交換結
合力の利用、に分けられるけれども、このうちのGd、
Tb、Dyなどの重希土類元素を添加するというもの
(特開昭61-165847号公報参照)は膜の垂直磁気異方性
増加やMsの低下には有効であるが、この方法で十分な
保磁力を有する垂直磁化膜を得ようとすると、重希土類
の組成比が従来のTbFeCoなどのあまり変らない量
になってしまい、短波長でθkが大きいというNd系の
特徴が半減してしまうという不利がある。
Therefore, this Nd-
Several attempts have been made to perpendicularly magnetize a 3d transition metal film (hereinafter abbreviated as Nd-containing film), which are roughly classified into 1) addition of heavy rare earth elements, 2) utilization of exchange coupling force by a multilayer film, Gd, of which,
The addition of heavy rare earth elements such as Tb and Dy (see Japanese Patent Laid-Open No. 61-165847) is effective for increasing the perpendicular magnetic anisotropy of the film and decreasing Ms, but this method provides sufficient protection. When trying to obtain a perpendicular magnetic film having magnetic force, the composition ratio of heavy rare earths becomes an amount that does not change much as in conventional TbFeCo and the like, which is a disadvantage that the characteristic of Nd type that θk is large at a short wavelength is halved. There is.

【0005】また、これについては2)のようにNd含
有膜を重希土類−3d遷移金属の垂直磁化膜と積層する
という方法も提案されている(特開平1-130344号公報、
Iiyori et al., J. Magn. Soc. Jap., 15, Suppl. No.S
1(1991), 189参照)が、これらは磁性膜の合計膜厚が 1
00nm以上と厚く、現在実用化されているTbFeCoに
比べて記録感度が低下し、レーザー光が磁性膜を透過し
ないために、反射膜を用いたエンハンスメントも利用で
きず、またディスクの生産性という観点からも実用的で
ないという欠点がある。
[0005] As for this, as in 2), there has been proposed a method of laminating an Nd-containing film with a perpendicularly magnetized film of heavy rare earth-3d transition metal (Japanese Patent Laid-Open No. 1-130344).
Iiyori et al., J. Magn. Soc. Jap., 15, Suppl. No.S
1 (1991), 189), but these have a total magnetic film thickness of 1
It is thicker than 00 nm, the recording sensitivity is lower than that of TbFeCo which is currently in practical use, and since laser light does not pass through the magnetic film, enhancement using a reflective film cannot be used, and in terms of disk productivity. It has the drawback of not being practical.

【0006】なお、この光磁気記録媒体についてはこの
ほか上記2層を交互に2層以上積層する方法(特開平1-
130344号、特開平1-237945号各公報参照)またNd−3
d遷移金属膜に重希土類元素を添加する方法(特開平2-
267754号、特開平3-248350号各公報参照)なども提案さ
れているが、この前者には大量生産に難があり、後者に
は上述したように短波長でのθk増大効果があまり大き
くないという問題点があり、これとは別にNdFe2元
素合金の垂直磁化膜も提案されている(特開昭61-16584
6 号公報参照)が、これは基板を加熱する方法がとられ
ているために実用には適さないという問題点がある。
For this magneto-optical recording medium, in addition to the above, a method of alternately laminating two layers or more (Japanese Patent Laid-Open No.
No. 130344, Japanese Patent Laid-Open No. 1-237945) and Nd-3
Method for adding heavy rare earth element to d-transition metal film (Patent Document 2)
No. 267754 and Japanese Patent Laid-Open No. 3-248350) are also proposed, but the former has a difficulty in mass production, and the latter has a small effect of increasing θk at a short wavelength as described above. In addition to this, a perpendicularly magnetized film of NdFe2 element alloy has also been proposed (Japanese Patent Laid-Open No. 61-16584).
However, this method has a problem that it is not suitable for practical use because the method of heating the substrate is adopted.

【0007】[0007]

【課題を解決するための手段】本発明はこのような不
利、欠点、問題点を解決した光磁気記録媒体に関するも
ので、これは基板上に磁性膜を設けてなる光磁気記録媒
体において、その磁性膜が2種の層より構成され、その
うちの一方は3d遷移金属もしくはそれらより選ばれる
少なくとも1種の元素を含む合金とNdからなる層であ
り、もう一方は3d遷移金属もしくはそれらより選ばれ
る少なくとも1種の元素を含む合金と、Gd、Tb、D
yのうちより選ばれる少なくとも1種の元素を含む希土
類とからなる層であり、かつ上記2層の合計膜厚が13nm
以下であることを特徴とするものである。
SUMMARY OF THE INVENTION The present invention relates to a magneto-optical recording medium which solves the above disadvantages, drawbacks and problems, in a magneto-optical recording medium comprising a magnetic film provided on a substrate. The magnetic film is composed of two types of layers, one of which is a layer composed of 3d transition metal or an alloy containing at least one element selected from them and Nd, and the other is a layer of 3d transition metal or selected from them. Alloy containing at least one element, Gd, Tb, D
a layer composed of a rare earth element containing at least one element selected from y, and the total film thickness of the two layers is 13 nm.
It is characterized by the following.

【0008】すなわち、本発明者らは従来公知の磁性膜
が2層からなる光磁気記録媒体の改質方法について種々
検討した結果、この磁性膜を3d遷移金属またはその合
金とNdからなる層と、3d遷移金属またはその合金と
Gd、Tb、Dyから選ばれる少なくとも1種の希土類
元素とからなる層の2層とからなるものとすると、この
Ndを含む層の膜厚比を大きくすれば短波長のθkを大
きくすることができるし、Gd、Tb、Dyの少なくと
も1種の希土類元素を含む層の希土類元素の量を補償組
成の希土類元素量より多くすると保磁力が大きくなって
ビット安定性のよい媒体が得られること、また、この2
つ層の合計膜厚を13nm以下とすればNd層を含む層の磁
化は膜面に垂直方向を向き、ヒステリシスループにおけ
る角形が良好になり、さらには記録感度がよく、ディス
クの生産性のすぐれた媒体を得ることができることを見
出し、したがってこれによれば記録再生特性がよく、ビ
ット安定性のすぐれた光磁気記録媒体を生産性よく得る
ことができることを確認して本発明を完成させた。以下
にこれをさらに詳述する。
That is, the inventors of the present invention have made various studies on a conventionally known method for modifying a magneto-optical recording medium having two magnetic layers, and as a result, the magnetic layer has a layer made of 3d transition metal or its alloy and Nd. 3d transition metal or its alloy and two layers of at least one rare earth element selected from Gd, Tb, and Dy, it is possible to increase the film thickness ratio of the layer containing Nd. The wavelength θk can be increased, and if the amount of the rare earth element in the layer containing at least one rare earth element of Gd, Tb, and Dy is larger than the amount of the rare earth element of the compensating composition, the coercive force becomes large and the bit stability is improved. That a good medium can be obtained, and this 2
If the total film thickness of the two layers is 13 nm or less, the magnetization of the layer including the Nd layer is oriented in the direction perpendicular to the film surface, the square shape in the hysteresis loop is good, and the recording sensitivity is good and the disc productivity is excellent. The present invention has been completed by confirming that it is possible to obtain a medium which has excellent recording / reproducing characteristics and bit stability and can be obtained with high productivity. This will be described in more detail below.

【0009】[0009]

【作用】本発明は光磁気記録媒体に関するものであり、
これは前記したように基板上に磁性膜を設けてなる光磁
気記録媒体において、その磁性膜が2種の層より構成さ
れ、そのうちの一方は3d遷移金属もしくはそれらより
選ばれる少なくとも1種の元素を含む合金とNdからな
る層であり、もう一方は3d遷移金属もしくはそれらよ
り選ばれる少なくとも1種の元素を含む合金と、Gd、
Tb、Dyのうちより選ばれる少なくとも1種の元素を
含む希土類とからなる層であり、かつ上記2層の合計膜
厚が13nm以下であることを特徴とするものであるが、こ
れによれば記録再生特性がよく、ビット安定性のよい光
磁気記録媒体を生産性よく得ることができるという有利
性が与えられる。
The present invention relates to a magneto-optical recording medium,
This is a magneto-optical recording medium in which a magnetic film is provided on a substrate as described above, and the magnetic film is composed of two types of layers, one of which is a 3d transition metal or at least one element selected from them. And a layer containing Nd and an alloy containing 3d transition metal or an alloy containing at least one element selected from them, and Gd,
According to this, the layer is composed of a rare earth element containing at least one element selected from Tb and Dy, and the total thickness of the two layers is 13 nm or less. This provides an advantage that a magneto-optical recording medium having good recording / reproducing characteristics and bit stability can be obtained with high productivity.

【0010】本発明の光磁気媒体は図1に示したよう
に、基板上に第1の誘電体層、第1磁性層、第2磁性
層、第2の誘電体層、反射層を順次成膜してなる構造か
らなるものであり、この第1磁性膜と第2磁性膜は積層
順序が逆であってもよい。この光磁気記録媒体を構成す
る基板、誘電体膜、反射層はいずれも公知のものと同様
のものとすればよく、したがってこの基板としてはガラ
スまたはポリカーボネート、ポリオレフィン、ポリメチ
ルメタクリレートなどの透明樹脂からなるものとすれば
よく、誘電体層は磁性膜の耐久性やカーエンハンス効果
を考えて、SiN、AlN、SiCなどのセラミックス
を用いればよいし、反射層としては反射率および熱伝導
率の大きいものとすることからAl、Cu、Au、A
g、Ptなどやこれらを含んだ合金を使用すればよい。
As shown in FIG. 1, the magneto-optical medium of the present invention comprises a substrate on which a first dielectric layer, a first magnetic layer, a second magnetic layer, a second dielectric layer and a reflective layer are sequentially formed. The first magnetic film and the second magnetic film may be laminated in reverse order. The substrate, the dielectric film, and the reflective layer constituting this magneto-optical recording medium may be the same as known ones. Therefore, this substrate is made of glass or polycarbonate, polyolefin, polymethylmethacrylate, or other transparent resin. The dielectric layer may be made of ceramics such as SiN, AlN, or SiC in consideration of the durability of the magnetic film and the car-enhancement effect, and the reflective layer has high reflectance and thermal conductivity. Al, Cu, Au, A
It suffices to use g, Pt or the like or an alloy containing these.

【0011】本発明の光磁気記録媒体を構成する磁性膜
は希土類元素−遷移金属の非晶質合金からなるものとさ
れる。この第一磁性層はFe、Co、Niなどの3d遷
移金属もしくはこれらより選ばれる少なくとも1種の元
素を含む合金とNdからなる希土類元素とによって形成
される層であるが、これはこの膜の耐食性を向上させる
ために、さらにCr、Nb、Ptなどの元素を添加した
ものであってもよい。このもの組成物はNdが10%未満
であるとMsが大きすぎてその磁化を垂直にする効果が
得にくくなるし、膜が結晶化し易くなり、40%より多い
と逆にMsが小さすぎて充分なθkが得られなくなるの
で、これは10〜40%とする必要があるが、これはこの組
成物を NdxM1-x(Mは3dの遷移金属もしくは少なくと
もそのうちの1種の金属を含む合金)で表わされると
き、このx値が 0.1≦x≦0.4 であるものとすればよ
い。
The magnetic film constituting the magneto-optical recording medium of the present invention is made of an amorphous alloy of rare earth element-transition metal. The first magnetic layer is a layer formed of a 3d transition metal such as Fe, Co, or Ni or an alloy containing at least one element selected from these and a rare earth element composed of Nd. In order to improve the corrosion resistance, elements such as Cr, Nb and Pt may be added. When Nd is less than 10% in this composition, Ms is too large and it is difficult to obtain the effect of making the magnetization perpendicular, and when the content is more than 40%, Ms is too small. Since it is not possible to obtain a sufficient θk, it is necessary to set this to 10 to 40%, which means that this composition is N dx M 1-x (M is a 3d transition metal or at least one of them). Alloy)), the x value may be 0.1 ≦ x ≦ 0.4.

【0012】また、この第2磁性膜は上記した3d遷移
金属もしくはその合金と、Gd、Tb、Dyのうちから
選ばれる少なくとも1種の希土類元素とからなるものと
されるが、このものは補償組成よりも希土類元素の含有
量が多い組成(以下 RE-rich組成という)とする必要が
ある。図2はこの第2磁性層が補償組成よりも希土類元
素の少ない組成(以下TM−rich組成という)のと
きと、上記した RE-rich組成のときの各々について、2
層膜の保持力と第1磁性層厚との割合との関係グラフを
示したものであるが、RE-rich組成層を第1磁性層上に
積層した場合には、磁性層全体の保磁力を大きくするこ
とができるために本発明の磁性2層膜において大きな保
磁力を得ることができ、ビットの安定性も向上するが、
これに対してTM−rich組成の場合には、これを磁
性層上に積層すると保磁力が急激に劣化してしまうため
に、ビットが不安定となり情報の保持が難しくなる。
The second magnetic film is made of the above-mentioned 3d transition metal or its alloy and at least one rare earth element selected from Gd, Tb and Dy, which is compensated. It is necessary to use a composition that contains more rare earth elements than the composition (hereinafter referred to as RE-rich composition). FIG. 2 shows that the second magnetic layer has a composition containing less rare earth elements than the compensating composition (hereinafter referred to as TM-rich composition) and the RE-rich composition described above.
FIG. 3 is a graph showing the relationship between the coercive force of the layer film and the ratio of the thickness of the first magnetic layer. When the RE-rich composition layer is laminated on the first magnetic layer, the coercive force of the entire magnetic layer is shown. Can be increased, a large coercive force can be obtained in the magnetic two-layer film of the present invention, and the stability of the bit is also improved.
On the other hand, in the case of the TM-rich composition, if this is laminated on the magnetic layer, the coercive force rapidly deteriorates, and the bit becomes unstable, making it difficult to retain information.

【0013】また、本発明の光磁気記録媒体における上
記した第1磁性膜と第2磁性膜との合計膜厚は13nm以下
とされ、この第1磁性膜と第2磁性膜はそれぞれ膜厚が
3nm以上のものとされるが、第2磁性膜の膜厚は第1次
成膜の膜厚よりも厚くする必要がある。これは単層で面
内方向を示す第1磁性膜の磁化を2層間に働く交換結合
力によって垂直にするには、第1磁性層の膜厚が薄い方
が有利であり、また第一層層磁化を垂直にするために必
要な第2磁性層の膜厚は3〜6nmで、これ以上厚くして
も第1層磁化の向きに対する効果は変らないからであ
る。
In the magneto-optical recording medium of the present invention, the total film thickness of the first magnetic film and the second magnetic film is 13 nm or less, and the first magnetic film and the second magnetic film each have a film thickness of 13 nm or less. Although the thickness is 3 nm or more, the film thickness of the second magnetic film needs to be thicker than the film thickness of the primary film formation. This is because it is advantageous that the thickness of the first magnetic layer is thin in order to make the magnetization of the first magnetic film, which is a single layer and exhibits the in-plane direction, perpendicular by the exchange coupling force acting between the two layers. This is because the film thickness of the second magnetic layer required to make the layer magnetization perpendicular is 3 to 6 nm, and even if the thickness is further increased, the effect on the direction of the first layer magnetization is not changed.

【0014】また、これについてはカー回転角θkにつ
いて考えると、第1および第2の磁性層の合計がレーザ
ー光を透過する膜厚以下のときには、合計に対する第1
磁性膜厚の割合が大きい程短波長でのθkを大きくする
ことができるので、本発明では第1および第2の磁性膜
の合計膜厚は13nm以下とし、かつ第2磁性膜の膜厚を第
1磁性膜の膜厚よりも厚いものとすることがよい。
Further, regarding the Kerr rotation angle θk, when the total of the first and second magnetic layers is equal to or less than the film thickness that transmits the laser light, the first relative to the total is obtained.
Since θk at a short wavelength can be increased as the ratio of the magnetic film thickness increases, the total film thickness of the first and second magnetic films is set to 13 nm or less in the present invention, and the film thickness of the second magnetic film is set to 13 nm or less. The thickness is preferably thicker than the thickness of the first magnetic film.

【0015】本発明の光磁気記録媒体における磁性膜を
このように設定すると、Ndを含む層に重希土類元素を
添加していた従来の方式に比べて、本発明のものはこの
ような重希土類元素を添加しないので、短波長でのθk
を大きくすることができる角形の良好な媒体を得ること
ができるが、この第1磁性膜と第2磁性膜のそれぞれが
薄すぎるとこれらを2層にした効果が得られにくくなる
ので、これらはいずれも3nm以上のものとする必要があ
る。
When the magnetic film in the magneto-optical recording medium of the present invention is set in this manner, the heavy rare earth element of the present invention has such a heavy rare earth element as compared with the conventional method in which the heavy rare earth element is added to the layer containing Nd. Since no element is added, θk at short wavelength
It is possible to obtain a good medium having a rectangular shape capable of increasing the magnetic field. However, if the first magnetic film and the second magnetic film are too thin, it is difficult to obtain the effect of forming them into two layers. Both must be 3 nm or more.

【0016】また、本発明の光磁気記録媒体ではこの磁
性層の膜厚が13nm以下と薄くされるので、記録感度の低
下がなく、ディスク量産性も優れたものになるが、この
磁性層の膜厚を薄くすることによるθkの低下は誘電体
層や反射層によるエンハンス効果を用いることによって
解消できるし、これはまたその上下を誘電体層で挟むた
めに耐久性も実用上問題のないものになる。
Further, in the magneto-optical recording medium of the present invention, since the thickness of this magnetic layer is thinned to 13 nm or less, the recording sensitivity does not decrease and the mass productivity of the disk becomes excellent. The decrease in θk due to the reduction in film thickness can be eliminated by using the enhancement effect of the dielectric layer and the reflection layer, and this is because the upper and lower dielectric layers are sandwiched by the dielectric layers, and there is no practical problem in terms of durability. become.

【0017】[0017]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例1 スライドガラス基板上に第1誘電体層としてのSiN
層、第1磁性層としてのNdFe層、第2磁性層として
のTbFe層、第2誘電体層としてのSiN層および反
射層としてのAlを順次成膜して光磁気記録媒体を作成
したが、NdFe層はターゲットとしてFe上にNdを
おいた複合ターゲットを、またTbFe層はターゲット
としてFe上にTbをおいた複合ターゲットを用いたス
パッタリング法で行ない、これらの膜組成をRBS、E
PMAで測定したところ、これはNd35%−Feであ
り、TbFeはRe−rich組成で、第1磁性膜の膜
厚は5nm、第2磁性膜の膜厚は4nmのものであった。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Example 1 SiN as a first dielectric layer on a slide glass substrate
Layer, an NdFe layer as a first magnetic layer, a TbFe layer as a second magnetic layer, a SiN layer as a second dielectric layer, and an Al as a reflective layer were sequentially formed to form a magneto-optical recording medium. The NdFe layer is formed by a sputtering method using a composite target in which Nd is placed on Fe as a target, and the TbFe layer is formed by a sputtering method using a composite target in which Tb is placed on Fe as a target.
When measured by PMA, this was Nd 35% -Fe, TbFe had a Re-rich composition, and the thickness of the first magnetic film was 5 nm and the thickness of the second magnetic film was 4 nm.

【0018】ついで、このものの角形を比較する特性値
として、外部磁界H=0のときのθk(残留θk)とH
に対して飽和したθk(飽和θk)の比を用い、この試
料について残留θk/飽和θk比、および保持力を基板
側から測定すると共に、波長780nmと 450nmにおける飽
和θkを測定したが、このとき反射率Rが各々20%とな
るようにSiN膜厚を調整したところ、後記する表1に
示したとおりの結果が得られた。
Next, as characteristic values for comparing the rectangular shapes of these, θk (residual θk) when the external magnetic field H = 0 and H
Using the ratio of saturated θk (saturated θk) to the sample, the residual θk / saturated θk ratio and the coercive force of this sample were measured from the substrate side, and the saturated θk at wavelengths of 780 nm and 450 nm were measured. When the SiN film thickness was adjusted so that the reflectance R was 20%, the results shown in Table 1 below were obtained.

【0019】実施例2 磁性膜の組成は実施例1と同様にしたが、第1磁性膜の
膜厚を5nm、第2磁性膜の膜厚を3nmとしたほかは実施
例1と同様の方法で光磁気記録媒体を作り、このものの
物性を実施例1と同様の方法で測定したところ、後記す
る表1に示したとおりの結果が得られた。
Example 2 The composition of the magnetic film was the same as in Example 1, except that the thickness of the first magnetic film was 5 nm and the thickness of the second magnetic film was 3 nm. A magneto-optical recording medium was prepared in 1. and its physical properties were measured by the same methods as in Example 1, and the results shown in Table 1 below were obtained.

【0020】実施例3 第1磁性膜をNd33%、Fe40%、Co7%からなる膜
厚5nmのものとし、第2磁性膜をTb36%、Fe43%、
Co7%からなる膜厚3nmとしたほかは実施例1と同様
の方法で光磁気記録媒体を作成し、この物性を実施例1
と同様の方法で測定したところ、後記する表1に示した
とおりの結果が得られた。
Example 3 The first magnetic film was made of Nd 33%, Fe 40%, Co 7% and had a thickness of 5 nm, and the second magnetic film was Tb 36%, Fe 43%,
A magneto-optical recording medium was prepared in the same manner as in Example 1 except that the film thickness was 3 nm consisting of Co7%.
When measured by the same method as described above, the results shown in Table 1 described later were obtained.

【0021】比較例1 第1、第2磁性膜の組成は実施例1と同じとしたが、こ
れらの膜厚をいずれも15nmとして合計膜厚が30nmとした
ほかは実施例1と同様の方法で光磁気記録媒体を作成
し、この物性を実施例1と同じ方法で測定したところ、
後記する表1に示したとおりの結果が得られた。
Comparative Example 1 The compositions of the first and second magnetic films were the same as in Example 1, but the same method as in Example 1 except that the total film thickness was 30 nm with the film thicknesses of these films being 15 nm. A magneto-optical recording medium was prepared by using the above method, and its physical properties were measured by the same method as in Example 1.
The results shown in Table 1 below were obtained.

【0022】第1磁性膜の組成は実施例1と同じものと
し、第2磁性膜はTb19%−FeでTM−rich組成
のものとし、この第1、第2磁性膜の膜厚をいずれも5
nmのものとしたほかは実施例1と同じ方法で光磁気記録
媒体を作成し、この物性を実施例1と同じ方法で測定し
たところ、後記する表1に示したとおりの結果が得られ
た。
The composition of the first magnetic film is the same as that of the first embodiment, the second magnetic film has Tb 19% -Fe and TM-rich composition, and the film thicknesses of the first and second magnetic films are both. 5
A magneto-optical recording medium was prepared by the same method as in Example 1 except that the thickness was nm, and the physical properties were measured by the same method as in Example 1. As a result, the results shown in Table 1 below were obtained. .

【0023】比較例3 磁性膜をNdTbFeからなる一層とし、この膜厚を15
nmとしたほかは実施例1と同様に処理して光磁気記録媒
体を作成し、その物性を実施例1と同じ方法で測定した
ところ、後記する表1に示したとおりの結果が得られ
た。
Comparative Example 3 The magnetic film was a single layer made of NdTbFe, and the film thickness was 15
A magneto-optical recording medium was prepared in the same manner as in Example 1 except that the value was set to nm, and its physical properties were measured in the same manner as in Example 1. As a result, the results shown in Table 1 below were obtained. .

【0024】比較例4 磁性膜をTbFeCoからなる一層とし、その膜厚を20
nmとしたほかは実施例1と同様に処理して光磁気記録媒
体を作成し、その物性を実施例と同じ方法で測定したと
ころ、つぎの表1に示したとおりの結果が得られた。
Comparative Example 4 The magnetic film was a single layer made of TbFeCo, and the film thickness was 20.
A magneto-optical recording medium was prepared in the same manner as in Example 1 except that the value was set to nm, and its physical properties were measured by the same methods as in Example 1. The results shown in Table 1 below were obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明は光磁気記録媒体に関するもので
あり、これは前記したように基板上に磁性膜を設けてな
る光磁気記録媒体において、その磁性膜が2種の層より
構成され、そのうちの一方は3d遷移金属もしくはそれ
らより選ばれる少なくとも1種の元素を含む合金とNd
からなる層であり、もう一方は3d遷移金属もしくはそ
れらより選ばれる少なくとも1種の元素を含む合金と、
Gd、Tb、Dyのうちより選ばれる少なくとも1種の
元素を含む希土類とからなる層であり、かつ上記2層の
合計膜厚が13nm以下であることを特徴とするものである
が、このものには磁性膜が希土類元素を含む2層の合金
層とからなるものとされており、その膜厚も規定されて
いることから高密度な記録再生特定が可能で、ビット安
定性も優れており、生産性もよいものになるという有利
性が与えられる。
The present invention relates to a magneto-optical recording medium, which is a magneto-optical recording medium in which a magnetic film is provided on a substrate as described above, and the magnetic film is composed of two layers. One of them is a 3d transition metal or an alloy containing at least one element selected from them and Nd.
The other is a layer consisting of 3d transition metal or an alloy containing at least one element selected from them,
It is a layer formed of a rare earth element containing at least one element selected from Gd, Tb and Dy, and the total thickness of the two layers is 13 nm or less. It is said that the magnetic film consists of two alloy layers containing rare earth elements, and since the film thickness is also specified, high-density recording / reproducing can be specified and bit stability is also excellent. The advantage is that the productivity is also good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光磁気記録媒体の構成の縦断面図
を示したものである。
FIG. 1 is a vertical sectional view showing the structure of a magneto-optical recording medium according to the present invention.

【図2】本発明による光磁気記録媒体の第1磁性膜と第
1、第2磁性膜の膜厚比と保磁力Hcとの関係グラフを
示したものである。
FIG. 2 is a graph showing the relationship between the coercive force Hc and the film thickness ratio of the first magnetic film and the first and second magnetic films of the magneto-optical recording medium according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 俵好夫 神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内 (72)発明者 中山 和彦 神奈川県川崎市高津区坂戸3丁目2番1号 信越化学工業株式会社コーポレートリサ ーチセンター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Tawara 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa Shin-Etsu Chemical Co., Ltd. Corporate Research Center (72) Kazuhiko Nakayama Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa 3-2-1, Shin-Etsu Chemical Co., Ltd. Corporate Research Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板上に磁性膜を設けてなる光磁気記録媒
体において、その磁性膜が2種の層より構成され、その
うちの一方は3d遷移金属もしくはそれらより選ばれる
少なくとも1種の元素を含む合金とNdからなる層であ
り、もう一方は3d遷移金属もしくはそれらより選ばれ
る少なくとも1種の元素を含む合金と、Gd、Tb、D
yのうちより選ばれる少なくとも1種の元素を含む希土
類とからなる層であり、かつ上記2層の合計膜厚が13nm
以下であることを特徴とする光磁気記録媒体。
1. A magneto-optical recording medium having a magnetic film provided on a substrate, wherein the magnetic film is composed of two types of layers, one of which is a 3d transition metal or at least one element selected from them. The other layer is a layer containing an alloy containing Nd, and the other is a 3d transition metal or an alloy containing at least one element selected from them, and Gd, Tb, and D.
a layer composed of a rare earth element containing at least one element selected from y, and the total film thickness of the two layers is 13 nm.
A magneto-optical recording medium characterized by the following:
【請求項2】磁性膜を構成する2種の層のうち、3d遷
移金属とNdとからなる磁性層の膜厚がもう一方の層よ
り厚く、かつ各々の層の膜厚が3nm以上である請求項1
に記載した光磁気記録媒体。
2. A magnetic layer comprising 3d transition metal and Nd, of two types of layers constituting the magnetic film, having a thickness larger than that of the other layer, and the thickness of each layer is 3 nm or more. Claim 1
The magneto-optical recording medium described in 1.
【請求項3】3d遷移金属とGd、Tb、Dyのうちよ
り選ばれる少なくとも1種の希土類元素とからなる磁性
層が、補償組成よりも希土類元素を多く含む組成である
請求項1に記載した光磁気記録媒体。
3. The magnetic layer comprising a 3d transition metal and at least one rare earth element selected from Gd, Tb and Dy has a composition containing more rare earth elements than the compensating composition. Magneto-optical recording medium.
【請求項4】3d遷移金属とNdとからなる組成が Ndx
M1-xで表わされるとき、このx値が0.1≦x≦0.4 (M
は3d遷移金属もしくは少なくともそのうちの1種の元
素を含む合金)である請求項1に記載した光磁気記録媒
体。
4. The composition of 3d transition metal and Nd is Nd x
When expressed by M 1-x , this x value is 0.1 ≦ x ≦ 0.4 (M
Is a 3d transition metal or an alloy containing at least one element thereof).
【請求項5】基板上に第1誘電体層、2種の層より構成
された磁性層、第2誘電体層および反射層が順次成膜さ
れてなる請求項1に記載した光磁気記録媒体。
5. A magneto-optical recording medium according to claim 1, wherein a first dielectric layer, a magnetic layer composed of two kinds of layers, a second dielectric layer and a reflective layer are sequentially formed on a substrate. .
JP11682293A 1993-05-19 1993-05-19 Magneto-optical recording medium Pending JPH06333277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11682293A JPH06333277A (en) 1993-05-19 1993-05-19 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11682293A JPH06333277A (en) 1993-05-19 1993-05-19 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH06333277A true JPH06333277A (en) 1994-12-02

Family

ID=14696492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11682293A Pending JPH06333277A (en) 1993-05-19 1993-05-19 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH06333277A (en)

Similar Documents

Publication Publication Date Title
US4645722A (en) Photo-thermo-magnetic recording medium and method of preparing same
EP0479474B1 (en) Magneto-optical recording medium
US4975339A (en) Magneto-optical recording medium with at least one protective layer containing platinum and/or palladium
US5030512A (en) Magneto-optical recording medium
JP3199179B2 (en) Magneto-optical recording media with large Kerr rotation angle in short wavelength region
JPH06333277A (en) Magneto-optical recording medium
JPH01124131A (en) Magneto-optical recording medium
JP3208275B2 (en) Magneto-optical recording medium
US5529854A (en) Magneto-optic recording systems
JP2528184B2 (en) Magneto-optical recording medium
JPH05198027A (en) Magneto-optical recording medium
JPH0660452A (en) Magneto-optical recording medium
JPH06325419A (en) Magneto-optical recording medium
JP3381960B2 (en) Magneto-optical recording medium
JPH03157838A (en) Magneto-optical recording device
KR950003181B1 (en) Optical-magnato medium
JP2932687B2 (en) Magneto-optical recording medium
JP3446297B2 (en) Magneto-optical recording medium
EP0910076A2 (en) Magneto-optical disc and manufacturing method thereof
JPH056584A (en) Magneto-optical recording medium
JPH07272335A (en) Magneto-optical recording disk
JPH03235237A (en) Structure of magneto-optical recording medium
JPS6358641A (en) Magneto-optical recording medium
JPS59201248A (en) Optomagnetic disk
JPH09180277A (en) Magneto-optical disk