JPH06331621A - Method for analysis of mineral by image processing - Google Patents
Method for analysis of mineral by image processingInfo
- Publication number
- JPH06331621A JPH06331621A JP5141539A JP14153993A JPH06331621A JP H06331621 A JPH06331621 A JP H06331621A JP 5141539 A JP5141539 A JP 5141539A JP 14153993 A JP14153993 A JP 14153993A JP H06331621 A JPH06331621 A JP H06331621A
- Authority
- JP
- Japan
- Prior art keywords
- color
- minerals
- image
- mineral
- image processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、画像処理による鉱物分
析方法に関し、特に、鉱物が含まれる試料を固結・研磨
し、顕微鏡観察によって含有される鉱物を同定し、その
割合を求めるための画像処理による鉱物分析方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing minerals by image processing, and in particular, for consolidating and polishing a sample containing minerals, identifying the contained minerals by microscopic observation, and determining the ratio thereof. The present invention relates to a mineral analysis method by image processing.
【0002】[0002]
【従来の技術】天然の鉱石や各種の工業原料などに含ま
れる鉱物の種類とその割合を知ることは、それらを有効
に利用したり、処理して価値を高めたりする場合に、非
常に大きな助けとなる。従来から、鉱物の種類や割合を
測定する方法の1つとして、顕微鏡観察による目視分析
が行われてきた。この目視分析とは、試料をベークライ
ト等と混合して圧縮固結した後に切断し、その断面を鏡
面研磨したものを顕微鏡で観察し、顕微鏡の接眼レンズ
にセットしたスケールで特定の鉱物の大きさと個数を読
み取ることによって試料中のその鉱物の割合を求めるも
のである。そのため、このような測定を行うためには非
常に多くの経験と高度な熟練技術が必要であり、人材不
足が問題となっていた。また、精度の良い測定値を得る
ためには相当数の視野について読取り作業を行なわなけ
らばならず、時間と手間がかかり、能率が悪かった。2. Description of the Related Art Knowing the types and proportions of minerals contained in natural ores and various industrial raw materials is very important when effectively utilizing them or treating them to increase their value. It helps. Conventionally, visual analysis by microscope observation has been performed as one of the methods for measuring the type and proportion of minerals. With this visual analysis, the sample is mixed with Bakelite, etc., compressed and solidified, then cut, and its cross-section is mirror-polished and observed under a microscope, and the size of the specific mineral is determined by the scale set in the eyepiece of the microscope. By reading the number, the proportion of the mineral in the sample is obtained. Therefore, in order to carry out such a measurement, a great deal of experience and highly skilled technology are required, and a shortage of human resources has been a problem. Further, in order to obtain an accurate measured value, it was necessary to perform a reading operation for a considerable number of fields of view, which took time and labor, and was inefficient.
【0003】このような欠点を解消するために、本出願
人は画像解析装置を使用した自動測定方法を既に提案し
ている(特開平1−25943)。提案した発明の自動
測定方法は、鉱物特有の色を画像解析装置に記憶させ、
同じ色の領域の割合を自動的に演算してその色に対応す
る鉱物の割合を求めるものである。さらに詳細に説明す
ると、提案した発明の方法では、鉱物の色を色調、輝
度、純度の色の3要素に分けてそれぞれ数値化し、各数
値に上下のしきい値を設けることによって、テレビカメ
ラで映した試料表面の画像(以下原画像という)から特
定の鉱物粒子だけを図形化して画像を得るものである。
図形化した画像は、コンピュータによって容易にその面
積を測定でき、試料中の鉱物の構成比などを計算でき
る。In order to solve such a drawback, the present applicant has already proposed an automatic measuring method using an image analysis device (Japanese Patent Laid-Open No. 1-25943). The automatic measuring method of the proposed invention stores the color peculiar to minerals in the image analysis device,
The ratio of regions of the same color is automatically calculated to obtain the ratio of minerals corresponding to that color. More specifically, in the method of the proposed invention, the color of the mineral is divided into three elements of color of hue, brightness, and purity, each of which is converted into a numerical value, and an upper and lower threshold value is set for each numerical value. From the image of the surface of the sample (hereinafter referred to as the original image), only specific mineral particles are visualized to obtain the image.
