JPH0633240A - Boron nitride coated hard material and its production - Google Patents

Boron nitride coated hard material and its production

Info

Publication number
JPH0633240A
JPH0633240A JP4189005A JP18900592A JPH0633240A JP H0633240 A JPH0633240 A JP H0633240A JP 4189005 A JP4189005 A JP 4189005A JP 18900592 A JP18900592 A JP 18900592A JP H0633240 A JPH0633240 A JP H0633240A
Authority
JP
Japan
Prior art keywords
boron nitride
base material
coating layer
hard material
coated hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4189005A
Other languages
Japanese (ja)
Other versions
JP3422029B2 (en
Inventor
Naoya Omori
直也 大森
Akinori Kobayashi
晄徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18900592A priority Critical patent/JP3422029B2/en
Publication of JPH0633240A publication Critical patent/JPH0633240A/en
Application granted granted Critical
Publication of JP3422029B2 publication Critical patent/JP3422029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the boron nitride coated hard material and the process for production of this material. CONSTITUTION:The boron nitride coated hard material constituted by using titanium-base cermet or titanium carbonitride-base cermet as a base material and providing the surface of this base material with a boron nitride coating layer is so formed that the existence ratio of the bond layer in the surface part of the base material is lower than that in the base material or the bond layer in the surface part of the base material does not exist. More particularly preferably, the surface part of the base material is a surface reformed layer having a sintered case and heat treated case. The boron nitride coated hard material is produced by subjecting the base material to sintering and heat treating, then coating the material with the boron nitride. Since the material has extremely high wear resistance and the adhesive strength to the base material, the material is advantageously utilizable for various kinds of tools, parts, grinding wheels, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極めて高い耐磨耗性を
もつ窒化ホウ素被覆硬質材料およびその製造法に関する
ものであり、本発明品は切削工具、耐摩工具、鉱山工
具、電子部品、機械部品、砥石などに利用して好適であ
る。特に被加工材や被削材が鋼あるいは鋳鉄であるロー
ル、ガイドローラー、シールリング、ロッカーアームチ
ップ、ノズル類およびダイス等の耐摩工具や、切削工具
として用いるのに適した窒化ホウ素硬質材料およびその
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boron nitride-coated hard material having extremely high wear resistance and a method for producing the same, and the present invention products include cutting tools, wear resistant tools, mining tools, electronic parts and machines. It is suitable for use in parts and grindstones. In particular, the work material and work material is steel or cast iron rolls, guide rollers, seal rings, rocker arm tips, wear resistant tools such as nozzles and dies, and boron nitride hard materials suitable for use as cutting tools and the like. Regarding manufacturing method.

【0002】[0002]

【従来の技術】窒化ホウ素は、六方晶窒化ホウ素(h−
BN)、ウルツ鉱型窒化ホウ素(w−BN)、立方晶窒
化ホウ素(以下「c−BN」とも略記する)、非晶質型
窒化ホウ素等の結晶構造を持つことが知られており、そ
のうちc−BNはダイヤモンドに次ぐ常温硬度を持ち、
またダイヤモンドに比べて高温で安定であり、このため
ダイヤモンドが鉄類金属と反応しやすいのに対して高い
温度でも反応せず、高温強度も高いことが知られてい
る。このため、c−BNまたはc−BNを含む被覆層を
切削工具、耐摩工具その他の機械部品の表面に被覆した
場合、良好な耐磨耗性が期待できる。特に、被加工物や
被削材が、鋼および鋳鉄であるロール、ガイドローラ
ー、シールリング、ロッカーアーム、チップ、ノズル
類、およびダイス、金型類などの耐摩工具、切削工具の
表面に設けた場合、良好な耐磨耗性が期待できる。
2. Description of the Related Art Boron nitride is a hexagonal boron nitride (h-
BN), wurtzite type boron nitride (w-BN), cubic boron nitride (hereinafter also abbreviated as “c-BN”), amorphous type boron nitride, etc. are known to have a crystal structure. c-BN has room temperature hardness next to diamond,
Further, it is known that it is more stable at high temperature than diamond, and therefore diamond easily reacts with ferrous metals, but it does not react even at high temperature, and high temperature strength is also high. Therefore, when c-BN or a coating layer containing c-BN is coated on the surface of a cutting tool, a wear resistant tool or other machine parts, good wear resistance can be expected. In particular, the workpieces and work materials are steel and cast iron rolls, guide rollers, seal rings, rocker arms, chips, nozzles, and wear-resistant tools such as dies and dies, provided on the surface of cutting tools. In this case, good abrasion resistance can be expected.

【0003】近年焼き入れ鋼、ダクタイル鋳鉄等の極め
て難加工性、難削性の材質の加工需要が高まり、またこ
れらの加工条件の高能率化の要求が強く、ますます過酷
なものとなってきている。このような市場の重要に応じ
るため、特公昭57−49621号公報、特公昭58−
19737号公報、特公昭58−55111号公報、特
公昭57−3631号公報、特公昭52−17519号
公報、特公昭50−39444号公報、特公昭52−1
7838号公報を始めとする多くの特許公報にて開示さ
れている方法にて、c−BN粒状結晶と特殊セラミック
ス結合材を超高圧下に焼結して製造したc−BN焼結体
を用いた切削工具、耐摩工具が実用されている。
In recent years, there has been an increasing demand for machining hard-to-machine and hard-to-machine materials such as hardened steel and ductile cast iron, and there is a strong demand for high efficiency in these machining conditions. ing. In order to respond to the importance of such a market, Japanese Patent Publication No. 57-49621 and Japanese Patent Publication No. 58-
19737, Japanese Patent Publication 58-55111, Japanese Patent Publication 57-3631, Japanese Patent Publication 52-17519, Japanese Patent Publication 50-39444, Japanese Patent Publication 52-1.
A c-BN sintered body produced by sintering c-BN granular crystals and a special ceramics binder under ultrahigh pressure by the method disclosed in many patent publications including 7838 publication is used. The cutting tools and abrasion resistant tools that were used are in practical use.

【0004】この他に、基材の表面に窒化ホウ素被覆層
を形成し、基材の耐磨耗性を大幅に向上させる試みも行
われている。人工窒化ホウ素被覆層の製造法としては、
特公昭60−181262号公報をはじめとする多くの
特許公報にて開示されている熱CVD法、マイクロ波プ
ラズマCVD法、RFプラズマCVD法、イオンプレー
ティング法、スパッタ法、イオンビーム支援真空蒸着法
等の種々の方法およびこれらの組合せが知られており、
これらは窒化ホウ素被覆硬質材料製造の有力な方法であ
る。
In addition, attempts have been made to form a boron nitride coating layer on the surface of a base material to significantly improve the abrasion resistance of the base material. As a method of manufacturing the artificial boron nitride coating layer,
A thermal CVD method, a microwave plasma CVD method, an RF plasma CVD method, an ion plating method, a sputtering method, an ion beam assisted vacuum deposition method, which are disclosed in many patent publications including Japanese Patent Publication No. 60-181262. Various methods and combinations of these are known,
These are powerful methods for producing boron nitride coated hard materials.

【0005】[0005]

【発明が解決しようとする課題】ところで、c−BN焼
結体を台金にロウ付けして作成できる各種工具等には形
状に制約がある。具体的には、4枚刃エンドミルのよう
な形状のすべての刃部に優れた精度で窒化ホウ素焼結体
をロウ付けするのは、現状の技術では困難である。この
ため、丸棒形状のc−BN焼結体を作成し、これを放電
加工して目的形状を得なければならず、実際に耐摩耗性
向上に要求される部分以外もc−BN焼結体にて構成さ
れるため非常に高価となり、かつ生産性、形状自由度も
低い。逆に、窒化ホウ素被覆硬質材料は形状自由度、生
産性は非常に高い。ところが、窒化ホウ素被覆硬質材料
の多くは、基材と窒化ホウ素被覆層との密着力が不足し
ている。特に、切削工具などの過酷な条件下での使用に
適用した場合、窒化ホウ素被覆層が剥離することにより
寿命にいたる場合が多い。
By the way, various tools and the like that can be produced by brazing a c-BN sintered body to a base metal have restrictions in shape. Specifically, it is difficult to braze the boron nitride sintered body to all the blade parts having a shape like a four-blade end mill with excellent accuracy by the current technology. For this reason, it is necessary to prepare a round bar-shaped c-BN sintered body and perform electric discharge machining to obtain a target shape. The c-BN sintered body is also applied to parts other than those actually required to improve wear resistance. Since it is composed of a body, it is very expensive, and productivity and shape flexibility are low. On the contrary, the boron nitride-coated hard material has a very high degree of freedom in shape and productivity. However, most of the hard materials coated with boron nitride lack adhesion between the substrate and the boron nitride coating layer. In particular, when applied to severe conditions such as a cutting tool, the boron nitride coating layer is often peeled to reach the end of its life.

【0006】この点を改良するため、基材と窒化ホウ素
被覆層との間に中間層を設けるといった試みが多くの機
関にて行われている。例えば特開昭60−204687
号公報、特開昭60−152677号公報、特開昭63
−35774号公報、特開昭63−239103号公
報、特開昭64−28358号公報等に提案されてい
る。基材材質としてセラミックスを使用した場合、窒化
ホウ素被覆層と基材との密着力が高まる、といった技術
も開示されている(特開昭60−204686号公報、
特公昭60−59085号公報)。また、ArやH2
どのプラズマで基板を処理し、表面の不純物を除去し、
これにより得られた清浄表面上に窒化ホウ素被覆層を成
膜することにより基材との密着強度を確保するという技
術は、出願人が特願平2−243859号明細書にて既
に出願している。さらにまた、基材表面に凹凸を付け、
これに窒化ホウ素被覆層を形成することにより、被覆層
と基材との機械的結合力を高める技術もある(特願平3
−41843号公報)。
In order to improve this point, many organizations have tried to provide an intermediate layer between the substrate and the boron nitride coating layer. For example, JP-A-60-204687
JP-A-60-152677, JP-A-63
-35774, JP-A-63-239103, JP-A-64-28358 and the like. There is also disclosed a technique in which the adhesion between the boron nitride coating layer and the base material is enhanced when ceramics is used as the base material (Japanese Patent Laid-Open No. 60-204686).
Japanese Patent Publication No. Sho 60-59085). Also, the substrate is treated with plasma such as Ar or H 2 to remove impurities on the surface,
The applicant has already filed a patent application in Japanese Patent Application No. 2-243859 to secure the adhesion strength with a substrate by forming a boron nitride coating layer on the clean surface thus obtained. There is. Furthermore, the surface of the base material has irregularities,
There is also a technique of forming a boron nitride coating layer on this to enhance the mechanical bonding force between the coating layer and the base material (Japanese Patent Application No. Hei 3 (1999) -135242).
-41843).

【0007】上記従来技術の中で、中間層を設けた場
合、中間層と窒化ホウ素、窒化ホウ素と基材とを同時に
優れた密着力にて接合できる中間層材質の選定が困難で
あり、時には基材−中間層または中間層内部にて被覆層
の剥離が発生した。特願平3−41843号公報の技術
は効果があることは確認できたものの、しかし、この技
術を用いてもまだ、窒化ホウ素被覆層と基材の密着力の
向上には改善の余地がある。また、基材材質にセラミッ
クスを使用した場合、その密着力如何にかかわらず、基
材強度が低いため、例えば切削工具などに適用した場
合、破損、欠損する場合が多い。本発明はこれらの問題
点を解決し、優れた密着強度、強度と形状自由度をもつ
窒化ホウ素被覆硬質材料を提供することを目的とする。
In the above-mentioned prior art, when an intermediate layer is provided, it is difficult to select an intermediate layer material capable of joining the intermediate layer and boron nitride, and the boron nitride and the base material at the same time with excellent adhesion. Peeling of the coating layer occurred inside the substrate-intermediate layer or inside the intermediate layer. Although it has been confirmed that the technique of Japanese Patent Application No. 3-41843 is effective, there is still room for improvement in improving the adhesion between the boron nitride coating layer and the substrate even if this technique is used. . Further, when ceramics is used as the material of the base material, the strength of the base material is low irrespective of its adhesive strength, and therefore when applied to a cutting tool, for example, it is often broken or chipped. An object of the present invention is to solve these problems and to provide a boron nitride-coated hard material having excellent adhesion strength, strength and freedom of shape.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する手段
として本発明者等は、切削工具、耐摩工具の材質として
広く用いられて、多くの優れた特性をもつ炭化チタン基
または炭窒化チタン基サーメットを選択し、且つ窒化ホ
ウ素被覆層を形成する基材の表面状態を改善することに
より被覆層の密着強度を高める方法が有効であること、
すなわち、下記(a)〜(j)の窒化ホウ素被覆硬質材
料および製造法により、前記目的を達成できることを見
いだした。 (a) 炭化チタン基サーメットまたは炭窒化チタン基
サーメットを基材材質とし、該基材表面に窒化ホウ素被
覆層が設けられてなる窒化ホウ素被覆硬質材料におい
て、該基材の表面部における結合相の存在割合が該基材
内部に比べ少ないまたは該基材の表面部において結合相
が存在しないことを特徴とする窒化ホウ素被覆硬質材
料。 (b) 炭化チタン基サーメットまたは炭窒化チタン基
サーメットを基材材質とし、該基材表面に窒化ホウ素被
覆層が設けられてなる窒化ホウ素被覆硬質材料におい
て、該基材最表面に内部より高硬度である表面改質層が
存在することを特徴とする窒化ホウ素被覆硬質材料。 (c) 炭化チタン基サーメットまたは炭窒化チタン
基サーメットを基材材質とし、該基材表面に窒化ホウ素
被覆層が設けられてなる窒化ホウ素被覆硬質材料におい
て、少なくとも基材表面の一部が焼結肌であり、少なく
とも当該焼結肌の部分に窒化ホウ素被覆層が形成されて
なることを特徴とする窒化ホウ素被覆硬質材料。 (d) 炭化チタン基サーメットまたは炭窒化チタン基
サーメットを基材材質とし、基材表面に窒化ホウ素被覆
層が設けられてなる窒化ホウ素被覆硬質材料において、
少なくとも基材表面の一部が焼結肌であり、該焼結肌表
面に存在する結合相および/または内部より結合相の割
合が高い表面層を除去した少なくとも当該焼結肌の部分
に窒化ホウ素被覆層が形成されてなることを特徴とする
窒化ホウ素被覆硬質材料。 (e) 炭化チタン基サーメットまたは炭窒化チタン基
サーメットを基材材質とし、基材表面に窒化ホウ素被覆
層が設けられてなる窒化ホウ素被覆硬質材料において、
基材を任意の形状に加工した後、当該基材を熱処理する
ことにより、基材表面性状の少なくとも一部は熱処理肌
とした基材の少なくとも一部表面または全表面上に窒化
ホウ素被覆層を形成してなることを特徴とする窒化ホウ
素被覆硬質材料。 (f) 炭化チタン基サーメットまたは炭窒化チタン基
サーメットを基材材質とし、基材表面に窒化ホウ素被覆
層を設けてなる窒化ホウ素被覆硬質材料において、基材
を任意の形状に加工した後、当該基材を熱処理すること
により、基材表面性状の少なくとも一部は熱処理肌と
し、表面の結合相および/または内部より結合相の割合
が高い表面層を除去した該熱処理肌表面の少なくとも一
部表面または全表面上に窒化ホウ素被覆層を形成してな
ることを特徴とする窒化ホウ素被覆硬質材料。 (g) 基材となるサーメットの焼結および/または冷
却を、N2 および/またはCOおよび/またはCH4
分圧が1Torr以上の雰囲気にて行い、得られた焼結
体の少なくとも一部表面を焼結肌とし、さらに少なくと
も該焼結肌の一部表面に窒化ホウ素被覆層を設けること
を特徴とする窒化ホウ素被覆硬質材料の製造法。 (h) 基材となるサーメットの焼結および冷却を、1
Torr以上の窒素ガス雰囲気にて行い、この焼結体の
少なくとも一部表面について、表面に浸み出した金属成
分を酸および/またはアルカリによりエッチング除去し
た一部表面に窒化ホウ素被覆層を設けることを特徴とす
る窒化ホウ素被覆硬質材料の製造法。 (i) 基材となるサーメットの焼結を行い、目的形状
に加工した後、基材の少なくとも一部表面を900〜1
600℃以上の温度で10分間〜5時間熱処理を行い、
次にCOの分圧が1Torr以上の雰囲気にて冷却する
ことにより該基材の少なくとも一部表面を熱処理肌と
し、さらに当該熱処理肌の少なくとも一部表面に窒化ホ
ウ素被覆層を設けることを特徴とする窒化ホウ素被覆硬
質材料の製造法。 (j) 基材となるサーメットの焼結を行い、目的形状
に加工した後、1Torr以上のN2 ガス中にて800
〜1600℃以上の温度で10分間〜5時間熱処理を行
い次に冷却することにより基材の少なくとも一部表面を
熱処理肌とし、さらに該熱処理肌表面に浸み出した金属
成分を酸および/またはアルカリによりエッチング除去
した一部表面に窒化ホウ素被覆層を設けることを特徴と
する窒化ホウ素被覆硬質材料の製造法。 本発明の「内部より結合相の存在割合が少ないまたは結
合相の存在しない表面部」の特に好ましい例としては、
基材内部とは組成および/または組織の異なる層、すな
わち本発明において「表面改質層」と呼称する層が基材
の表面部に存在するものが挙げられる。本発明の上記製
造法において、焼結または熱処理として、焼結圧力を1
0〜3000気圧の条件で熱間静水圧プレスを行なうこ
とが特に好ましく、また熱処理工程と窒化ホウ素被覆層
形成工程を連続処理することも特に好ましい。
As a means for solving the above problems, the inventors of the present invention have widely used titanium carbide-based or titanium carbonitride-based materials, which are widely used as materials for cutting tools and wear-resistant tools and have many excellent characteristics. Selecting a cermet, and that the method of increasing the adhesion strength of the coating layer by improving the surface state of the substrate forming the boron nitride coating layer is effective,
That is, it was found that the above objects can be achieved by the following boron nitride-coated hard materials (a) to (j) and manufacturing methods. (A) A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material, and a boron nitride coating layer provided on the surface of the base material. A boron nitride-coated hard material, characterized in that the proportion thereof is smaller than that in the inside of the base material or that no binder phase is present in the surface portion of the base material. (B) In a boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material and a boron nitride coating layer provided on the surface of the base material, the outermost surface of the base material has a higher hardness than the inside. A boron nitride-coated hard material characterized by the presence of a surface modification layer which is (C) In a boron nitride-coated hard material comprising a titanium carbide-based cermet or titanium carbonitride-based cermet as a base material and a boron nitride coating layer provided on the surface of the base material, at least a part of the base material surface is sintered. A boron nitride-coated hard material, which is skin and has a boron nitride coating layer formed on at least a portion of the sintered skin. (D) A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material and a boron nitride coating layer provided on the surface of the base,
At least a part of the surface of the base material is a sintered skin, and a surface layer having a binder phase and / or a ratio of the binder phase higher than the inside is present on the surface of the sintered skin. A boron nitride-coated hard material, characterized in that a coating layer is formed. (E) A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material and a boron nitride coating layer provided on the surface of the base,
After the base material is processed into an arbitrary shape, the base material is heat treated to form a boron nitride coating layer on at least a part of the surface of the base material or at least part of the surface of the base material, which is heat treated skin. A boron nitride-coated hard material characterized by being formed. (F) In a boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material and a boron nitride coating layer provided on the surface of the base material, after processing the base material into an arbitrary shape, At least a part of the surface properties of the base material is treated by heat-treating the base material, and at least a part of the surface of the heat-treated skin surface is obtained by removing the surface phase having the binder phase and / or the ratio of the binder phase higher than the inside. Alternatively, a boron nitride-coated hard material comprising a boron nitride coating layer formed on the entire surface. (G) Sintering and / or cooling of the cermet as a base material is performed in an atmosphere in which the partial pressure of N 2 and / or CO and / or CH 4 is 1 Torr or more, and at least a part of the obtained sintered body A method for producing a boron nitride-coated hard material, characterized in that the surface is a sintered skin, and a boron nitride coating layer is further provided on at least a part of the surface of the sintered skin. (H) Sintering and cooling the cermet, which is the base material,
Performing in a nitrogen gas atmosphere of Torr or more, and providing a boron nitride coating layer on at least a part of the surface of this sintered body by etching away the metal component leached on the surface with an acid and / or an alkali. A method for producing a hard material coated with boron nitride, comprising: (I) After sintering the cermet to be the base material and processing it into a target shape, at least a part of the surface of the base material is 900 to 1
Heat treatment at a temperature of 600 ° C. or higher for 10 minutes to 5 hours,
Next, by cooling in an atmosphere having a partial pressure of CO of 1 Torr or more, at least a part of the surface of the base material is a heat-treated skin, and a boron nitride coating layer is further provided on at least a part of the surface of the heat-treated skin. Method for producing hard material coated with boron nitride. (J) Cermet as a base material is sintered and processed into a target shape, and then 800 in 1 Torr or more of N 2 gas.
Heat treatment is performed for 10 minutes to 5 hours at a temperature of 1600 ° C. or higher, and then cooled to form at least a part of the surface of the substrate as a heat treated skin, and the metal component leached on the surface of the heat treated skin is treated with an acid and / or an acid. A method for producing a boron nitride-coated hard material, characterized in that a boron nitride coating layer is provided on a part of the surface removed by etching with an alkali. As a particularly preferred example of the “surface portion in which the existence ratio of the binder phase is smaller than that of the inside or the binder phase does not exist” of the present invention,
A layer having a different composition and / or structure from the inside of the substrate, that is, a layer referred to as a “surface modified layer” in the present invention, is present on the surface portion of the substrate. In the above manufacturing method of the present invention, the sintering pressure is set to 1 as the sintering or heat treatment.
It is particularly preferable to carry out hot isostatic pressing under the condition of 0 to 3000 atm, and it is also particularly preferable to carry out the heat treatment step and the boron nitride coating layer forming step continuously.

【0009】[0009]

【作用】本発明者らは多くの試行錯誤の結果、前記
(a)のような内部より結合相の組成割合が少ないまた
は結合相の存在しない表面部を有する、あるいは(b)
〜(f)のような炭化チタン基サーメットまたは炭窒化
チタン基サーメットを基材とした場合、優れた密着力を
もつ窒化ホウ素被覆層を得ることができることを発見し
た。この原因は定かではないが、推測を以下に述べる。
一般に、ダイヤモンドがWC、金属W、Tiをはじめと
する周期律表の4A、5A、6A族元素(Wを除く)の
炭化物、窒化物、ホウ化物、酸化物、炭窒化物、ホウ窒
化物の炭化物、窒化物または炭窒化物上およびこれら固
溶体上には高い核発生密度を示し、このため良好な密着
強度を示すことが知られている。窒化ホウ素、特にc−
BNはダイヤモンドと結晶構造が似ていることから、同
様にこれらの物質上には良好な密着力をもち、逆に鉄系
金属の存在がその密着力を低下させているのではないか
と、本発明者等は考えついた。
As a result of many trials and errors, the present inventors have a surface portion in which the composition ratio of the binder phase is smaller than that in the interior as in (a) or where the binder phase does not exist, or (b)
It has been discovered that when a titanium carbide-based cermet or titanium carbonitride-based cermet as described in (f) is used as a base material, a boron nitride coating layer having excellent adhesion can be obtained. The reason for this is not clear, but the conjecture is described below.
Generally, diamond is a carbide, nitride, boride, oxide, carbonitride, or boronitride of 4A, 5A, or 6A group elements (excluding W) of the periodic table including WC, metal W, and Ti. It is known to show high nucleation densities on carbides, nitrides or carbonitrides and on these solid solutions, and thus good adhesion strength. Boron nitride, especially c-
Since BN has a crystal structure similar to that of diamond, it also has good adhesion on these materials, and conversely the presence of iron-based metals may reduce the adhesion. The inventors have come up with an idea.

【0010】本発明においては、基材として炭化チタン
基サーメットまたは炭窒化チタン基サーメットを用いる
ため、中間層を用いた技術のように中間層が剥離するよ
うな問題は発生せず、また基材中の結合相をエッチング
等にて除去した場合に生じる基材強度低下も起きない。
In the present invention, since a titanium carbide-based cermet or titanium carbonitride-based cermet is used as the base material, the problem of peeling of the intermediate layer unlike the technique using the intermediate layer does not occur, and the base material The strength of the base material does not decrease when the binder phase therein is removed by etching or the like.

【0011】本発明において基材となる炭化チタン基ま
たは炭窒化チタン基のサーメットとは、硬質分散相が主
として、4A,5Aおよび6A族金属並びにSiの炭化
物、窒化物、炭窒化物およびホウ化物のうちの1種以上
で構成され、これらが炭化物,窒化物あるいは炭窒化物
換算で60重量%以上にて構成され、残りが結合相とし
て鉄系金属のうちの1種以上で構成される。
The titanium carbide-based or titanium carbonitride-based cermet used as the base material in the present invention is mainly composed of a hard dispersed phase of 4A, 5A and 6A metals and Si carbides, nitrides, carbonitrides and borides. Of 60% by weight or more in terms of carbides, nitrides or carbonitrides, and the rest is composed of at least one of iron-based metals as a binder phase.

【0012】本発明の基材の表面を「結合相の存在割合
が内部に比べ少ない、または結合相が存在しない」状
態、具体的には表面改質層、焼結肌および/または熱処
理肌、として窒化ホウ素被覆硬質材料を製造する方法を
次に説明する。一つ方法として、炭化チタン基または炭
窒化チタン基サーメット原料粉末を混合、成型、焼結
し、冷却する際に、焼結中および/または冷却中雰囲気
を、前述の硬質相の平衡O2 および/またはN2 および
/またはCH4 分圧より大とした雰囲気ガスにて焼結
し、この焼結肌に対し窒化ホウ素被覆層を形成する方法
が挙げられる。O2 分圧を目的の分圧程度に調整するに
は、COガス雰囲気を用いれば良い。さらに、任意の焼
結を行い一度研削加工を行った基材に対しても、前述の
条件にて再度熱処理し、基材表面性状を焼結肌に近い状
態(以後「熱処理肌」と呼ぶ)にすることによっても、
同様に上記の状態とすることができるので、この熱処理
肌に対して窒化ホウ素被覆層を形成すればよい。なお、
表面に結合相成分により形成された表面層(結合相層と
呼ぶ)が存在する場合、窒化ホウ素被覆層を形成するた
めにこの結合相層を除去する必要がある。
The surface of the base material of the present invention is in a state where the proportion of the binder phase is smaller than that in the interior, or the binder phase is not present, specifically, the surface modification layer, the sintered skin and / or the heat treated skin, A method for producing a boron nitride-coated hard material will be described below. As one method, when mixing, shaping, sintering, and cooling titanium carbide-based or titanium carbonitride-based cermet raw material powder, the atmosphere during sintering and / or cooling is set to equilibrium O 2 and Examples of the method include sintering in an atmosphere gas having a partial pressure higher than that of N 2 and / or CH 4 and forming a boron nitride coating layer on the sintered surface. To adjust the O 2 partial pressure to a desired partial pressure, a CO gas atmosphere may be used. Further, the base material that has been subjected to arbitrary sintering and once subjected to grinding processing is heat-treated again under the above-mentioned conditions, and the surface property of the base material is in a state close to a sintered surface (hereinafter referred to as "heat-treated surface"). Also by
Similarly, since the above state can be achieved, a boron nitride coating layer may be formed on this heat-treated skin. In addition,
If there is a surface layer (referred to as a binder phase layer) formed by the binder phase component on the surface, it is necessary to remove this binder phase layer in order to form the boron nitride coating layer.

【0013】本発明の製法において、焼結温度および時
間は、通常のサーメットの焼結に使用される条件でよ
い。具体的には、1300℃〜1500℃の温度にて、
30〜3時間が一般的である。また、前述のO2 および
/またはN2 ガス雰囲気にするのは、焼結初期からで
も、中期からでも、冷却段階でもよいが、800℃〜1
600℃の範囲で少なくとも10分以上保持しなけれ
ば、硬質相の界面への質量移動が十分ではなく、表面改
質層の発生が認められない。
In the manufacturing method of the present invention, the sintering temperature and time may be the conditions used for the usual sintering of cermet. Specifically, at a temperature of 1300 ° C to 1500 ° C,
30 to 3 hours is typical. The above-mentioned O 2 and / or N 2 gas atmosphere may be introduced from the early stage of sintering, from the middle stage, or at the cooling stage.
If the temperature is not kept in the range of 600 ° C. for at least 10 minutes or more, the mass transfer to the interface of the hard phase is not sufficient and the generation of the surface modified layer is not recognized.

【0014】本発明における熱処理条件も、焼結条件と
同様であり1300℃〜1600℃の温度にて、30〜
3時間が一般的である。CO雰囲気とするのは、熱処理
初期からでも、中期からでも、冷却段階でもよいが、8
00℃〜1600℃の範囲で少なくとも10分間以上保
持しなければ、硬質相の界面への移動が十分ではなく、
表面改質層の発生が認められないため、好ましくない。
また、1000分間を越える長時間に渡り熱処理を行っ
た場合、基材超硬合金の硬質相粒子の粗大化等により強
度劣化するため望ましくない。ここで基材表面への窒化
ホウ素被覆の工程を、基材を室温まで冷却しないで連続
的に実施することおよび/または同一の真空容器にて実
施することも可能であり、工業的には有効な手段であ
る。
The heat treatment conditions in the present invention are the same as the sintering conditions, that is, at a temperature of 1300 ° C. to 1600 ° C.
3 hours is typical. The CO atmosphere may be set from the beginning of the heat treatment, the middle stage, or the cooling stage.
Unless held in the range of 00 ° C to 1600 ° C for at least 10 minutes or more, the hard phase does not sufficiently move to the interface,
The generation of the surface modified layer is not observed, which is not preferable.
Further, when heat treatment is performed for a long time exceeding 1000 minutes, strength is deteriorated due to coarsening of hard phase particles of the base cemented carbide, which is not desirable. Here, it is possible to perform the step of coating the substrate surface with boron nitride continuously without cooling the substrate to room temperature and / or in the same vacuum container, which is industrially effective. It is a means.

【0015】表面の結合相が低下していることは、基材
表面部分が内部に較べて高硬度となっていることから検
出可能である。具体的には、基材内部のビッカース硬度
に対して5%以上高い硬度を示す。また、表面(窒化ホ
ウ素被覆層の形成面)にX線回折を行い、基材内部に対
してX線回折を実施した場合と比較して、硬質相の回折
強度が低くなっていることからも、検出可能である。上
記法本発明にて製造した焼結肌、熱処理肌の表面性状お
よび断面を観察、分析した結果、基材表面には内部と組
成および/または組織が異なっている表面改質層が存在
することを確認した。この表面改質層は、内部より少な
くとも5%以上の硬度上昇が認められる。
The decrease in the binder phase on the surface can be detected because the surface portion of the base material has a higher hardness than the inside. Specifically, the hardness is 5% or more higher than the Vickers hardness inside the substrate. In addition, the diffraction intensity of the hard phase is lower than that when the surface (the surface on which the boron nitride coating layer is formed) is subjected to X-ray diffraction and the inside of the base material is subjected to X-ray diffraction. , Is detectable. As a result of observing and analyzing the surface properties and cross-sections of the sintered skin and the heat-treated skin produced by the above-described method of the present invention, the surface of the base material has a surface-modified layer having a different composition and / or structure from the inside. It was confirmed. In this surface-modified layer, hardness increase of at least 5% or more is recognized from the inside.

【0016】また、表面改質相の有無にかかわらず、焼
結肌または熱処理肌の上に窒化ホウ素被覆層を形成した
場合、良好な窒化ホウ素被覆層の密着強度が得られるこ
とも判った。この原因として、焼結肌または熱処理肌
は、ダイヤモンドホイール等により研削加工を行った表
面(以下研削肌と呼ぶ)と比較して、表面に巨視的凹凸
および/または微視的凹凸が存在し、これにより窒化ホ
ウ素被覆層とWC基超硬合金基材との幾何学的な絡み合
いが生じ、これにより双方の物理的結合力が高まったこ
とも推測できる。巨視的凹凸の大きさの指標とする巨視
的面粗度とは、一般に行われている触針法により面粗度
計にて検出できるレベルの凹凸による面粗度である(J
IS B 0601記載)。本発明者らは、この巨視的
面粗度よりも、微視的凹凸の存在による微視的面粗度
が、窒化ホウ素被覆層の密着力に大きく寄与することを
発見した。微視的面粗度とは、窒化ホウ素被覆層−基材
最表面の界面において、基準長さを50μmなどの微小
区間とした、この基準長さ内における面粗度のことであ
る。これは、窒化ホウ素被覆後の基材の断面をラッピン
グ観察し、写真撮影を行い、窒化ホウ素被覆層−基材の
境界線をもって被覆後の基材の表面面粗度計算を行っ
た。ここで、基準長さ内の境界線の最高高さと最低高さ
との差をもってRmax * と表現した。但し、この際、巨
視的なうねりは直線近似して計算した。
It has also been found that good adhesion strength of the boron nitride coating layer can be obtained when the boron nitride coating layer is formed on the sintered skin or the heat treated skin regardless of the presence or absence of the surface-modified phase. As a cause of this, the sintered skin or the heat-treated skin has macroscopic unevenness and / or microscopic unevenness on the surface, as compared with a surface ground by a diamond wheel or the like (hereinafter referred to as ground surface), It can be inferred that this causes geometrical entanglement between the boron nitride coating layer and the WC-based cemented carbide substrate, which increases the physical bonding force between the two. The macroscopic surface roughness, which is an index of the size of macroscopic unevenness, is the surface roughness due to unevenness at a level that can be detected by a surface roughness meter by a generally used stylus method (J
IS B 0601 description). The present inventors have discovered that the microscopic surface roughness due to the presence of microscopic concavities and convexities largely contributes to the adhesion of the boron nitride coating layer, rather than the macroscopic surface roughness. The microscopic surface roughness is the surface roughness within the reference length, where the reference length is a minute section such as 50 μm at the interface between the boron nitride coating layer and the outermost surface of the substrate. For this, the cross section of the substrate after the boron nitride coating was observed by lapping, and a photograph was taken, and the surface roughness of the substrate after coating was calculated with the boundary line between the boron nitride coating layer and the substrate. Here, the difference between the maximum height and the minimum height of the boundary line within the reference length is expressed as Rmax * . However, at this time, macroscopic swell was calculated by linear approximation.

【0017】本発明において基材表面の表面面粗度は、
触針法にて測定した場合、JIS規格のRmax にて1.
5μm以上の場合、その密着力向上に大きく効果がある
ことを確認した。または、前述の断面観察による微視的
面粗度が、Rmax * にて2μm以上の場合にもその密着
力向上に大きく効果があることを確認した。
In the present invention, the surface roughness of the substrate surface is
When measured by the stylus method, JIS standard Rmax is 1.
It was confirmed that when the thickness is 5 μm or more, it has a great effect in improving the adhesion. Alternatively, it was confirmed that the microscopic surface roughness obtained by observing the cross section as described above has a great effect on the improvement of the adhesive force even when Rmax * is 2 μm or more.

【0018】本発明による焼結肌および熱処理肌上に
は、焼結体中の炭素量、焼結方法等により、表面に結合
相の浸み出しが見られる場合もある。この場合には、本
結合相を除去しなければ、この結合相の表面に形成され
た窒化ホウ素被覆層は容易に剥離してしまうことが判明
した。この浸み出した結合相の除去方法として、エッチ
ング、ブラスト、バレル等の処理が挙げられる。ここ
で、ブラスト、バレル等の機械加工では、その表面面粗
度が向上してしまい、面粗度劣化による密着強度向上の
効果が薄くなってしまうため、エッチング除去が望まし
い。ここで言うエッチングとは、従来の技術を説明した
欄に述べた基材を腐食させる目的ではなく、浸み出した
結合相を除去するためであり、従って表面改質層が結合
相を含有しない場合、基材に腐食層は全く存在せず、結
合相が存在する場合もその成分割合が極めて小さいた
め、基材強度劣化は生じない程度の処理である。この浸
み出し結合相に対する除去処理は、熱処理肌に関しても
同様のことが言える。
On the sintered skin and the heat-treated skin according to the present invention, leaching of the binder phase may be observed on the surface depending on the amount of carbon in the sintered body, the sintering method and the like. In this case, it was found that the boron nitride coating layer formed on the surface of the binder phase would be easily peeled off unless the binder phase was removed. Examples of the method of removing the leached binder phase include etching, blasting, barreling and the like. Here, in mechanical processing such as blasting and barreling, the surface roughness of the surface is improved, and the effect of improving the adhesion strength due to deterioration of the surface roughness is diminished, so etching removal is desirable. Etching here is not for the purpose of corroding the base material described in the section describing the conventional technique but for removing the leached binder phase, and therefore the surface modification layer does not contain the binder phase. In this case, the base material does not have a corrosive layer at all, and even when a binder phase is present, the component ratio is extremely small, so that the strength of the base material is not deteriorated. The same can be said for the removal treatment for the leached binder phase for heat treated skin.

【0019】本発明において、表面改質層中の結合相割
合の分布は、その焼結条件および熱処理条件により変わ
り、表面に向かって連続的に減少しても良いし、断続的
減少であってもよい。また、基材焼結および研削加工後
の基材の熱処理を行なう際、結晶粒粗大化による強度劣
化を少しでも低減させ、同時に基材内部の欠陥(ポア)
を減少させることにより強度向上も期待できる。焼結温
度と比較して低い温度、好ましくは1200℃〜155
0℃の温度で、熱間静水圧プレスを行なうことが望まし
い。このときの静水圧圧力は高圧のほうがより優れた効
果を期待できるが、工業的見地から10気圧〜3000
気圧が望ましい。
In the present invention, the distribution of the proportion of the binder phase in the surface-modified layer varies depending on the sintering conditions and heat treatment conditions thereof, and may be continuously reduced toward the surface or may be intermittently reduced. Good. Also, when performing heat treatment on the base material after sintering and grinding the base material, strength deterioration due to coarsening of crystal grains is reduced as much as possible, and at the same time defects (pores) inside the base material
Strength can be expected to be improved by decreasing Lower temperature compared to sintering temperature, preferably 1200 ° C-155
It is desirable to carry out hot isostatic pressing at a temperature of 0 ° C. At this time, the hydrostatic pressure can be expected to be more excellent when it is at a high pressure, but from an industrial viewpoint, it is 10 atm to 3000 atm.
Atmospheric pressure is desirable.

【0020】また、熱処理から窒化ホウ素被覆層を形成
するプロセスは、同一設備にて連続的に処理することが
工業的に望ましい。つまり、当該焼結および研削加工済
みの基材を、窒化ホウ素被覆設備に設置し、窒化ホウ素
被覆前にまず、前述の条件により熱処理を行い、このま
ま連続して窒化ホウ素被覆層形成プロセスに入る。
In the process of forming the boron nitride coating layer from the heat treatment, it is industrially desirable to continuously process the same in the same equipment. That is, the sintered and ground base material is placed in a boron nitride coating facility, first subjected to heat treatment under the above-described conditions before the boron nitride coating, and then the boron nitride coating layer forming process is continuously performed.

【0021】ここで、表面改質層の層厚に関しては、
0.01未満であれば、基材中の結合相成分の影響が強
くなり、窒化ホウ素被覆層の密着強度向上には寄与しな
くなる。この影響を完全に遮断するためには、0.1μ
m以上、さらに好ましくは0.5μm以上である。ま
た、上限については、基材強度を維持するために100
0μm以下が望ましい。
Here, regarding the layer thickness of the surface modified layer,
If it is less than 0.01, the influence of the binder phase component in the base material becomes strong, and it does not contribute to the improvement of the adhesion strength of the boron nitride coating layer. To completely block this effect, 0.1μ
m or more, more preferably 0.5 μm or more. The upper limit is 100 in order to maintain the strength of the base material.
It is preferably 0 μm or less.

【0022】なお、窒化ホウ素被覆層の層厚に関して
は、各々の用途に応じて必要な層厚とすればよい。但
し、耐摩耗性が要求される使用用途においては、層厚が
0.5μm未満では被覆層による耐摩耗性など諸性能の
向上が認められず、また300μmを越える被覆層を形
成した場合でも、もはや大きな性能の向上が認められな
いため、経済上の理由より、0.5μm〜300μmが
望ましい。
The layer thickness of the boron nitride coating layer may be a layer thickness necessary for each application. However, in use applications where abrasion resistance is required, improvement in various properties such as abrasion resistance due to the coating layer is not recognized when the layer thickness is less than 0.5 μm, and even when a coating layer exceeding 300 μm is formed, For economic reasons, 0.5 μm to 300 μm is desirable because no significant improvement in performance can be observed.

【0023】ここまで述べた窒化ホウ素被覆層は、、そ
の構成結晶のすべてがc−BNである必要はなく、少な
くとも5体積%以上c−BNを含有すれば、基材の耐摩
耗性向上に大きく寄与する。またh−BNその他の窒化
ホウ素を被覆した後、加熱などの処理を行い、これによ
りc−BNとしてもよい。また、被覆層がリン、酸素等
を含んだ場合でも本発明の最大の特徴である基材との高
い密着強度は損なわれない。また、窒化ホウ素の被覆方
法は、従来の技術の欄にて説明したいずれの方法及びこ
れらの組合せのいずれを用いてもよい。また、所定の面
粗度および/または寸法精度を得るために、窒化ホウ素
被覆層表面を砥石や熱処理等にて平滑化、鏡面化して
も、本発明の優秀性は損なわれない。また、所定の面粗
度および/または寸法精度を得るために、窒化ホウ素被
覆層表面を砥石や熱処理等にて平滑化、鏡面化しても、
本発明の優秀性は損なわれない。
The boron nitride coating layer described so far does not need to have all the constituent crystals of c-BN, and if at least 5% by volume or more of c-BN is contained, the abrasion resistance of the base material is improved. Make a big contribution. Further, after coating with h-BN or other boron nitride, a treatment such as heating may be performed to obtain c-BN. Even when the coating layer contains phosphorus, oxygen, etc., the high adhesive strength with the base material, which is the greatest feature of the present invention, is not impaired. Further, as the method for coating boron nitride, any of the methods described in the section of the conventional art and combinations thereof may be used. Further, even if the surface of the boron nitride coating layer is smoothed or mirror-finished by a grindstone, heat treatment, or the like in order to obtain a predetermined surface roughness and / or dimensional accuracy, the superiority of the present invention is not impaired. Further, in order to obtain a predetermined surface roughness and / or dimensional accuracy, even if the surface of the boron nitride coating layer is smoothed or mirror-finished by a grindstone or heat treatment,
The excellence of the present invention is not impaired.

【0024】[0024]

【実施例】次に、本発明を実施例により、具体的に説明
するが、本発明はこれに限定されるものではない。 〔実施例1〕本実施例では研削肌と焼結肌の比較を行な
う。母材として、平均粒径が0.8〜1.5μmの各種
粉末を準備し、表−1の組成に調合後、振動ミルを用い
て粉砕し、バインダーを添加したものを、プレス成形お
よび成形加工し、内接円:12.7mm、厚み:3.1
8mm、コーナーR:0.8mmのJIS B4103
に記載されているSPGN422形状のプレス成形体を
製造し、300℃にて脱バインダー後、表−2に記載し
た条件にて焼結を行なった。この焼結肌表面状態を表−
6に示した。そのうちいくつかには焼結体表面に金属成
分の浸み出しが発生していたため、これのエッチング除
去を行い、母材チップを製造した。エッチング方法、エ
ッチング後の表面面粗度Rmax (JIS B 0601
に準拠する通常の触針法にて測定)も併せて表−6に示
した。
EXAMPLES Next, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. [Example 1] In this example, a comparison between a ground surface and a sintered surface is made. Various powders having an average particle diameter of 0.8 to 1.5 μm were prepared as a base material, compounded into the composition shown in Table 1, crushed using a vibration mill, and a binder was added to the powder. Processed, inscribed circle: 12.7 mm, thickness: 3.1
JIS B4103 with 8 mm and corner R: 0.8 mm
A press-molded product having the shape of SPGN422 described in 1. was produced, debindered at 300 ° C., and then sintered under the conditions shown in Table-2. Show the surface condition of this sintered skin-
6 shows. In some of them, leaching of the metal component had occurred on the surface of the sintered body, so this was removed by etching to produce base material chips. Etching method, surface roughness Rmax after etching (JIS B 0601)
Table 6 also shows (measured by a normal stylus method in accordance with the above).

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】これらの母材チップを表−3に示した内容
の方法にて加工した。なお、チップの刃先処理の概略例
を図1に示した。図1は、一般にチャンファーホーニン
グ加工と呼ばれている刃先処理で、図中αは25°、β
は20°、Lは0.05mmとした。なお、刃先処理面
加工、上下面研削加工および側面研削加工には、市販の
レジンボンド・ダイヤモンド砥石を用いた。
These base material chips were processed by the method shown in Table-3. A schematic example of the cutting edge treatment of chips is shown in FIG. FIG. 1 is a cutting edge process generally called chamfer honing, where α is 25 °, β
Was 20 ° and L was 0.05 mm. A commercially available resin-bonded diamond grindstone was used for the processing of the cutting edge surface, the upper and lower surfaces, and the side surface.

【0028】[0028]

【表3】 [Table 3]

【0029】このようにして準備したチップの母材材
質、焼結条件、窒化ホウ素被覆層形成前の表面面粗度R
max 、Rmax * 、浸み出し結合相除去方法、チップ加工
方法(結合相除去後にチップを加工する)を併せて表−
6に示した。これらの準備チップを、公知のRFプラズ
マCVD法を用いて、基板温度を600℃とし、ジボラ
ンガス:N2 ガス=1:2の比にて1Torrまで導入
し、窒化ホウ素被覆層を形成することにより、本発明窒
化ホウ素被覆チップNo. 1 〜No.24 を製造した。各チッ
プの切れ刃近傍における窒化ホウ素被覆層厚も合わせて
表−6に示した。なお、本例において、基材の表面に析
出した被覆層は、赤外線吸収分析、オージェ分析、透過
電子線回折法によって、c−BNを1容量%以上含む窒
化ホウ素被覆層であることを確認した。
The base material of the chip thus prepared, the sintering conditions, the surface roughness R before the formation of the boron nitride coating layer
Table showing max, Rmax * , leaching binder phase removal method, and chip processing method (processing chips after removal of binder phase)
6 shows. By using these RF chips, a substrate temperature is set to 600 ° C. and diborane gas: N 2 gas is introduced to 1 Torr at a ratio of 1: 2 to form a boron nitride coating layer by using these prepared chips. Inventive boron nitride coated chips No. 1 to No. 24 were manufactured. The thickness of the boron nitride coating layer near the cutting edge of each chip is also shown in Table-6. In this example, the coating layer deposited on the surface of the substrate was confirmed to be a boron nitride coating layer containing 1% by volume or more of c-BN by infrared absorption analysis, Auger analysis and transmission electron diffraction method. .

【0030】また、表−6に記入したRmax * とは、母
材チップ表面の微視的面粗度のことであり、母材−窒化
ホウ素被覆層界面において、基準長さを50μmとし
た、この微小区間内の面粗度のことで、これらのチップ
の断面をラッピング観察し、写真撮影を行い、窒化ホウ
素被覆層−母材の境界線をもって被覆後の基材の表面面
粗度とし、基準長さ内の最高高さと最低高さの差をもっ
てRmax * と表現した。なお、研削肌のRmax は0.6
μm、Rmax * は0.8μmで、表面に特異な層の存在
は認められなかった。表−6中の本発明チップの番号の
右肩に*印がついているものは、本発明においてとりわ
け好ましいと推奨される範囲を越えるもの、または本発
明の範囲外のものである。
Further, Rmax * written in Table 6 is the microscopic surface roughness of the surface of the base material chip, and the reference length at the base material-boron nitride coating layer interface was set to 50 μm. By the surface roughness in this minute section, lapping observation of the cross-section of these chips, photographed, and the surface roughness of the substrate after coating with the boundary line of the boron nitride coating layer-base material, The difference between the maximum height and the minimum height within the standard length is expressed as Rmax * . The Rmax of the ground surface is 0.6
μm and Rmax * were 0.8 μm, and no specific layer was found on the surface. In Table 6, the numbers marked with * on the right shoulder of the chip of the present invention are beyond the range recommended as being particularly preferable in the present invention, or outside the range of the present invention.

【0031】また、比較のため、全面研削肌で窒化ホウ
素被覆層を形成しなかった比較サーメットチップ(それ
ぞれ比較チップA、B、Cという)、および組成がSi
3 4 −3Al2 3 −5ZrO2 で同形状のチップを
準備し(全面研削肌、図1の刃先処理あり)、これを1
800℃、5atmにて1時間保持し、表面に長径8μ
m、短径1.5μmの自由成長したSi3 4 柱状晶を
析出させた母材チップに対して、上記と同様の方法にて
窒化ホウ素被覆層を形成した窒化ケイ素セラミック基材
窒化ホウ素被覆チップ(比較チップD)、および市販の
結合相を10体積%含有した窒化ホウ素焼結体を超硬合
金(組成がWC−6重量%Co)にロウ付けし、研削加
工および図1に示した刃先処理を施して製造した同形状
の窒化ホウ素焼結体チップ(比較チップE)を併せて準
備した。
Further, for comparison, boronitride was used on the entire ground surface.
A comparative cermet chip that does not have a bare coating (that
(Comparative chips A, B, and C respectively), and the composition is Si
3N Four-3Al2O3-5ZrO2With the same shape tip
Prepare (1 surface grinding, with cutting edge treatment in Figure 1)
Hold at 800 ℃, 5atm for 1 hour, 8μ long diameter on the surface
m, free-growing Si with minor axis of 1.5 μm3NFourColumnar crystals
For the deposited base material chips, use the same method as above.
Silicon nitride ceramic substrate with a boron nitride coating layer
Boron nitride coated chip (comparative chip D), and commercially available
Superhard bonding of boron nitride sintered body containing 10% by volume of binder phase
Brazing to gold (composition: WC-6 wt% Co) and grinding
And the same shape manufactured by applying the cutting edge treatment shown in FIG.
The boron nitride sintered body chip (comparative chip E) of
Equipped

【0032】なお、表−6中の結合相層除去処理の内容
は、下記のとおり。 *1 : 硝酸5%、30℃にて5分間洗浄。これによ
り結合相層は除去された。断面観察の結果、母材表面は
硬質相にて形成された表面改質層によりくまなく覆われ
ており、これにより母材内部に腐食層の存在は全く認め
られなかった。 *2 : ショットブラスト処理を15秒間行い、これ
により結合相層は除去された。
The contents of the binder phase layer removing process in Table 6 are as follows. * 1: Washing with 5% nitric acid at 30 ° C for 5 minutes. This removed the binder phase layer. As a result of cross-sectional observation, the surface of the base material was completely covered with the surface-modified layer formed of the hard phase, whereby no corrosive layer was found inside the base material. * 2: Shot blasting was performed for 15 seconds, whereby the binder phase layer was removed.

【0033】これらの切削チップを用いて、下記表−4
の条件にて湿式連続切削試験を行い、5分後および60
分後の逃げ面摩耗量、刃先状態を観察し、この結果を併
せて表−6に示した。
Using these cutting tips, the following Table-4 is used.
Wet continuous cutting test under the conditions of 5 minutes and 60 minutes later
The amount of flank wear after the minute and the state of the cutting edge were observed, and the results are also shown in Table-6.

【0034】[0034]

【表4】 [Table 4]

【0035】また、湿式断続切削試験として下記表−5
の条件にて、各々のチップについて16切れ刃切削し、
そのうち欠損が発生した切れ刃数を調べた結果も併せて
表−6に示した。
Further, as a wet intermittent cutting test, the following Table-5 is given.
Under the conditions of, each tip is cut with 16 cutting edges,
Table 6 also shows the results of examining the number of cutting edges at which defects occurred.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【表7】 [Table 7]

【0039】また、本発明チップNo.1, No.4, No.11 に
関して、断面観察にて表面部と内部の硬度を、荷重20
0gにてビッカース硬度を測定したところ、これらは母
材表面部硬度が5〜15%向上していた。比較のためN
o.13 * 、No.14 * についても同様に測定を行った結
果、硬度上昇は認められなかった。
With respect to the chips No. 1, No. 4 and No. 11 of the present invention, the hardness of the surface portion and the inside was observed by cross-section observation and the load 20
When Vickers hardness was measured at 0 g, the hardness of the base material surface portion was improved by 5 to 15%. N for comparison
As a result of the same measurement for o.13 * and No.14 * , no increase in hardness was observed.

【0040】また、本発明チップNo.4と本発明チップ N
o.14* について、焼結肌上に窒化ホウ素被覆層を形成し
た表面についてCu−Kα線で回折曲線を測定した結
果、結合相であるCo、Niの回折強度がNo.4の方が N
o.14* より小さくなっていることを確認した。
Further, the present invention chip No. 4 and the present invention chip N
Regarding o.14 * , the diffraction curve was measured by Cu-Kα ray on the surface where the boron nitride coating layer was formed on the sintered skin, and as a result, the diffraction intensity of Co and Ni as the bonding phase was N.
It was confirmed to be smaller than o.14 * .

【0041】これらの結果から、本発明チップの特に焼
結肌の面の窒化ホウ素被覆層の密着強度が優れることが
判る。また、本発明チップにおいては窒化ホウ素焼結体
ロウ付け工具とほぼ同等の耐摩耗性を示しつつ、基材に
強靱なサーメットを使用しており、Si3 4 焼結体を
母材とした比較チップと比較しても高い靱性を備えるこ
とが判る。
From these results, it can be seen that the chip of the present invention is excellent in the adhesion strength of the boron nitride coating layer particularly on the surface of the sintered surface. Further, in the chip of the present invention, a tough cermet is used as a base material while exhibiting wear resistance almost equal to that of a boron nitride sintered body brazing tool, and a Si 3 N 4 sintered body is used as a base material. It can be seen that the toughness is higher than that of the comparative tip.

【0042】〔実施例2〕本実施例では、研削肌と熱処
理肌の比較を行なう。母材として、平均粒径が0.8〜
1.5μmの各種粉末を準備し、表−1の組成に調合
後、振動ミルを用いて粉砕し、バインダーを添加したも
のを、プレス成形および成形加工し、内接円:12.7
mm、厚み:3.18mm、コーナーR:0.8mmの
JIS B4103に記載されているSPGN422形
状のプレス成形体を製造し、300℃にて脱バインダー
後、N2 ・10Torrの雰囲気にて1500℃にて6
0分間保持して焼結を行った。本チップを全面研削加工
し、さらに表−2に示した条件にて熱処理を行い、全面
熱処理肌とした。尚、熱処理時間はいずれも60分間で
ある。これらのチップに必要に応じて結合相除去を行っ
た後、さらに表−7に示した加工を施すことにより本発
明母材チップを製造した。
[Embodiment 2] In this embodiment, a comparison between a ground surface and a heat-treated surface is made. As a base material, the average particle size is 0.8-
Various powders of 1.5 μm were prepared, compounded to have the composition shown in Table-1, crushed using a vibration mill, and those to which a binder was added were press-molded and molded, and an inscribed circle: 12.7.
mm, thickness: 3.18 mm, corner R: 0.8 mm, a SPGN422 shape press-formed product described in JIS B4103 is manufactured, and after debinding at 300 ° C., it is 1500 ° C. in an atmosphere of N 2 · 10 Torr. At 6
It hold | maintained for 0 minute and sintered. The entire surface of this chip was ground, and then heat-treated under the conditions shown in Table 2 to obtain a heat-treated skin. The heat treatment time is 60 minutes in all cases. After removing the binder phase from these chips as needed, the base material chips of the present invention were manufactured by further performing the processing shown in Table-7.

【0043】[0043]

【表8】 [Table 8]

【0044】これらの母材チップを、公知の高周波スパ
ッタリング装置を用いて、ターゲットにh−BNを用い
て、チップ加熱温度を500℃、雰囲気N2 /Ar比が
1/10、雰囲気圧力0.01Torr、バイアス電圧
100Vにて、表−8に示した層厚の窒化ホウ素被覆層
を形成することにより、本発明チップNo.17 〜No.38を
製造した。この中で、 No.22と No.37は熱処理と窒化ホ
ウ素被覆を同一真空容器にて行い、熱処理後、表中の冷
却条件にて窒化ホウ素被覆温度まで冷却し、連続して窒
化ホウ素被覆層を形成するという、熱処理〜窒化ホウ素
形成連続工程にて製造した。尚、表中のチップ番号の右
肩に*印がついているものは、本発明において取りわけ
推奨される範囲を越えるものである。また、表−8には
熱処理後の表面状態、結合相層除去方法及び窒化ホウ素
被覆面の表面面粗度Rmax 、Rmax * を併せて記した。
また、表−8中の*1の意味するところは実施例1にお
けると同様であり、Rmax 、Rmax * とは、実施例1と
同様の測定を行った結果である。
These base material chips were manufactured by using a known high frequency sputtering apparatus, using h-BN as a target, a chip heating temperature of 500 ° C., an atmosphere N 2 / Ar ratio of 1/10, and an atmospheric pressure of 0. Inventive chips No. 17 to No. 38 were manufactured by forming a boron nitride coating layer having a layer thickness shown in Table 8 at 01 Torr and a bias voltage of 100V. Among them, No. 22 and No. 37 are heat treatment and boron nitride coating performed in the same vacuum container, and after heat treatment, cooled to the boron nitride coating temperature under the cooling conditions in the table, and continuously boron nitride coating layer Was formed in a continuous process of heat treatment-boron nitride formation. In the table, a chip number marked with * on the right shoulder is beyond the range particularly recommended in the present invention. Table 8 also shows the surface condition after the heat treatment, the method for removing the binder phase layer, and the surface roughnesses Rmax and Rmax * of the boron nitride coated surface.
The meaning of * 1 in Table-8 is the same as in Example 1, and Rmax and Rmax * are the results of the same measurement as in Example 1.

【0045】これらのチップを用いて、実施例1と同様
の連続切削試験および断続切削試験を行った。この結果
も併せて表−8に示した。本発明チップに関して、断面
観察にて表面部と内部の硬度を、荷重200gにてビッ
カース硬度を測定した結果、No.18、No.21 、No.32 は
実施例1同様、表面部の硬度が5〜15%向上してい
た。さらに、 No.18、 No.34の窒化ホウ素被覆層を形成
した表面についてCu−Kα線にて回折曲線を測定した
結果、実施例1の No.14* と比較して、Ni、Coの強
度比が低いことを確認した。表−8の結果から、熱処理
肌も、焼結肌同様に高い窒化ホウ素被覆層の密着強度を
持ち、同時に高い強度を示すことも判る。
Using these chips, the same continuous cutting test and interrupted cutting test as in Example 1 were carried out. The results are also shown in Table-8. With respect to the chip of the present invention, the hardness of the surface portion and the internal portion was measured by cross-section observation, and the Vickers hardness was measured under a load of 200 g. As a result, No. 18, No. 21, and No. 32 have the same hardness as the first embodiment. It was improved by 5 to 15%. Further, as a result of measuring a diffraction curve by Cu-Kα ray on the surface on which the boron nitride coating layer of No. 18 and No. 34 was formed, the strengths of Ni and Co were compared with No. 14 * of Example 1. It was confirmed that the ratio was low. From the results of Table-8, it can be seen that the heat-treated skin also has a high adhesion strength of the boron nitride coating layer as well as the sintered skin, and at the same time, shows a high strength.

【0046】[0046]

【表9】 [Table 9]

【0047】[0047]

【表10】 [Table 10]

【0048】[0048]

【発明の効果】本発明の窒化ホウ素被覆硬質材料におい
てはいずれも、従来の窒化ホウ素被覆硬質材料と比べる
と、良好な窒化ホウ素被覆層の耐剥離性を持ち、かつ窒
化ホウ素焼結体とほぼ同等の耐磨耗性を持ち、さらにま
た高い強度を持つことは明らかである。また、窒化ホウ
素焼結体を用いた場合と較べて、高い形状自由度を持
ち、かつ安価に、大量に製造できるという長所も備えて
いる。また、本発明の実施例として切削工具の場合を示
したが、この他各種切削工具、耐摩工具、各種機械部
品、砥石などに本発明を適用した場合も、良好な結果が
得られることは、十分予想できる。
EFFECTS OF THE INVENTION In all of the boron nitride-coated hard materials of the present invention, the boron nitride-coated hard material has good peeling resistance of the boron nitride-coated layer as compared with the conventional boron nitride-coated hard material, and is almost the same as the boron nitride sintered body. It is clear that it has the same wear resistance and also high strength. Further, it has the advantage that it has a high degree of freedom in shape and can be manufactured in large quantities at low cost, as compared with the case where a boron nitride sintered body is used. Although the case of a cutting tool is shown as an example of the present invention, other various cutting tools, abrasion resistant tools, various machine parts, even when the present invention is applied to a grindstone, etc., good results can be obtained. I can predict enough.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1におけるチップの刃先処理の
概略例を示す説明図である。
FIG. 1 is an explanatory diagram showing a schematic example of a cutting edge treatment of a tip according to a first embodiment of the present invention.

【図2】本発明の実施例1の湿式断続切削試験に用いた
被削材の断面形状の説明図である。
FIG. 2 is an explanatory diagram of a cross-sectional shape of the work material used in the wet interrupted cutting test of Example 1 of the present invention.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 炭化チタン基サーメットまたは炭窒化チ
タン基サーメットを基材材質とし、該基材表面に窒化ホ
ウ素被覆層が設けられてなる窒化ホウ素被覆硬質材料に
おいて、該基材の表面部における結合相の存在割合が該
基材内部に比べ少ないまたは該基材の表面部において結
合相が存在しないことを特徴とする窒化ホウ素被覆硬質
材料。
1. A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material, and a boron nitride coating layer provided on the surface of the base material. A boron-nitride-coated hard material, characterized in that the proportion of phases is smaller than that in the inside of the base material, or that there is no binder phase in the surface portion of the base material.
【請求項2】 炭化チタン基サーメットまたは炭窒化チ
タン基サーメットを基材材質とし、該基材表面に窒化ホ
ウ素被覆層が設けられてなる窒化ホウ素被覆硬質材料に
おいて、該基材最表面に内部より高硬度である表面改質
層が存在することを特徴とする窒化ホウ素被覆硬質材
料。
2. A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material, and a boron nitride coating layer provided on the surface of the base, wherein A boron nitride-coated hard material, characterized in that a surface-modifying layer having a high hardness is present.
【請求項3】 上記表面改質層の層厚が0.01〜50
0μmであることを特徴とする請求項2記載の窒化ホウ
素被覆硬質材料。
3. The surface modification layer has a layer thickness of 0.01 to 50.
3. The boron nitride-coated hard material according to claim 2, which has a thickness of 0 μm.
【請求項4】 炭化チタン基サーメットまたは炭窒化チ
タン基サーメットを基材材質とし、該基材表面に窒化ホ
ウ素被覆層が設けられてなる窒化ホウ素被覆硬質材料に
おいて、少なくとも基材表面の一部が焼結肌であり、少
なくとも当該焼結肌の部分に窒化ホウ素被覆層が形成さ
れてなることを特徴とする窒化ホウ素被覆硬質材料。
4. A boron nitride-coated hard material comprising a titanium carbide-based cermet or titanium carbonitride-based cermet as a base material, and a boron nitride coating layer provided on the surface of the base, wherein at least a part of the surface of the base is A boron nitride-coated hard material, which is a sintered skin and has a boron nitride coating layer formed on at least a portion of the sintered skin.
【請求項5】 炭化チタン基サーメットまたは炭窒化チ
タン基サーメットを基材材質とし、基材表面に窒化ホウ
素被覆層が設けられてなる窒化ホウ素被覆硬質材料にお
いて、少なくとも基材表面の一部が焼結肌であり、該焼
結肌表面に存在する結合相および/または内部より結合
相の割合が高い表面層を除去した少なくとも当該焼結肌
の部分に窒化ホウ素被覆層が形成されてなることを特徴
とする窒化ホウ素被覆硬質材料。
5. A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a base material and a boron nitride coating layer provided on the surface of the base, at least a part of the surface of the base being baked. The surface of the sintered skin is a binder layer and / or a boron nitride coating layer is formed on at least a portion of the sintered skin from which the surface layer having a higher proportion of the binder phase than the inside is removed. Characteristic boron nitride coated hard material.
【請求項6】 炭化チタン基サーメットまたは炭窒化チ
タン基サーメットを基材材質とし、基材表面に窒化ホウ
素被覆層が設けられてなる窒化ホウ素被覆硬質材料にお
いて、基材を任意の形状に加工した後、当該基材を熱処
理することにより、基材表面性状の少なくとも一部は熱
処理肌とした基材の少なくとも一部表面または全表面上
に窒化ホウ素被覆層を形成してなることを特徴とする窒
化ホウ素被覆硬質材料。
6. A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a substrate material and a boron nitride coating layer provided on the substrate surface, the substrate being processed into an arbitrary shape. After that, the substrate is heat-treated to form a boron nitride coating layer on at least a part or the whole surface of the substrate having at least a part of the surface properties of the substrate which has been heat-treated. Boron nitride coated hard material.
【請求項7】 炭化チタン基サーメットまたは炭窒化チ
タン基サーメットを基材材質とし、基材表面に窒化ホウ
素被覆層を設けてなる窒化ホウ素被覆硬質材料におい
て、基材を任意の形状に加工した後、当該基材を熱処理
することにより、基材表面性状の少なくとも一部は熱処
理肌とし、表面の結合相および/または内部より結合相
の割合が高い表面層を除去した該熱処理肌表面の少なく
とも一部表面または全表面上に窒化ホウ素被覆層を形成
してなることを特徴とする窒化ホウ素被覆硬質材料。
7. A boron nitride-coated hard material comprising a titanium carbide-based cermet or a titanium carbonitride-based cermet as a substrate material, and a boron nitride coating layer provided on the substrate surface, after the substrate is processed into an arbitrary shape. By heat-treating the base material, at least a part of the surface properties of the base material becomes a heat-treated skin, and at least one of the surface of the heat-treated skin obtained by removing the surface binder phase and / or the surface layer having a higher proportion of the binder phase than the inside. A boron nitride-coated hard material, characterized in that a boron nitride coating layer is formed on the partial surface or the entire surface.
【請求項8】 上記基材はその内部から表面に向かって
結合相がほぼ連続的または段階的に減少しているもので
あることを特徴とする請求項1ないし請求項7のいずれ
かに記載の窒化ホウ素被覆硬質材料。
8. The substrate according to claim 1, wherein the binder phase has a substantially continuous or stepwise decrease from the inside toward the surface. Boron nitride coated hard material.
【請求項9】 上記窒化ホウ素を被覆される基材表面の
表面面粗度がRmax * で1.5μm以上であることを特
徴とする請求項1ないし請求項9のいずれかに記載の窒
化ホウ素被覆硬質材料。
9. The surface of a substrate coated with the boron nitride
Surface roughness is Rmax *Is 1.5 μm or more
The method according to any one of claims 1 to 9,
Boron bromide coated hard material.
【請求項10】 上記窒化ホウ素被覆層の層圧が0.5
〜300μmであることを特徴とする請求項1ないし請
求項10のいずれかに記載の窒化ホウ素被覆硬質材料。
10. The layer pressure of the boron nitride coating layer is 0.5.
The boron nitride-coated hard material according to any one of claims 1 to 10, wherein the hard material is boron nitride coated hard material.
【請求項11】 基材となるサーメットの焼結および/
または冷却を、N2および/またはCOおよび/または
CH4 の分圧が1Torr以上の雰囲気にて行い、得ら
れた焼結体の少なくとも一部表面を焼結肌とし、さらに
少なくとも該焼結肌の一部表面に窒化ホウ素被覆層を設
けることを特徴とする窒化ホウ素被覆硬質材料の製造
法。
11. Sintering and / or cermet as a base material
Alternatively, cooling is performed in an atmosphere in which the partial pressure of N 2 and / or CO and / or CH 4 is 1 Torr or more, and at least a part of the surface of the obtained sintered body is used as a sintered skin, and at least the sintered skin is further formed. A method for producing a boron nitride-coated hard material, comprising providing a boron nitride coating layer on a part of the surface of.
【請求項12】 基材となるサーメットの焼結および冷
却を、1Torr以上の窒素ガス雰囲気にて行い、この
焼結体の少なくとも一部表面について、表面に浸み出し
た金属成分を酸および/またはアルカリによりエッチン
グ除去した一部表面に窒化ホウ素被覆層を設けることを
特徴とする窒化ホウ素被覆硬質材料の製造法。
12. Sintering and cooling of a cermet as a base material is performed in a nitrogen gas atmosphere of 1 Torr or more, and at least a part of the surface of this sintered body is treated with acid and / or metal components leached on the surface. Alternatively, a method for producing a boron nitride-coated hard material, characterized in that a boron nitride coating layer is provided on a part of the surface removed by etching with an alkali.
【請求項13】 基材となるサーメットの焼結を行い、
目的形状に加工した後、基材の少なくとも一部表面を9
00〜1600℃以上の温度で10分間〜5時間熱処理
を行い、次にCOの分圧が1Torr以上の雰囲気にて
冷却することにより該基材の少なくとも一部表面を熱処
理肌とし、さらに当該熱処理肌の少なくとも一部表面に
窒化ホウ素被覆層を設けることを特徴とする窒化ホウ素
被覆硬質材料の製造法。
13. A cermet as a base material is sintered,
After processing into the target shape, at least part of the surface of the substrate is
Heat treatment is performed at a temperature of 00 to 1600 ° C. or higher for 10 minutes to 5 hours, and then cooled in an atmosphere having a partial pressure of CO of 1 Torr or higher to form at least a part of the surface of the base material as a heat treated skin, and further the heat treatment. A method for producing a boron nitride-coated hard material, which comprises providing a boron nitride coating layer on at least a part of the skin surface.
【請求項14】 基材となるサーメットの焼結を行い、
目的形状に加工した後、1Torr以上のN2 ガス中に
て800〜1600℃以上の温度で10分間〜5時間熱
処理を行い次に冷却することにより基材の少なくとも一
部表面を熱処理肌とし、さらに該熱処理肌表面に浸み出
した金属成分を酸および/またはアルカリによりエッチ
ング除去した一部表面に窒化ホウ素被覆層を設けること
を特徴とする窒化ホウ素被覆硬質材料の製造法。
14. A cermet as a base material is sintered,
After processing into a target shape, heat treatment is performed at a temperature of 800 to 1600 ° C. or more for 10 minutes to 5 hours in N 2 gas of 1 Torr or more, and then cooled to make at least a part of the surface of the base material a heat treated skin, Furthermore, a method for producing a boron nitride-coated hard material, characterized in that a boron nitride coating layer is provided on a partial surface obtained by etching away the metal component leached on the heat-treated skin surface with an acid and / or an alkali.
【請求項15】 上記焼結または熱処理において、焼結
圧力を10〜3000気圧の条件で熱間静水圧プレスを
行なうことを特徴とする請求項13または請求項14の
に記載の窒化ホウ素被覆硬質材料の製造法。
15. The boron nitride-coated hard according to claim 13 or 14, wherein in the sintering or heat treatment, hot isostatic pressing is performed under a sintering pressure of 10 to 3000 atm. The method of manufacturing the material.
【請求項16】 上記熱処理において、該熱処理工程と
窒化ホウ素被覆層形成の工程を、同一処理容器あるいは
連続処理容器にて連続処理することを特徴とする請求項
13ないし請求項15のいずれかに記載の窒化ホウ素被
覆硬質材料の製造法。
16. The heat treatment step and the step of forming a boron nitride coating layer in the heat treatment are continuously processed in the same processing container or a continuous processing container. A method for producing the hard material coated with boron nitride according to claim 1.
JP18900592A 1992-07-16 1992-07-16 Boron nitride coated hard material and method for producing the same Expired - Fee Related JP3422029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18900592A JP3422029B2 (en) 1992-07-16 1992-07-16 Boron nitride coated hard material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18900592A JP3422029B2 (en) 1992-07-16 1992-07-16 Boron nitride coated hard material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0633240A true JPH0633240A (en) 1994-02-08
JP3422029B2 JP3422029B2 (en) 2003-06-30

Family

ID=16233710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18900592A Expired - Fee Related JP3422029B2 (en) 1992-07-16 1992-07-16 Boron nitride coated hard material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3422029B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280643A (en) * 1993-11-12 1995-10-27 Heraeus Ind Gmbh Ultraviolet sensor
JP2007075944A (en) * 2005-09-14 2007-03-29 Tungaloy Corp Ball end mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280643A (en) * 1993-11-12 1995-10-27 Heraeus Ind Gmbh Ultraviolet sensor
JP2007075944A (en) * 2005-09-14 2007-03-29 Tungaloy Corp Ball end mill

Also Published As

Publication number Publication date
JP3422029B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
EP0223585B1 (en) A hard sintered compact for a tool
JP6703757B2 (en) Cermet and cutting tool
JP5890594B2 (en) Coated tool
JP5902865B2 (en) Coated tool
US20190071360A1 (en) Polycrystalline cubic boron nitride and method for preparing same
JP4330859B2 (en) Coated cemented carbide and method for producing the same
JP3110890B2 (en) Coated cemented carbide
JP5031182B2 (en) Cemented carbide
CN102245801B (en) Method of making cutting tool inserts with high demands on dimensional accuracy
JP2008238392A (en) Cutting tool
JPWO2017057456A1 (en) Coated tool
JP3422029B2 (en) Boron nitride coated hard material and method for producing the same
JP3469310B2 (en) Ceramic base material for diamond coating and method for producing coating material
JP2015085417A (en) Coated tool
JPH0665745A (en) Diamond-coated hard material and its production
JP5471842B2 (en) Surface coated cutting tool
JP5321360B2 (en) Surface coated cutting tool
JP3422028B2 (en) Boron nitride coated hard material and method for producing the same
JP4936742B2 (en) Surface coating tools and cutting tools
JP2002275571A (en) cBN-BASE SINTERED COMPACT, AND COATED TOOL CONSISTING THEREOF
JP2020132972A (en) Cemented carbide and cutting tool
JP3353335B2 (en) Diamond coated hard material and method for producing the same
JPS63306805A (en) Diamond coated cutting tool
JPH09241826A (en) Cemented carbide structural body, its production and cutting tool using the same
JPH05320909A (en) Diamond-coated hard material and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees