JPH06331565A - Dignostic method of welded part of thin plate - Google Patents
Dignostic method of welded part of thin plateInfo
- Publication number
- JPH06331565A JPH06331565A JP5116070A JP11607093A JPH06331565A JP H06331565 A JPH06331565 A JP H06331565A JP 5116070 A JP5116070 A JP 5116070A JP 11607093 A JP11607093 A JP 11607093A JP H06331565 A JPH06331565 A JP H06331565A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- difference
- welded part
- steel
- welded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、薄板の溶接部の健全性
並びに接着状況の診断方法に関し、詳細には、鉄鋼プロ
セスの連続焼鈍ライン、連続酸洗ライン、連続溶融亜鉛
メッキライン、連続塗装ライン等の連続処理プロセスの
ペイオフリール後の薄板の溶接線近傍における溶接部分
の溶接条件、溶接状態を非破壊診断したり、また、自動
車ボディーの溶接等薄板の加工工程でのスポット溶接に
おける溶接状態を非破壊診断したりする診断方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing the soundness of a welded portion of a thin plate and a bonding state, and more specifically, a continuous annealing line, a continuous pickling line, a continuous hot dip galvanizing line, a continuous coating in a steel process. Non-destructive diagnosis of welding conditions and welding conditions near the weld line of thin plates after payoff reel in continuous processing processes such as lines, and welding conditions in spot welding during thin plate processing such as welding of automobile bodies. The present invention relates to a diagnostic method for nondestructive diagnosis.
【0002】[0002]
【従来の技術】鉄鋼業、アルミなど非鉄金属業、金属加
工メーカーの各業種での溶接工程における溶接部分の溶
接条件、溶接状態をチェックすることは、製品の品質管
理の点から重要である。そのチェック手段として、オン
ライン下で溶接部を連続的に検査し、溶接部の健全性を
診断する手段が広く採用されている。2. Description of the Related Art It is important from the viewpoint of product quality control to check the welding conditions and welding conditions of the welded portion in the welding process in the iron and steel industry, the non-ferrous metal industry such as aluminum, and the metal processing industry. As a checking means, a means for continuously inspecting a welded part online to diagnose the soundness of the welded part is widely adopted.
【0003】鉄鋼圧延工程の連続焼鈍ラインや、連続溶
融亜鉛メッキライン等の如く、薄板を走行させながら連
続処理するプロセスにおいては、該プロセスの途中に薄
板同士(先行板と後続板)をつなぐために溶接され、そ
の溶接部の健全性が診断されるが、この溶接部診断はオ
ンライン下で迅速に行われなければならない。In a process such as a continuous annealing line in a steel rolling process or a continuous hot dip galvanizing line in which thin plates are continuously processed while running, in order to connect the thin plates (preceding plate and succeeding plate) to each other during the process. The welded joint is welded to and the integrity of the welded joint is diagnosed, but this weld joint diagnosis must be done promptly online.
【0004】例えば、連続溶融亜鉛メッキラインの場
合、図1に示す如く、ペイオフリール1から供給された
鋼板5(後続板)は、溶接機2部で処理中の先行板と溶
接して搬送されるが、この溶接のための許容時間は、焼
鈍炉4の手前に設けられた入り側ループカー3に備蓄さ
れたものが吐き出される迄という制約を受ける。そのた
め、溶接部診断はオンライン下で迅速に行う必要があ
る。For example, in the case of a continuous hot dip galvanizing line, as shown in FIG. 1, a steel plate 5 (subsequent plate) supplied from a payoff reel 1 is welded to a preceding plate being processed by a welding machine 2 and conveyed. However, the permissible time for this welding is restricted by the discharge of the material stored in the entry-side loop car 3 provided in front of the annealing furnace 4. Therefore, it is necessary to quickly perform weld diagnosis online.
【0005】この場合の溶接は、図2に例示する如く切
断機(シャー)で薄板5の先端を切断した後、その先端
部を僅かに重ね合わせてクランプ18で固定し、その重合
部分Dを上下の電極輪7Aで加圧しながら幅方向に溶接す
ることにより行われる。In the welding in this case, as shown in FIG. 2, after cutting the tip of the thin plate 5 with a cutting machine (shear), the tip is slightly overlapped and fixed by a clamp 18, and the overlapped portion D is formed. It is performed by welding in the width direction while applying pressure with the upper and lower electrode wheels 7A.