The area of the graphic image can be easily measured by a computer, and the composition ratio of minerals in the sample can be calculated.
【0004】[0004]
【発明が解決しようとする課題】しかし、同じ鉱物であ
っても、特に天然鉱物の場合には、組成や結晶構造のわ
ずかな差によってその色が微妙に変化することがあり、
しかも、よく似た色の別の鉱物が存在する場合にには、
それらを識別するのは非常に困難であった。即ち、色の
変化が大きい鉱物は、上記の3要素のしきい値の幅を広
く限定しなければならず、そのしきい値の幅に重なるよ
うなよく似た色を持つ別の鉱物が存在する場合にはそれ
らとの区別が困難になる。色の変化が大きい鉱物を完全
に取り出そうとしてしきい値を広く設定すると、よく似
た色の別の鉱物も取り出されることになり、それをは排
除しようとしてしきい値の幅を狭めると、目的の鉱物を
完全に取り出すことができなくなる。人間が目視測定す
る場合には、色の他に鉱物表面の微妙な組織の特徴や色
の変わり具合を総合的に判断してその粒子が何の鉱物で
あるかを決定するため、このような問題は生じない。前
述のような理由で、画像処理による自動測定は応用範囲
が狭いという欠点があった。However, even in the case of the same mineral, especially in the case of natural minerals, the color may change subtly due to a slight difference in composition or crystal structure.
And if there are other minerals of similar color,
It was very difficult to identify them. That is, for a mineral with a large change in color, the threshold widths of the above three elements must be limited to a wide range, and there are other minerals with similar colors that overlap the threshold width. If you do, it will be difficult to distinguish them. If you set a wide threshold value to completely extract a mineral with a large color change, another mineral with a similar color will also be extracted, and if you try to eliminate it and narrow the threshold width, The target mineral cannot be completely extracted. In the case of human visual measurement, in order to determine what kind of mineral the particle is, it is necessary to comprehensively judge not only the color but also the subtle texture characteristics of the mineral surface and the degree of color change. There is no problem. For the reasons described above, the automatic measurement by image processing has a drawback that its application range is narrow.
【0005】さらに、同じ鉱物であっても、研磨状態、
研磨後の表面酸化などによって微妙に色が変化してお
り、特に、色の似た鉱物が同時に多数存在する場合に
は、測定のたびに精密にしきい値を再設定する必要があ
った。しきい値の設定は、測定のなかでも最も手間のか
かる作業であり、しかも鉱物についての専門的な知識が
必要とされるために、完全な自動化も不可能であった。
このような手間のかかる作業を測定のたびに繰り返さな
ければならいことは、自動測定の便利さを著しく損なう
ものであった。Furthermore, even if the same mineral is used,
The color changed subtly due to surface oxidation after polishing, and especially when a large number of minerals with similar colors were present at the same time, it was necessary to precisely reset the threshold value for each measurement. Setting the threshold was the most laborious task of the measurement, and also required complete knowledge of minerals, making complete automation impossible.
The necessity of repeating such a troublesome work for each measurement significantly impairs the convenience of automatic measurement.
【0006】したがって、本発明の目的は、しきい値の
幅を狭めても目的の鉱物をほぼ完全に取り出すことがで
き、しきい値設定の操作を簡略化できかつ迅速で正確な
測定が可能な画像処理による鉱物分析方法を提供するこ
とにある。Therefore, the object of the present invention is that the target mineral can be taken out almost completely even if the width of the threshold value is narrowed, the operation for setting the threshold value can be simplified, and quick and accurate measurement is possible. The object of the present invention is to provide a mineral analysis method by simple image processing.
【0007】[0007]
【課題を解決するための手段】前述の目的を達成するた
めに、本発明は、鉱物が含まれる試料を固結・研磨し、
反射顕微鏡に接続したカラーテレビカメラで撮影し、そ
の画像を画像解析装置によって、赤、緑、青の各色ごと
に輪郭保存平滑化処理し、処理後の画像を合成してカラ
ー画像を得て、その画像からの色相、輝度、純度のデー
タによって特定の鉱物を同定し、二値化することを特徴
とする画像処理による鉱物分析方法を採用するものであ
る。In order to achieve the above-mentioned object, the present invention consolidates and polishes a sample containing minerals,
Photographed with a color television camera connected to a reflection microscope, the image was analyzed by an image analysis device, and the contours were saved and smoothed for each color of red, green, and blue, and the processed images were combined to obtain a color image, A mineral analysis method by image processing characterized by identifying and binarizing a specific mineral from the data of hue, brightness, and purity from the image is adopted.
【0008】[0008]
【作用】本発明の対象となる試料は粉体、粒状、塊状の
いずれでもよいが、反射顕微鏡で撮影するため、平滑な
断面を鏡面研磨する必要がある。粉体や粒状の場合に
は、既知技術によってベークライトなどの樹脂にて固結
し、切断し、研磨することで試料が作成される。The sample of the present invention may be in the form of powder, particles or lumps, but since it is photographed by a reflection microscope, it is necessary to mirror-polish a smooth cross section. In the case of powder or granules, a sample is prepared by consolidating with a resin such as Bakelite, cutting and polishing by a known technique.
【0009】本発明で使用する反射顕微鏡、テレビカメ
ラ、画像解析装置は、一般に市販されているもので良い
が、方法の性質上、カラー処理が可能なものに限られ
る。画像解析装置は、輪郭保存平滑化処理が可能なもの
に限られ、例えば、ニレコ株式会社製ルーゼックス(商
品名)などが使用できる。The reflection microscope, television camera, and image analysis device used in the present invention may be those commercially available in general, but are limited to those capable of color processing due to the nature of the method. The image analysis device is limited to a device capable of contour-preserving smoothing processing, and for example, Luzex (trade name) manufactured by Nireco Corporation can be used.
【0010】本発明では、試料表面を反射顕微鏡に接続
したカラーテレビカメラで撮影し、その画像を画像処理
装置で処理する。反射顕微鏡の倍率は、測定する鉱物の
大きさに合わせて任意に調節するが、倍率が高過ぎる
と、必要精度の結果を得るために測定しなければならな
い視野数が増加し、倍率が低過ぎると処理装置の解像度
が不足し、測定が不正確になる。本発明者等の経験上、
測定対象鉱物粒子の直径が視野範囲の100分の1から
5分の1内にあるように倍率を調整することが好まし
い。In the present invention, the surface of the sample is photographed by a color television camera connected to a reflection microscope, and the image is processed by an image processing device. The magnification of the reflection microscope is arbitrarily adjusted according to the size of the mineral to be measured, but if the magnification is too high, the number of fields of view that must be measured to obtain the required accuracy results increases, and the magnification is too low. And the resolution of the processor is insufficient and the measurement becomes inaccurate. Based on the experience of the present inventors,
It is preferable to adjust the magnification so that the diameter of the measurement target mineral particles is within 1/100 to 1/5 of the visual field range.
【0011】撮影した原画像は、もともと、赤、緑、青
の原色からなるモノクロ画像を合成したものである。本
発明では、この3つのモノクロ画像のそれぞれについて
輪郭保存平滑化処理を行い、その後、再びこれらを合成
してカラー画像を得る。輪郭保存平滑化処理とは公知の
画像処理方法であり、輪郭抽出フィルタと平滑化フィル
タを組み合わせたものである。この輪郭保存平滑化処理
で、粒子境界面などの色が急激に変化している境界線が
輪郭として保存され、その輪郭内部の領域の連続的な微
小の色の変化が平均化されて(平滑化されて)単一の一
様な色にされる。画像解析による鉱物の同定および二値
化は、その色を輝度、色相、純度の3要素について数値
化することによって行うが、この輪郭保存平滑化処理に
よって鉱物の色の微妙な変化を平均化し、しきい値の幅
を狭い範囲に限定できる。Originally, the photographed original image is a composite of monochrome images of primary colors of red, green and blue. In the present invention, the contour-preserving smoothing process is performed on each of the three monochrome images, and then these are combined again to obtain a color image. The contour-preserving smoothing process is a known image processing method and is a combination of a contour extracting filter and a smoothing filter. By this contour preservation smoothing processing, the boundary line where the color of the grain boundary surface is rapidly changed is saved as the contour, and the continuous minute color changes in the area inside the contour are averaged (smoothed). To a single uniform color. The identification and binarization of minerals by image analysis are performed by digitizing the color with respect to the three elements of brightness, hue, and purity. This contour preservation smoothing process averages subtle changes in the color of minerals, The threshold width can be limited to a narrow range.
【0012】従来の技術においては、色の幅の大きい鉱
物を二値化するためにはしきい値の幅を広く設定しなけ
ればならず、色のよく似た鉱物を同時に取り込んでしま
うことがあった。また、試料によって同じ鉱物でも色が
変化しているため、測定のたびにしきい値を直さなけれ
ばならなかった。In the prior art, in order to binarize a mineral having a large color range, a wide threshold value must be set, and minerals having a similar color may be taken in at the same time. there were. In addition, the color of the same mineral changed depending on the sample, so the threshold had to be corrected each time the measurement was performed.
【0013】一方、本発明の方法では、色の幅が大きい
鉱物においてもその色が平均化されるため、しきい値の
設定が容易になり、色のよく似た別の鉱物が含まれる場
合でも大まかな設定で識別が可能になる。さらに、測定
条件による色の変化も相対的に小さくなり、測定のたび
に再調整する必要がなくなる。On the other hand, in the method of the present invention, even in a mineral having a wide color range, the color is averaged, so that the threshold value can be easily set, and another mineral having a similar color is included. However, it is possible to identify with a rough setting. Furthermore, the change in color due to the measurement conditions is relatively small, and it is not necessary to readjust each time measurement is performed.
【0014】[0014]
(実施例)次に、本発明の実施例について説明する。銅
精鉱を5μmの粒径に粉砕し、ベークライトと混合して
圧縮固結し、ダイヤモンドカッタで切断した断面を鏡面
研磨したサンプルについて本発明の方法を適用して構成
鉱物の二値化を行った。(Example) Next, an example of the present invention will be described. Copper concentrate was crushed to a particle size of 5 μm, mixed with Bakelite, compressed and solidified, and a cross section cut by a diamond cutter was mirror-polished to apply the method of the present invention to binarize constituent minerals. It was
【0015】最初に、適当な白色光をサンプル表面に当
て、顕微鏡と接続したテレビカメラで試料表面を撮影し
た。このとき、顕微鏡の倍率はテレビカメラの撮影領域
が水平方向で400μmになるように調整した。撮影し
た画像をテレビカメラに接続した画像解析装置(ニレコ
株式会社製ルーゼックス5000S)にて取込み直接像
として記憶させた。この直接像は、赤、緑、青のモノク
ロ画像を合成したものであるが、この3枚のモノクロ画
像のそれぞれについて輪郭保存平滑化処理を行い、処理
後の画像を別のメモリに記憶させた。処理後の画像を再
び合成してカラー画像を得て、その画像をIHP変換し
て画素ごとの輝度、色相、純度データを得た。IHP変
換と以後の鉱物同定方法は、前述の既に提案した発明と
同様に行った。この画素ごとの輝度、色相、純度データ
に上下のしきい値を設定し、特定の色の部分、即ち目的
とする鉱物の粒子だけを取り出した。このときのしきい
値の値が目的の鉱物を同定するときの基準となる数値で
ある。First, an appropriate white light was applied to the sample surface, and the sample surface was photographed with a television camera connected to a microscope. At this time, the magnification of the microscope was adjusted so that the photographing area of the television camera was 400 μm in the horizontal direction. The photographed image was captured by an image analyzer (Luzex 5000S manufactured by Nireco Corporation) connected to a television camera and stored as a direct image. This direct image is a composite of red, green, and blue monochrome images. Contour preservation smoothing processing was performed on each of the three monochrome images, and the processed images were stored in another memory. . The processed image was recombined to obtain a color image, and the image was subjected to IHP conversion to obtain luminance, hue, and purity data for each pixel. The IHP conversion and the subsequent mineral identification method were performed in the same manner as in the previously proposed invention. Upper and lower threshold values were set for the brightness, hue, and purity data for each pixel, and only specific color portions, that is, target mineral particles were taken out. The threshold value at this time is a numerical value that serves as a reference when identifying the target mineral.
【0016】試料の主要構成鉱物である黄鉄鉱、輝銅
鉱、黄銅鉱、斑銅鉱について、輝度、純度、色相のしき
い値を設定した結果を表1に示す。表中の数値は、輝度
の場合明るさを示す指数で、0が黒、255が白であ
り、色相の場合色の範囲を示す指数で0および255が
赤、100が緑、150が青でその間はそれらの中間色
であり、純度の場合0が灰色、255が原色である。表
1の右側の対照表は、各要素についてしきい値の重なり
が無い組み合わせ、即ち、完全な識別が可能な組み合わ
せにO印を入れたものである。3要素のうち、どれか1
つでもしきい値の重なりがなければ識別可能であるの
で、この表から、すべての鉱物について他の鉱物との識
別が可能であることが分かる。例えば、最も他の鉱物と
の識別が困難なのは斑銅鉱であるが、黄鉄鉱とは輝度
で、輝銅鉱とは色相で、黄銅鉱とは純度で識別できる。
また、鉱物を二値化するために必要なしきい値の値の幅
が狭くなれば、これに一定の余裕を加えたしきい値を設
定することによって、研磨状態や表面酸化によって微妙
に色が変化しているサンプルにおいても常に同じしきい
値を用いて同定および二値化が可能になり、測定操作の
大幅な省力化が図れる。Table 1 shows the results of setting thresholds of brightness, purity, and hue for pyrite, chalcocite, chalcopyrite, and chalcopyrite, which are the main constituent minerals of the sample. Numerical values in the table are brightness indexes for brightness, where 0 is black and 255 is white, and for hue is an index that indicates the range of colors, 0 and 255 are red, 100 is green, and 150 is blue. In the meantime, they are those intermediate colors, and in the case of purity, 0 is gray and 255 is a primary color. The comparison table on the right side of Table 1 is a combination in which threshold values do not overlap for each element, that is, a combination that allows complete identification is marked with O. One of the three elements
Since it is possible to discriminate even if there is no threshold overlap, it can be seen from this table that all minerals can be discriminated from other minerals. For example, although it is most difficult to distinguish from other minerals, it is possible to distinguish it from the content of chalcopyrite by its brightness, that of chalcopyrite by its hue, and that of chalcopyrite by its purity.
Also, if the range of threshold values required for binarizing minerals becomes narrow, by setting a threshold value with a certain margin added to this, the color will be subtly changed due to the polishing state and surface oxidation. Even in a changing sample, the same threshold value can always be used for identification and binarization, and the measurement operation can be greatly saved.
【0017】(比較例)比較例として、従来例の方法に
よる測定結果を表2に示す。実施例と比べると、どの要
素、どの鉱物においてもしきい値の範囲が大きくなって
いることが分かる。このため、しきい値の重なりが大き
くなり、明確に識別可能なのは輝度における黄鉄鉱と斑
銅鉱のみである。このような状態で二値化を行うと、各
鉱物の図形どうしに重なりが生じ、正確な割合測定が不
可能になる。Comparative Example As a comparative example, Table 2 shows the measurement results by the method of the conventional example. It can be seen that the threshold range is wide for any element and any mineral as compared with the examples. For this reason, the threshold overlap becomes large and it is only pyrite and chalcopyrite in brightness that are clearly identifiable. When binarization is performed in such a state, the figures of the respective minerals overlap each other, making it impossible to accurately measure the ratio.
【0018】[0018]
【発明の効果】以上より明らかなように、本発明によっ
て、しきい値を狭く設定でき、しきい値の設定の操作を
簡略化でき、色が部分的に変化している場合でも迅速に
正確な画像解析による鉱物の自動測定が可能となる。As is apparent from the above, according to the present invention, the threshold value can be set narrowly, the operation of setting the threshold value can be simplified, and even if the color is partially changed, it can be quickly and accurately determined. It is possible to automatically measure minerals by simple image analysis.
【表1】 [Table 1]
【表2】 [Table 2]
Claims (1)
射顕微鏡に接続したカラーテレビカメラで撮影し、その
画像を画像解析装置によって、赤、緑、青の各色ごとに
輪郭保存平滑化処理し、処理後の画像を合成してカラー
画像を得て、その画像からの色相、輝度、純度のデータ
によって特定の鉱物を同定し、二値化することを特徴と
する画像処理による鉱物分析方法。1. A sample containing minerals is consolidated and polished, and then photographed by a color television camera connected to a reflection microscope, and the image is smoothed and contour-preserved for each color of red, green and blue by an image analyzer. Mineral analysis by image processing, characterized in that the processed images are combined to obtain a color image, and specific minerals are identified and binarized based on the hue, brightness, and purity data from the images. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5141539A JPH06331621A (en) | 1993-05-20 | 1993-05-20 | Method for analysis of mineral by image processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5141539A JPH06331621A (en) | 1993-05-20 | 1993-05-20 | Method for analysis of mineral by image processing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06331621A true JPH06331621A (en) | 1994-12-02 |
Family
ID=15294327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5141539A Pending JPH06331621A (en) | 1993-05-20 | 1993-05-20 | Method for analysis of mineral by image processing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06331621A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004045110A (en) * | 2002-07-10 | 2004-02-12 | Toyota Motor Corp | Method and apparatus for measuring color ratio of plastic molding and method for re-toning plastic fragments |
JP2019174473A (en) * | 2018-03-29 | 2019-10-10 | パンパシフィック・カッパー株式会社 | Slug analysis method |
CN118247233A (en) * | 2024-03-18 | 2024-06-25 | 江苏科泰检测技术服务有限公司 | Mining face analysis method based on coal mining |
-
1993
- 1993-05-20 JP JP5141539A patent/JPH06331621A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004045110A (en) * | 2002-07-10 | 2004-02-12 | Toyota Motor Corp | Method and apparatus for measuring color ratio of plastic molding and method for re-toning plastic fragments |
JP2019174473A (en) * | 2018-03-29 | 2019-10-10 | パンパシフィック・カッパー株式会社 | Slug analysis method |
CN118247233A (en) * | 2024-03-18 | 2024-06-25 | 江苏科泰检测技术服务有限公司 | Mining face analysis method based on coal mining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2242744C2 (en) | Method for measuring of alumina calcination extent and uniformity | |
CN109269951B (en) | Image-based flotation tailing ash content, concentration and coarse particle content detection method | |
EP1484595B1 (en) | Color space transformations for use in identifying objects of interest in biological specimens | |
US10783348B2 (en) | Method and system for detection and classification of particles based on processing of microphotographic images | |
US20100040276A1 (en) | Method and apparatus for determining a cell contour of a cell | |
KR20080016847A (en) | Methods of chromogen separation-based image analysis | |
CN104346437B (en) | Method and data analysis system for semi-automatic particle analysis using a charged particle beam | |
Tovey et al. | Mineralogical mapping of scanning electron micrographs | |
JPH06331621A (en) | Method for analysis of mineral by image processing | |
JP2856298B2 (en) | Quality monitoring method of raw ore | |
CN111307070B (en) | Method for measuring edge angle of concrete coarse aggregate based on digital image processing | |
JP2004325358A (en) | Apparatus and method for measuring component ratio of cast iron | |
JP2000155089A (en) | Dispersibility evaluating method | |
CN111797730A (en) | Automatic analysis method for lithofacies of cement clinker | |
WO2003031956A1 (en) | System and method for classifying workpieces according to tonal variations | |
JPS60143769A (en) | Particle size and second phase fraction measuring apparatus | |
Berry et al. | Automated mineral identification by optical microscopy | |
CN108960028B (en) | Congestion level based on image analysis judges system | |
JPS5830049B2 (en) | Automatic reticulocyte measurement device | |
JP2024101925A (en) | Ore mineral species analysis method | |
JPH01259243A (en) | Method and instrument for automatic determination of microscopic image of opaque ore or the like | |
Zaniewski | Plasmic fabric analysis of glacial sediments using quantitative image analysis methods and GIS techniques | |
KR101393594B1 (en) | Device and method for evaluating degree of liberation using image analysis | |
Jatti | Segmentation of microscopic bone images | |
JP2024101927A (en) | Ore mineral species analysis method |