【0006】オンライン下での溶接部診断は、現状では
大半が、作業者がA点において溶接部分にハンマー等で
打撃を与えて、溶接部Kの変質が生じていないかどうか
を目視で判断する方法(以降、ハンマリング法という)
により行われており、このことは上記メッキライン以外
の薄板の連続処理プロセスにおいても同様である。At present, most of the welded parts diagnosis under online condition visually judge whether or not the alteration of the welded part K is caused by the operator hitting the welded part at a point A with a hammer or the like. Method (hereinafter referred to as hammering method)
The same applies to the continuous processing process of thin plates other than the above plating line.
【0007】一方、図3に概要示する如く、所謂エリク
セン試験法を適用した溶接部診断法がある。本法は、溶
接条件を設定するために溶接部分を切り取り、該溶接部
分に治具を当て力を加えて変形させ、破断Eが生じるか
否かを見分けるものである。しかし、本法はオンライン
下では使用不可能である。On the other hand, as schematically shown in FIG. 3, there is a welded portion diagnostic method to which a so-called Erichsen test method is applied. This method cuts off a welded portion in order to set welding conditions, applies a jig to the welded portion to deform the welded portion, and determines whether or not a fracture E occurs. However, this method cannot be used online.
【0008】[0008]
【発明が解決しようとする課題】前記従来のハンマリン
グ法は一種の破壊試験であって、 正常な溶接部に変
形を与えてしまうこと、 当然ながら省力化を阻害す
ること、 実際には全面に至る精密な診断は行い難い
こと、定量的な評価が行えないこと、 ライン停止
時間が長くなること等の諸問題点が依然として残ってい
る。更には、溶接機の構造が元来複雑であって、その周
辺には必要なセンサを設置するスペースが確保し難いこ
ともあって、簡単な構造でしかも非破壊、非接触型で診
断できる技術の開発が強く望まれているのが実状であ
る。The above-mentioned conventional hammering method is a kind of destructive test, and it causes deformation of a normal welded portion, and of course impedes labor saving. Various problems still remain, such as the difficulty of making a precise diagnosis, the inability to perform a quantitative evaluation, and the long line down time. Furthermore, since the structure of the welding machine is inherently complicated and it is difficult to secure the space for installing the necessary sensors around it, it is a simple structure and is a non-destructive, non-contact type diagnostic technology. The reality is that the development of
【0009】ところで、従来より材料欠陥の非破壊検査
方法として、(A) 超音波探傷試験、(B) 放射線透過試験
(X線透過撮影)、(C) 磁気探傷試験(漏洩磁束・磁粉
探傷試験)、(D) 渦流探傷試験があるが、(A) は超音波
プローブと被検査材との間に接触媒質が必要であり、そ
れを溶接直後に塗布するのは接合部が急冷されるため、
焼き入れされて変質することから不適切であり、(B),
(C)に関しては検査時間が長く、又、感度が低い等の問
題で適用が困難であり、一方、(D) は表面近傍の欠陥検
出能は高いが、鋼板表面からのリフトオフを一定に保つ
のがオンライン適用上で、鋼板エッジ部への引っ掛か
り、接合部表面性状の荒れ等の問題があるために非常に
困難であり、従って、これら従来の検査方法は実用に際
して種々の問題がある。By the way, conventionally, as a nondestructive inspection method for material defects, (A) ultrasonic flaw detection test, (B) radiation transmission test (X-ray transmission imaging), (C) magnetic flaw detection test (leakage magnetic flux / magnetic powder flaw detection test) ), (D) There are eddy current flaw detection tests, but (A) requires a contact medium between the ultrasonic probe and the material to be inspected, and applying it immediately after welding causes the joint to cool rapidly. ,
Inappropriate because it is hardened and deteriorates, (B),
(C) is difficult to apply due to problems such as long inspection time and low sensitivity, while (D) has high detectability of defects near the surface, but keeps lift-off from the steel plate surface constant. When applied online, it is very difficult because of problems such as being caught at the edge of the steel sheet and roughening the surface quality of the joint. Therefore, these conventional inspection methods have various problems in practical use.
【0010】本発明は、このような実状に着目してなさ
れたものであり、その目的は前記の如き問題点を解消
し、溶接を続けながらオンライン下でその直後に即座に
非破壊、非接触方式で溶接部分の健全性診断を可能と
し、更には接触媒質が不要であって溶接部急冷による変
質の不具合な事態を招かず、しかも簡単な構造で行えて
実用性に優れると共に、汎用に適する薄板の溶接部診断
方法を提供しようとすることにある。The present invention has been made by paying attention to such an actual situation, and its purpose is to solve the above-mentioned problems and to immediately perform non-destructive, non-contact immediately on-line while continuing welding. It enables the soundness diagnosis of the welded part by using the method, does not require the contact medium, does not cause the problem of deterioration due to the rapid cooling of the welded part, and has a simple structure that is excellent in practicality and suitable for general purposes. Another object of the present invention is to provide a method for diagnosing a welded portion of a thin plate.
【0011】[0011]
【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明は、鉄鋼薄板の連続処理プロセスでの溶接工
程においてオンライン下で行われる溶接部の診断方法で
あって、薄板の溶接部分に赤外光を照射させて、その反
射光から、波長λ1 =14μm付近、波長λ2 =18μ
m付近の2波長の各反射光強度Rw(λ1)、Rw(λ2)を検
出して、これらの差Sw =Rw(λ1)−Rw(λ2)を算出す
る一方、鋼板母材部に赤外光を照射させて、同様に各反
射光強度Rn(λ1)、Rn(λ2)を検出して、これらの差S
n =Rn(λ1)−Rn(λ2)を算出し、差Sw と差Sn の比
率を計算することにより、溶接による接合部への入熱量
変動の要素によって生じる鋼板表面上の入熱量の変化を
求め、その入熱量の値から溶接部分の溶接の健全性並び
に接着状況を、溶接オンライン下で推定することを特徴
とする薄板の溶接部診断方法である。The present invention has the following constitution in order to achieve the above object. That is, the present invention is a method for diagnosing a welded portion that is performed online in a welding step in a continuous processing process of a steel thin plate, irradiating the welded portion of the thin plate with infrared light, and from the reflected light, a wavelength Around λ 1 = 14 μm, wavelength λ 2 = 18 μ
The reflected light intensities Rw (λ 1 ) and Rw (λ 2 ) of two wavelengths around m are detected and the difference Sw = Rw (λ 1 ) −Rw (λ 2 ) is calculated. The reflected light intensities Rn (λ 1 ) and Rn (λ 2 ) are similarly detected by irradiating the part with infrared light, and the difference S
By calculating n = Rn (λ 1 ) −Rn (λ 2 ), and calculating the ratio of the difference Sw and the difference Sn, the heat input amount on the steel plate surface caused by the factor of the heat input amount variation to the joint due to welding is calculated. It is a method for diagnosing a welded part of a thin plate, which is characterized by obtaining a change and estimating the soundness of welding and a bonding state of a welded part from the value of the heat input amount under the online welding.
【0012】[0012]
【作用】本発明方法の適用対象である溶接部を図4に例
示する。溶接部Kの左右両側には、溶接熱影響部F(斜
線部)及び表面変色部Gが存在する。尚、かかる溶接熱
影響部が焼入れ硬化部分(以降、熱影響部という)であ
る。溶接条件が不的確な場合の不完全接合状態として
は、接合部割れI、母材部割れH等がある。この不完全
接合状態の発生原因としては、(1) 所定の溶接電流値が
得られず、十分な熱影響部Fの幅が保持出来ないこと、
(2) 接合部分に存在する酸化膜、発熱不足、圧下不足等
が原因となる表面・内部における接合部割れIが存在す
ること、(3)図2のA,B,C各断面状態からも判る如
く重合部分が押し潰されて大きく変形を受け、その際に
生じる母材部割れH等が存在すること、などが挙げられ
る。The welded part to which the method of the present invention is applied is illustrated in FIG. On the left and right sides of the welded portion K, there are a weld heat affected zone F (hatched portion) and a surface discolored portion G. The welding heat-affected zone is a quench-hardened portion (hereinafter referred to as heat-affected zone). Incompletely joined states when welding conditions are inaccurate include joint cracks I and base metal cracks H. The causes of this incompletely joined state are (1) that a predetermined welding current value cannot be obtained and a sufficient width of the heat-affected zone F cannot be maintained.
(2) Oxide film existing on the joint, insufficient heat generation, insufficient joint reduction, etc. on the surface / inner part of the joint crack I. (3) From the cross-sectional states of A, B and C in FIG. As can be seen, the superposed portion is crushed and greatly deformed, and there is a base material crack H or the like that occurs at that time.
【0013】一方、溶接による接合部(ナゲット部)の
表面は、溶接電流の熱影響により周辺母材部表面に比べ
て、見掛け上黒っぽく変色し、図5に示されるように酸
化皮膜を有する領域Jが形成されることが判っている。
この酸化皮膜領域Jの部分に赤外光を照射させてその反
射光の強度を検出すると、酸化皮膜の形成状況により、
特定の波長域において反射光強度に変化が現れる。ま
た、酸化皮膜領域Jでの赤外光の吸収量にも変化が起き
るものであって、図6の波数−反射率線図に示されるよ
うに、或る波数W1 の付近で反射率、換言すれば吸収率
が大きく変動することが明らかである。以上のことか
ら、反射光の強度を検出すれば、ナゲット部における熱
影響部の領域の態様を知ることが出来る。なお、この酸
化皮膜領域Jでの特定波長域による赤外光の反射光強度
は、溶接条件により大きく左右され、例えば、正常な溶
接電流値が得られない場合、電流値が正常であっても電
極輪の速度が速くなり接合部への入熱不足が生じた場合
等によって変化する。On the other hand, the surface of the joint portion (nugget portion) formed by welding is discolored in an apparent blackish color as compared with the surface of the peripheral base material portion due to the heat effect of the welding current, and an area having an oxide film as shown in FIG. It is known that J is formed.
When the infrared light is irradiated to the portion of the oxide film region J and the intensity of the reflected light is detected, depending on the state of formation of the oxide film,
The reflected light intensity changes in a specific wavelength range. Further, the absorption amount of infrared light in the oxide film region J also changes, and as shown in the wavenumber-reflectance diagram of FIG. 6, the reflectance near a certain wavenumber W 1 , In other words, it is clear that the absorption rate fluctuates greatly. From the above, by detecting the intensity of the reflected light, it is possible to know the mode of the region of the heat-affected zone in the nugget portion. In addition, the reflected light intensity of the infrared light in the specific wavelength region in the oxide film region J largely depends on the welding conditions. For example, when a normal welding current value cannot be obtained, even if the current value is normal. This will change depending on the case where the speed of the electrode wheel becomes high and insufficient heat input to the joint occurs.
【0014】ところで、熱影響を全く受けていない鋼板
母材の表面と、酸化皮膜領域の表面とでは、照射した赤
外光の反射光強度に差があることから、その差によって
両表面間の違いを認識することが可能であるが、表面の
粗滑状態など他の要因の影響を受けずに色相の差に基づ
いて酸化皮膜領域を正確に認識するためには、2種の波
長の反射光強度の差を求めて、その差で比較することが
望ましく、図7に示されるように、溶接サンプルを用い
て溶接接合部への入熱量と特定した2種の波長の反射光
強度の差との関係を調べた試験結果から明らかなよう
に、反射光強度差と相対入熱量とは一次関数関係が成立
している。By the way, since there is a difference in the reflected light intensity of the irradiated infrared light between the surface of the steel sheet base material which is not affected by heat at all and the surface of the oxide film region, there is a difference between the two surfaces due to the difference. Although it is possible to recognize the difference, in order to accurately recognize the oxide film area based on the difference in hue without being affected by other factors such as the rough surface of the surface, reflection of two wavelengths is required. It is desirable to obtain the difference in light intensity and compare by the difference. As shown in FIG. 7, the difference in reflected light intensity between two types of wavelengths specified as the heat input to the welded joint using the welded sample. As is clear from the test result of examining the relationship with, a linear function relationship is established between the reflected light intensity difference and the relative heat input.
【0015】ナローラップシーム溶接機等の抵抗溶接機
はその電極に高電流を通電させて溶接を行っていること
に着目すると、図4に示す如き熱影響部Fの大きさ、表
面変色部Gの幅は、溶接電流値に比例することが溶接サ
ンプルでの試験結果から判っている。但し、電極輪速度
は一定である。一方、この熱影響部Fの大きさ、表面変
色部Gの幅による接合部の強度の問題については、図3
に示す如き前記エリクセン試験の結果から判断すると、
所定の溶接電流値より約5%低い電流値で溶接したもの
が、接合界面から割れが入ったことからして、溶接電流
が大きい影響を及ぼすものであることは明らかである。
尚、接合状態の良好なものでは、エリクセン試験を行う
と接合界面に対して垂直に割れが入る。Focusing on the fact that a resistance welding machine such as a narrow lap seam welding machine conducts welding by applying a high current to its electrode, the size of the heat affected zone F and the surface discolored zone G as shown in FIG. It is known from the test results on the weld sample that the width of the is proportional to the welding current value. However, the electrode wheel speed is constant. On the other hand, regarding the problem of the strength of the joint portion due to the size of the heat affected zone F and the width of the surface discolored zone G, FIG.
Judging from the results of the Erichsen test as shown in
It is clear that welding at a current value lower than the predetermined welding current value by about 5% has a large effect on the welding current because cracks are formed at the joint interface.
In addition, in the case of a good bonded state, when an Erichsen test is performed, cracks are formed perpendicularly to the bonded interface.
【0016】以上説明した溶接部における接合状態に関
して、本発明方法を実施することによって、溶接を続け
ながらオンライン下でその直後に即座に、非破壊、非接
触方式で溶接部分の健全性診断をすることができ、又、
このとき接触媒質が不要であって溶接部焼き入れ等によ
る変質の不具合を招かず、しかも簡単な構造で健全性診
断が行えるので、実用性に優れると共に汎用に適する。By performing the method of the present invention on the joining state in the welded portion described above, the soundness of the welded portion is immediately diagnosed in a non-destructive, non-contact manner immediately after that while continuing the welding while continuing the welding. You can also
At this time, the contact medium is not required, the deterioration of the welded portion is not caused, and the soundness can be diagnosed with a simple structure. Therefore, it is excellent in practicality and suitable for general use.
【0017】即ち、本発明方法に従えば、接合部表面に
形成される酸化皮膜域と鋼板母材部それぞれに照射した
赤外光の2波長反射光強度差または吸収量差を検出し、
その比率を計算することによって所定の入熱量が接合部
に供給されているかどうかを判断でき、また電極輪の速
度が正常であるかどうかも判断でき、従って、薄板溶接
部の健全性を溶接オンライン下で迅速に診断し得る。か
かる診断方法は、非破壊方式且つ非接触方式であり、
又、接触媒質が不要であって溶接部焼き入れ等による変
質の不具合を招かず、しかも簡単な構造で行えるので、
実用性に優れると共に汎用に適する。That is, according to the method of the present invention, the difference in the two-wavelength reflected light intensity or the difference in the absorption amount of the infrared light radiated to each of the oxide film area formed on the surface of the joint and the steel sheet base material is detected,
By calculating the ratio, it is possible to judge whether a predetermined heat input is supplied to the joint, and also whether the speed of the electrode wheel is normal. Can be quickly diagnosed below. Such a diagnostic method is a non-destructive method and a non-contact method,
Further, since the contact medium is not required, the deterioration of the welded portion or the like is not caused, and the structure is simple.
It is not only practical but also suitable for general purposes.
【0018】[0018]
【実施例】以下、本発明の実施例について説明する。図
8には、本発明の実施例に係る溶接機における溶接部診
断装置取付け部の構造が概略示される。また、図9に
は、図8における溶接部診断装置9の構成が示される。
この例の溶接機はナローラップシーム溶接機であって、
本体のハウジング6に対し、溶接方向(白抜き矢示線の
方向)を基準とし前後に、上下一対の電極輪7A,7B
で実現される溶接用電極及び圧下ロール8A,8Bがそ
れぞれ取付けられている。圧下ロール8A,8Bに対し
てその後方の溶接線上50乃至200mm の位置において溶接
部診断装置9が溶接機に設けられている。溶接部診断装
置9は、赤外光源11と、検出器12と、制御部13と
を含んで形成され、ハウジング6に取付けられた溶接部
倣い機構10の先端部に固定されている。EXAMPLES Examples of the present invention will be described below. FIG. 8 schematically shows the structure of the welding portion diagnostic device mounting portion in the welding machine according to the embodiment of the present invention. Further, FIG. 9 shows a configuration of the welded part diagnostic device 9 in FIG.
The welder in this example is a narrow lap seam welder,
With respect to the housing 6 of the main body, a pair of upper and lower electrode wheels 7A and 7B are provided in front and back with reference to the welding direction (the direction of the outline arrow).
The welding electrode and the reduction rolls 8A and 8B, which are realized in, are attached respectively. The welder diagnostic device 9 is provided in the welder at a position 50 to 200 mm on the welding line behind the reduction rolls 8A and 8B. The welded part diagnosis device 9 is formed to include an infrared light source 11, a detector 12, and a control part 13, and is fixed to the tip of a welded part copying mechanism 10 attached to the housing 6.
【0019】検出器12は、受光部14、チョッパー1
5、該チョッパー15を回転駆動するモータ16を備
え、チョッパー15は、図9(ロ)に示されるが、3つ
の窓が開けられていて、その内の2つには、各フィルタ
(濾光器)19,20がそれぞれ取り付けられ、他の1
つには暗フィルタ21が取り付けられて、モータ16に
よって回転されると、受光部14のレンズ直前を3つの
窓が交互に横切って移動するようになっている。一方、
制御部13は、受光部14からの光信号を導入して電気
的に処理する信号処理装置17と、受光部14及びモー
タ16を発停制御するコントローラ18とを備える。The detector 12 includes a light receiving portion 14 and a chopper 1.
5. A motor 16 for rotating the chopper 15 is provided. The chopper 15 has three windows as shown in FIG. 9B, two of which are filters (filtering filters). 19) and 20 are attached respectively, and the other one
A dark filter 21 is attached to one of them, and when it is rotated by the motor 16, three windows alternately move in front of the lens of the light receiving unit 14 to move. on the other hand,
The control unit 13 includes a signal processing device 17 that introduces an optical signal from the light receiving unit 14 and electrically processes the signal, and a controller 18 that controls the start and stop of the light receiving unit 14 and the motor 16.
【0020】溶接部診断装置9の赤外光学系について
は、赤外光源11から赤外光を出して鋼板5に照射さ
せ、これによって生じた反射光を、回転する3枚のフィ
ルタ19,20,21を透して受光部14で周期的に受
光させる。このとき、図10にグラフ示される如く、同
期信号PS に合わせて受光部14で受光するものであ
る。ここで、信号処理装置17には、予め前記溶接部診
断装置9によって検出、演算してなる基準値としての鋼
板母材部での2波長、即ち、λ1 (14μm付近)と波
長λ2 (18μm付近)の反射光強度の差Sn =Rn(λ
1)−Rn(λ2)を記憶させておく。そして、溶接開始後に
鋼板溶接部の表面酸化皮膜域Jでの同じ2波長の反射光
強度の差差Sw =Rw(λ1)−Rw(λ2)を信号処理装置1
7で算出した後、それらの差Sw と差Sn の比率Sw /
Sn を算出する。Regarding the infrared optical system of the welded part diagnostic device 9, infrared light is emitted from the infrared light source 11 to irradiate the steel plate 5, and the reflected light generated by this is rotated by three filters 19, 20. , 21 through which light is received by the light receiving section 14 periodically. At this time, as shown in the graph of FIG. 10, the light receiving unit 14 receives light in synchronization with the synchronization signal P S. Here, the signal processing device 17 has two wavelengths in the steel sheet base metal portion as reference values which are detected and calculated in advance by the weld portion diagnosis device 9, that is, λ 1 (near 14 μm) and wavelength λ 2 ( Difference in reflected light intensity around 18 μm) Sn = Rn (λ
1 ) -Rn (λ 2 ) is stored. Then, after the start of welding, the difference in the reflected light intensities of the same two wavelengths in the surface oxide film area J of the steel plate welded portion, Sw = Rw (λ 1 ) −Rw (λ 2 ) is calculated as the signal processing device 1.
After the calculation in step 7, the ratio Sw / difference Sw / Sn of the difference Sw /
Calculate Sn.
【0021】また、鋼板の幅方向にn点測定し、その移
動平均である(1/n)Σ(Sw /Sn )を信号処理装
置17で計算する。こうして得られる溶接部診断装置9
の赤外光学系からの出力信号をもとに溶接による接合部
表面の酸化皮膜域Jの形成状況の違いを、その溶接を行
ったときの条件、即ち、接合部入熱量を変動させる要素
と比較して、溶接部の健全性を診断することが可能であ
る。このときの基準は、接合強度をエリクセンテスト及
び引張試験によって確認するものである。Further, n points are measured in the width direction of the steel sheet, and the moving average (1 / n) Σ (Sw / Sn) is calculated by the signal processor 17. Welded part diagnostic device 9 thus obtained
The difference in the state of formation of the oxide film area J on the surface of the joint due to welding based on the output signal from the infrared optical system of By comparison, it is possible to diagnose the soundness of the weld. The standard at this time is to confirm the joint strength by an Erichsen test and a tensile test.
【0022】[0022]
【発明の効果】本発明に係る薄板の溶接部診断方法は、
溶接を続けながらオンライン下でその直後に即座に非破
壊、非接触方式で溶接部分の健全性診断ができるように
なる。更には、接触媒質が不要であって溶接部急冷によ
る変質の不具合を招かず、しかも簡単な構造で溶接部分
の健全性診断を行えるようになるという効果を奏し、実
用性に優れると共に汎用に適するものである。The method for diagnosing a welded portion of a thin plate according to the present invention comprises:
While continuing welding, immediately after that, the soundness of the welded part can be immediately diagnosed by the non-destructive and non-contact method. Furthermore, the contact medium is not required, the deterioration of the welded part is not caused, and the soundness of the welded part can be diagnosed with a simple structure, which is excellent in practicality and suitable for general use. It is a thing.
【0023】従って、鉄鋼圧延工程の連続焼鈍ライン、
連続溶融亜鉛メッキライン等の連続処理プロセスにおい
て薄板の溶接工程に随伴しながら溶接電流不足、不良溶
接が原因となる通板中の板破断を未然に防止し得る。
又、従来のハンマリング法よりも検査所要時間を短縮し
得る。更に、検査の自動化が可能となることにより、生
産プロセスの自動化を推進し得ると共に、作業負担を著
しく軽減し得て生産合理化に寄与するところ多大であ
り、又、非破壊検査の実現により鋼板に傷が付かなく品
質向上につながる効果が奏される。Therefore, a continuous annealing line in the steel rolling process,
In a continuous treatment process such as a continuous hot-dip galvanizing line, it is possible to prevent plate breakage during sheet passing, which is caused by insufficient welding current and defective welding, accompanying the welding process of thin plates.
Further, the time required for the inspection can be shortened as compared with the conventional hammering method. Furthermore, the automation of the inspection makes it possible to promote the automation of the production process, significantly reduce the work load, and contribute to the rationalization of production. The effect of improving quality without scratches is achieved.
【図1】連続溶融亜鉛めっきラインの工程概要図であ
る。FIG. 1 is a process schematic diagram of a continuous hot-dip galvanizing line.
【図2】図1に示すライン中の溶接工程における溶接状
況を、鋼板重ね合せ部、接合部の断面と併せて示して説
明するための斜視図である。FIG. 2 is a perspective view for explaining the welding situation in the welding process in the line shown in FIG. 1 together with cross sections of a steel plate overlapping portion and a joint portion.
【図3】溶接部の耐破断性評価のためのエリクセン試験
法の順序的説明図である。FIG. 3 is a sequential explanatory view of an Erichsen test method for evaluating fracture resistance of a welded portion.
【図4】溶接部の接合部分の拡大断面図である。FIG. 4 is an enlarged sectional view of a joint portion of a welded portion.
【図5】溶接部の接合部分の酸化皮膜域を示す斜視図で
ある。FIG. 5 is a perspective view showing an oxide film region of a joint portion of a welded portion.
【図6】鋼板に照射した赤外光の波数と反射率との関係
を示す線図である。FIG. 6 is a diagram showing the relationship between the wave number of infrared light applied to a steel sheet and the reflectance.
【図7】溶接部の接合部分の酸化皮膜域における相対入
熱量と反射光強度差との関係を示す線図である。FIG. 7 is a diagram showing the relationship between the relative heat input and the reflected light intensity difference in the oxide film region of the welded portion.
【図8】本発明の実施例に係る溶接機における溶接部診
断装置取付け部の略示構造図である。FIG. 8 is a schematic structural diagram of a welding portion diagnostic device attachment portion in the welding machine according to the embodiment of the present invention.
【図9】図8における溶接部診断装置9の略示構造図で
ある。9 is a schematic structural diagram of a welded part diagnosis device 9 in FIG.
【図10】図9における受光部14の光信号出力状態を
示すグラフである。10 is a graph showing an optical signal output state of the light receiving section 14 in FIG.
5--鋼板、 9…溶接部診断装置、
11…赤外光源、12…検出器、 13…制御部、
14…受光部、5--steel plate, 9 ... weld diagnostic device,
11 ... Infrared light source, 12 ... Detector, 13 ... Control unit,
14 ... Light receiving part,
Claims (1)
程においてオンライン下で行われる溶接部の診断方法で
あって、薄板の溶接部分に赤外光を照射させて、その反
射光から、波長λ1 =14μm付近、波長λ2 =18μ
m付近の2波長の各反射光強度Rw(λ1)、Rw(λ2)を検
出して、これらの差Sw =Rw(λ1)−Rw(λ2)を算出す
る一方、鋼板母材部に赤外光を照射させて、同様に各反
射光強度Rn(λ1)、Rn(λ2)を検出して、これらの差S
n =Rn(λ1)−Rn(λ2)を算出し、差Sw と差Sn の比
率を計算することにより、溶接による接合部への入熱量
変動の要素によって生じる鋼板表面上の入熱量の変化を
求め、その入熱量の値から溶接部分の溶接の健全性並び
に接着状況を、溶接オンライン下で推定することを特徴
とする薄板の溶接部診断方法。1. A method for diagnosing a welded portion which is carried out online in a welding process in a continuous processing process of a thin steel plate, wherein the welded portion of the thin plate is irradiated with infrared light, and a wavelength λ is obtained from the reflected light. 1 = around 14 μm, wavelength λ 2 = 18 μ
The reflected light intensities Rw (λ 1 ) and Rw (λ 2 ) of two wavelengths around m are detected and the difference Sw = Rw (λ 1 ) −Rw (λ 2 ) is calculated. The reflected light intensities Rn (λ 1 ) and Rn (λ 2 ) are similarly detected by irradiating the part with infrared light, and the difference S
By calculating n = Rn (λ 1 ) −Rn (λ 2 ), and calculating the ratio of the difference Sw and the difference Sn, the heat input amount on the steel plate surface caused by the factor of the heat input amount variation to the joint due to welding is calculated. A method for diagnosing a welded part of a thin plate, which comprises determining a change and estimating the soundness of welding and a bonding state of a welded part from the value of the heat input amount under online welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11607093A JP3260477B2 (en) | 1993-05-18 | 1993-05-18 | Diagnosis method for welds of thin plates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11607093A JP3260477B2 (en) | 1993-05-18 | 1993-05-18 | Diagnosis method for welds of thin plates |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06331565A true JPH06331565A (en) | 1994-12-02 |
JP3260477B2 JP3260477B2 (en) | 2002-02-25 |
Family
ID=14677973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11607093A Expired - Fee Related JP3260477B2 (en) | 1993-05-18 | 1993-05-18 | Diagnosis method for welds of thin plates |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3260477B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004351509A (en) * | 2003-05-30 | 2004-12-16 | Koyabe Seiki:Kk | Device for welding inspection |
CN113720841A (en) * | 2021-08-25 | 2021-11-30 | 武汉飞能达激光技术有限公司 | Laser quenching quality monitoring method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03108639A (en) * | 1989-09-22 | 1991-05-08 | Nippon Steel Corp | Easy and quick method of estimating generation amount of internal oxide layer of electromagnetic steel plate |
JPH05312723A (en) * | 1992-03-12 | 1993-11-22 | Kobe Steel Ltd | Measuring method for alloying rate in continuous plating and alloying line for steel plate |
-
1993
- 1993-05-18 JP JP11607093A patent/JP3260477B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03108639A (en) * | 1989-09-22 | 1991-05-08 | Nippon Steel Corp | Easy and quick method of estimating generation amount of internal oxide layer of electromagnetic steel plate |
JPH05312723A (en) * | 1992-03-12 | 1993-11-22 | Kobe Steel Ltd | Measuring method for alloying rate in continuous plating and alloying line for steel plate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004351509A (en) * | 2003-05-30 | 2004-12-16 | Koyabe Seiki:Kk | Device for welding inspection |
JP4540304B2 (en) * | 2003-05-30 | 2010-09-08 | 株式会社小矢部精機 | Weld inspection equipment |
CN113720841A (en) * | 2021-08-25 | 2021-11-30 | 武汉飞能达激光技术有限公司 | Laser quenching quality monitoring method and application thereof |
CN113720841B (en) * | 2021-08-25 | 2024-02-09 | 武汉飞能达激光技术有限公司 | Laser quenching quality monitoring method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3260477B2 (en) | 2002-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2388573B1 (en) | Welding system and welding method | |
EP2388572B1 (en) | Welding method | |
Vasilev et al. | Non-contact in-process ultrasonic screening of thin fusion welded joints | |
Dell'Avvocato et al. | Thermographic procedure for the assessment of Resistance Projection Welds (RPW): Investigating parameters and mechanical performances | |
KR20130089353A (en) | Spot welding machine able to evaluate spot welding strength | |
Venkatraman et al. | Thermography for online detection of incomplete penetration and penetration depth estimation | |
JP6591282B2 (en) | Laser ultrasonic inspection method, bonding method, laser ultrasonic inspection apparatus, and bonding apparatus | |
JP3260477B2 (en) | Diagnosis method for welds of thin plates | |
JP7520409B2 (en) | Method and device for detecting internal defects | |
JP2861649B2 (en) | Steel plate weld inspection method | |
Dell'Avvocato et al. | Preliminary procedure for the assessment of probeless friction stir spot welds (P-FSSW) in dissimilar aluminum alloys by long pulsed laser thermography | |
JPH05223788A (en) | Method for diagnosing soundness of weld on sheet | |
EP3788358A1 (en) | Improved characterization and classification of spot welds by ultrasonic diagostic techniques | |
JP3275988B2 (en) | Butt welding monitoring method and butt welding monitoring device | |
Smith | The potential for friction stir weld inspection using transient eddy currents | |
JP2786806B2 (en) | Evaluation method for thin plate welds | |
JP3064072B2 (en) | Method and apparatus for detecting weld shape during butt welding | |
JPH06285658A (en) | Method and equipment for lap welding of metallic material | |
JPH05115903A (en) | Quality determining device for strip weld zone | |
JPH04250334A (en) | Method and device for inspecting strip welded portion | |
JPH0972721A (en) | Method and apparatus for diagnosing welded part of thin plate material of continuous processing line | |
Das et al. | Nondestructive evaluation of friction stir-welded aluminum alloy to coated steel sheet lap joint | |
JPH05322857A (en) | Welding part diagnosis method of thin plate in continuous treatment line | |
JPH05115979A (en) | Method and equipment for rewelding strip weld zone | |
JP2020012752A (en) | Spot weld inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071214 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111214 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |