JPH05312723A - Measuring method for alloying rate in continuous plating and alloying line for steel plate - Google Patents

Measuring method for alloying rate in continuous plating and alloying line for steel plate

Info

Publication number
JPH05312723A
JPH05312723A JP14936892A JP14936892A JPH05312723A JP H05312723 A JPH05312723 A JP H05312723A JP 14936892 A JP14936892 A JP 14936892A JP 14936892 A JP14936892 A JP 14936892A JP H05312723 A JPH05312723 A JP H05312723A
Authority
JP
Japan
Prior art keywords
alloying
light
steel sheet
degree
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14936892A
Other languages
Japanese (ja)
Inventor
Michitaka Ueyama
通孝 植山
Jun Azuma
洵 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JPH05312723A publication Critical patent/JPH05312723A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To measure the alloying rate of the surface layer of a steel plate with a high accuracy and stably. CONSTITUTION:A far-infrared radiation is employed as alight applied for the measurement of the alloying rate of a steel plate. In a steel plate continuous plating and alloying line in which the steel plate is continuously plated and then subjected to an alloying treatment, a light from a visible light source 4 is diffused by a diffusion plate such as a frosted glass plate 8 and the diffused light 9 is applied to the steel plate 1 after the alloying treatment. Reflected light 10 and 11 from the steel plate 1 are detected by at least two light intensity detectors 5A and 5B at positions having different reflective angles to obtain respective reflected light intensities L1 and L2. The alloying rate is measured from the intensity ratio lambda=L2/L1. With this constitution, the reflected light intensity ratio lambda which is a univalent function of the iron concentration (alloying rate) of the steel plate surface and has the proportional relation with it can be obtained in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼板の連続めっき合金
化ラインでの合金化度測定方法に関し、詳細には、鋼板
に対して連続的に亜鉛めっきやAlめっき等のめっきをし
た後、合金化炉等で加熱してめっき成分と鋼板中の鉄分
との合金化を生じさせる合金化処理を行う鋼板の連続め
っき合金化ラインにおいて、合金化処理直後の鋼板の合
金化の程度、即ちめっき層中の鉄量 [Fe(%)]やその分布
等(以降、合金化度という)をオンライン下で連続的に
計測する合金化度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the degree of alloying in a steel sheet continuous plating alloying line, and in particular, after continuously plating a steel sheet with zinc plating or Al plating, Continuous plating of steel sheet that is subjected to an alloying treatment by heating in an alloying furnace to cause the alloying of the plating components and the iron content in the steel sheet In the alloying line, the degree of alloying of the steel sheet immediately after the alloying treatment, that is, plating The present invention relates to an alloying degree measuring method for continuously measuring the amount of iron [Fe (%)] in a layer and its distribution (hereinafter referred to as alloying degree) online.

【0002】[0002]

【従来の技術】亜鉛めっき鋼板等めっき鋼板は、錆に対
する耐候性を高めた製品で、近年自動車用を始め多くの
用途がある。しかし、この種のめっき鋼板はプレス加工
等において、曲げ、深絞りの加工をするとき、母材であ
る鋼板とめっき層との間で剥離が生じ易くて加工性が悪
い。これは、鋼板を断面方向に見た場合、鋼板とめっき
層とがステップ状に2層に別れているためである。この
ため、加工性を高める手段として、断面方向において、
母材からめっき表面層に向かって段階的に鉄成分が減
少、めっき成分が段階的に増加するようにして明確な境
界が存しない合金層を作ることが望ましいとされるが、
それには、めっき表面へ鉄成分を多く拡散させるのが良
いとされる。
2. Description of the Related Art Galvanized steel sheets, such as galvanized steel sheets, are products having improved weather resistance against rust and have been used in many applications including those for automobiles in recent years. However, when this type of plated steel sheet is subjected to bending and deep drawing in press working or the like, peeling easily occurs between the steel sheet as a base material and the plating layer, and the workability is poor. This is because the steel plate and the plating layer are divided into two layers in a step shape when the steel plate is viewed in the cross-sectional direction. Therefore, as a means of improving the workability,
It is said that it is desirable to form an alloy layer in which a clear boundary does not exist by gradually decreasing the iron component from the base metal toward the plating surface layer and gradually increasing the plating component.
For that purpose, it is good to diffuse a large amount of iron components to the plating surface.

【0003】しかし、鉄成分の拡散の程度が過ぎると、
加工性ならびに表面性状の劣化等が起こる問題があるの
で、鉄濃度には自ずから限界があり、図6に示されるめ
っき層中の鉄濃度分布曲線によれば、曲線では溶接性
が悪く、曲線では溶接性、加工性共に良好であり、曲
線では加工性が悪い結果となり、以上のことから、め
っき表層中の鉄濃度は9乃至11%が適当とされている。
However, when the degree of diffusion of the iron component is too high,
Since there is a problem that workability and surface quality are deteriorated, the iron concentration naturally has a limit. According to the iron concentration distribution curve in the plating layer shown in FIG. 6, the curve shows poor weldability and the curve shows poor weldability. Both weldability and workability are good, and the curve shows poor workability. From the above, it is considered appropriate that the iron concentration in the plating surface layer is 9 to 11%.

【0004】ところで合金層中の鉄濃度を測定する場
合、オンライン下で連続的に行われることが望ましいと
されている。図3に連続めっきラインの合金化炉部が概
略示されるが、これまでオンラインで合金化度を測定す
る方法としては、合金化炉2の直後の△印で示される位
置PにおいてX線回折法またはレーザ光散乱法によって
行うのが一般的である。前者は、めっき表面層中に形成
される合金の結晶構造から特定される数本の回折X線強
度から合金化度を推定するものであり、後者は図7に示
す如く、ストリーク状のレーザ光12をめっき鋼板1表面
に照射し、カメラ13が受光する散乱光が鉄濃度により変
化することを検出原理とするものである。
By the way, when measuring the iron concentration in the alloy layer, it is desirable to continuously perform it online. The alloying furnace part of the continuous plating line is schematically shown in FIG. 3. As a method of measuring the alloying degree online so far, an X-ray diffraction method is used immediately after the alloying furnace 2 at a position P indicated by a triangle. Alternatively, it is generally performed by a laser light scattering method. The former is to estimate the alloying degree from the intensity of several diffracted X-rays specified from the crystal structure of the alloy formed in the plating surface layer, and the latter is to streak laser light as shown in FIG. The detection principle is that the surface of the plated steel plate 1 is irradiated with 12 and the scattered light received by the camera 13 changes depending on the iron concentration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
レーザ光散乱法による測定では、鉄濃度で表される合金
化度と散乱光との関係が図8に示されるように、2価関
数となり、散乱光強度から合金化度を一義的に決定する
ことは出来ない。このことは多くの文献によって報告さ
れていることであり、その原因は次のように説明されて
いる。即ち、表層部での鉄濃度が低い場合は、表面が例
えば亜鉛のためにレーザ光は殆どが正反射方向に反射
し、検出器側にあまり散乱しないが、鉄濃度(%) が図8
でA点のように増加してくると、Feの粒子が表層部に浮
かび始め表面が粗くなって、散乱光強度が強くなり、B
点で最大値になる。更に、鉄濃度(%) が増加すると今度
は、表層部がFeの粒子で埋まり、表面粗度がある程度平
滑化し散乱光強度がC点まで低下してしまう。
However, in the measurement by the conventional laser light scattering method, the relationship between the alloying degree represented by the iron concentration and the scattered light is a divalent function as shown in FIG. The alloying degree cannot be uniquely determined from the scattered light intensity. This is reported by many literatures, and the cause is explained as follows. That is, when the iron concentration in the surface layer portion is low, most of the laser light is reflected in the specular reflection direction because the surface is, for example, zinc and does not scatter much to the detector side, but the iron concentration (%) is as shown in FIG.
At point A, the Fe particles start to float on the surface layer and the surface becomes rough, and the scattered light intensity increases, and
It becomes the maximum at the point. Further, when the iron concentration (%) is increased, the surface layer portion is filled with Fe particles, the surface roughness is smoothed to some extent, and the scattered light intensity is reduced to point C.

【0006】又、鋼板にビーム状の光を照射した際に生
じる散乱光の分布特性が図9に示されるが、図9による
と、めっき鋼板表面からの法線に対し入射光と対称な方
向ではaの大きさの反射強度を示すのに対して、それよ
りも角度がθだけ偏った方向ではbの大きさの反射強度
を示していて、このような特性はめっき鋼板の表面粗度
により大きく変わるため、照射光として指向性の強いレ
ーザ光を用いると、めっき鋼板表面の極く一部の粗度変
化により拡散光の分布特性が時々刻々極めて大きく変化
する。図10には、めっき鋼板表面の粗度により (1)〜
(3) と変化することが示される。このような状態でレー
ザ光を用いると、 (1)〜(3) の変化状態が交互に出現し
て出力が安定しない。
FIG. 9 shows distribution characteristics of scattered light generated when the steel sheet is irradiated with beam-like light. According to FIG. 9, a direction symmetrical to the incident light with respect to the normal line from the surface of the plated steel sheet. Shows a reflection intensity of a size, while a direction of which the angle is deviated by θ shows a reflection intensity of b size. Such characteristics depend on the surface roughness of the plated steel sheet. When the laser light having a strong directivity is used as the irradiation light, the distribution characteristic of the diffused light changes extremely every moment due to the roughness change of a very small part of the surface of the plated steel sheet. Figure 10 shows (1)-
It is shown that it changes with (3). When laser light is used in such a state, the changing states of (1) to (3) appear alternately and the output is not stable.

【0007】以上述べたように、従来のレーザ光散乱法
による測定法においては、ビーム状の光を照射した場合
の散乱光強度からだけでは合金化度 [Fe(%)]を決定でき
ないという問題点があり、更には、集光度の高いレーザ
光を用いて鋼板の微小な凹凸に大きく左右され過ぎて平
滑化処理を施しても測定値がかなり大きくバラつくとい
う欠点もある。
As described above, in the conventional measuring method by the laser light scattering method, the alloying degree [Fe (%)] cannot be determined only from the scattered light intensity when the beam-like light is irradiated. In addition, there is a drawback that the measured values vary considerably even if the smoothing process is performed due to being greatly influenced by the minute unevenness of the steel sheet by using the laser beam having a high degree of focusing.

【0008】一方、従来のX線回折法による測定法にお
いても、上記レーザ光散乱法による場合と同様の問題点
がある。
On the other hand, the conventional measuring method by the X-ray diffraction method has the same problems as those by the laser light scattering method.

【0009】本発明は、このような問題点の解消を図る
ために成されたものであり、本発明の目的は、鋼板表面
の鉄濃度に比例した散乱光強度を容易に得ることができ
て、検出値を合金化度に対し一価関数として対応させる
ことにより、精度が高い測定を簡単に実現し得る新規な
鋼板の合金化度測定方法を提供することにある。
The present invention has been made in order to solve such problems, and an object of the present invention is to easily obtain a scattered light intensity proportional to the iron concentration on the surface of a steel sheet. By providing the detected value as a monovalent function with respect to the alloying degree, it is an object of the present invention to provide a novel method for measuring the alloying degree of a steel sheet that can easily realize highly accurate measurement.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、請求項1記載の発明(以下第1発明という)は、鋼
板を連続的にめっきした後、合金化処理する鋼板の連続
めっき合金化ラインにおいて合金化処理直後の鋼板に、
可視光光源からの光を拡散板により拡散させた拡散光を
照射し、鋼板からの反射光を少なくとも2個の光強度検
出器により反射角度の異なる位置で受光して反射光強度
をそれぞれ求め、それらの強度比より合金化度を測定す
ることを特徴とする鋼板の連続めっき合金化ラインでの
合金化度測定方法である。
The present invention has the following constitution in order to achieve the above object. That is, the invention according to claim 1 (hereinafter referred to as the first invention), after continuously plating the steel sheet, in the continuous plating alloying line of the steel sheet to be alloyed, to the steel sheet immediately after the alloying treatment,
Irradiating diffused light obtained by diffusing light from a visible light source with a diffusion plate, receiving reflected light from a steel plate at positions with different reflection angles by at least two light intensity detectors, and obtaining reflected light intensities, It is a method for measuring the degree of alloying in a continuous plating alloying line for steel plates, which is characterized by measuring the degree of alloying from the strength ratios thereof.

【0011】請求項2記載の発明(以下第2発明とい
う)は、鋼板を連続的にめっきした後、合金化処理する
鋼板の連続めっき合金化ラインにおいて合金化処理後の
鋼板に、波長5μm 以上の長波長域赤外線と波長0.5 〜
1μm の可視光線又は近赤外線とを照射し、鋼板から各
々反射してくる散乱光の強度を測定し、それら散乱光の
強度と、予め求めておいた散乱光強度と合金化度との関
係式とから前記合金化処理後の鋼板の合金化度を求める
ことを特徴とする鋼板の連続めっき合金化ラインでの合
金化度測定方法である。
The invention according to claim 2 (hereinafter referred to as the second invention) has a wavelength of 5 μm or more for the steel sheet after the alloying treatment in the continuous plating alloying line of the steel sheet to be alloyed after the steel sheet is continuously plated. Long wavelength infrared and wavelength 0.5 ~
Irradiation with 1 μm visible light or near-infrared rays, the intensity of scattered light reflected from the steel sheet is measured, and the relational expression between the scattered light intensity and the previously determined scattered light intensity and alloying degree. And a degree of alloying of the steel sheet after the alloying treatment is obtained from the above.

【0012】請求項3記載の発明(以下第3発明とい
う)は、鋼板を連続的にめっきした後、合金化処理する
鋼板の連続めっき合金化ラインにおいて合金化処理後の
鋼板に、波長7μm 以上の波長の異なる2種類の長波長
域赤外線を照射し、鋼板から各々反射してくる散乱光の
強度を測定し、それら散乱光の強度と、予め求めておい
た散乱光強度と合金化度との関係式とから前記合金化処
理後の鋼板の合金化度を求めることを特徴とする鋼板の
連続めっき合金化ラインでの合金化度測定方法である。
The invention according to claim 3 (hereinafter referred to as the third invention) has a wavelength of 7 μm or more on the steel sheet after the alloying treatment in the continuous plating alloying line of the steel sheet which is continuously plated and then alloyed. Is irradiated with two types of long-wavelength infrared rays with different wavelengths, the intensity of the scattered light reflected from the steel sheet is measured, and the intensity of the scattered light and the intensity of the scattered light and the alloying degree that have been obtained in advance are measured. Is used to determine the degree of alloying of the steel sheet after the alloying treatment, and a method for measuring the degree of alloying in a continuous plating alloying line for a steel sheet.

【0013】[0013]

【作用】第1発明に従えば、合金化処理直後の鋼板に、
可視光光源からの光を拡散板により拡散させた拡散光を
照射し、鋼板からの反射光を少なくとも2個の光強度検
出器により受光して反射光強度をそれぞれ求め、それら
反射光強度(即ち、散乱光強度)を比較することによ
り、鋼板表面の鉄濃度に対してほぼ比例関係を示す一価
関数の測定値を求めることが可能となる。このことは、
以下の説明によって明らかな通りである。
According to the first aspect of the invention, the steel sheet immediately after the alloying treatment is
The diffused light obtained by diffusing the light from the visible light source by the diffuser plate is irradiated, the reflected light from the steel plate is received by at least two light intensity detectors, and the reflected light intensities are obtained respectively. , Scattered light intensity), it is possible to obtain a measured value of a monovalent function that is approximately proportional to the iron concentration on the steel sheet surface. This is
This is apparent from the following description.

【0014】即ち、図2の原理図で示すように、光源か
らの光をすりガラス等からなる拡散板によりめっき鋼板
に拡散光として照射すると、その反射によって生じる散
乱光分布は鋼板表面のミクロ的に変化する凹凸に影響さ
れず、頗る安定したものが得られる。次に、このように
安定した状態の下で合金化度 [Fe(%)]が異なる材料につ
いて、どのように散乱反射するのか、その拡散分布特性
を調べると、図4のような結果が得られる。図4におい
ては、合金化度は (1)〜(3) へと進行する。ここで、
(イ) は入射光、 (ロ) は法線に対する反射の法則に対
応する反射光の方向を示す。 (ヘ) は散乱光を観測する
方向であって、通常の (ロ) の方向は強い光となり過ぎ
るので弱い光となる (ヘ) の方向を選択する。
That is, as shown in the principle diagram of FIG. 2, when light from a light source is applied to a plated steel sheet as diffused light by a diffuser plate made of frosted glass or the like, the scattered light distribution generated by the reflection is microscopically on the surface of the steel sheet. A stable and stable product can be obtained without being affected by the changing unevenness. Next, when the materials with different alloying degrees [Fe (%)] under such stable conditions are scattered and reflected, and their diffusion distribution characteristics are examined, the results shown in Fig. 4 are obtained. Be done. In FIG. 4, the alloying degree progresses from (1) to (3). here,
(A) shows the incident light, and (b) shows the direction of the reflected light corresponding to the law of reflection with respect to the normal. (F) is the direction for observing scattered light, and the usual (B) direction is too strong, so select the (F) direction that is weak light.

【0015】ところが、従来の一方向からだけの観測位
置では、合金化の進行に伴って、その散乱光強度は
(ハ) から (ニ) へと増加した後、今度は (ホ) へと戻
ってしまう。この現象を横軸に鉄濃度 [Fe(%)]、縦軸に
散乱光強度をとり、別の形で表現したものが図8であ
る。即ち、合金化度がある程度の範囲までは、散乱光強
度と比例関係にあるものの、それ以上になると散乱光強
度が低下してしまうため、一方向からだけで観測してい
る限り合金化度と散乱光強度とが比例しないということ
になる。
However, at the conventional observation position only from one direction, the intensity of scattered light is increased as the alloying progresses.
After increasing from (c) to (d), it will return to (e) this time. FIG. 8 shows this phenomenon in another form, where the horizontal axis represents the iron concentration [Fe (%)] and the vertical axis represents the scattered light intensity. In other words, the alloying degree is proportional to the scattered light intensity up to a certain range, but the scattered light intensity decreases when the alloying degree is more than that. This means that it is not proportional to the scattered light intensity.

【0016】ところで、図4において (ロ) の方向は散
乱光強度が強すぎ且つその変動が大きいため観測位置と
して適当でないとしても、この方向から少しずれた
(ト) の方向では比較的安定している。そこで、この
(ト)の方向での散乱光強度L1に対する(ヘ)の方向で
の散乱光強度L2の比(λ)をとると、そのFe(%) に対す
る値は、図5の如くになる。この図から判るように、Fe
(%) が高い領域では少し飽和気味になるものの、λはFe
(%) に対し一価関数となり、λより一義的にFe(%) を推
定するすることができる。また、その変動も(ヘ)の方
向だけで測定した場合よりも遙かに小さいものとなる。
又、このようにして、板の幅方向を観測することによ
り、全幅に亘る観測、むらの観測も可能となる。更に、
従来のレーザ光散乱法による測定では鋼板の振動により
測定精度が著しく低下するが、第1発明では拡散光を用
いるので鋼板の振動による影響が軽減される利点もあ
る。
By the way, in FIG. 4, the direction (b) is slightly deviated from this direction even if it is not suitable as the observation position because the scattered light intensity is too strong and its fluctuation is large.
It is relatively stable in the direction of (g). Therefore, when the ratio (λ) of the scattered light intensity L 2 in the (f) direction to the scattered light intensity L 1 in the (g) direction is taken, the value for Fe (%) is as shown in FIG. become. As you can see from this figure, Fe
In the region where (%) is high, it becomes a little saturated, but λ is Fe
Since it is a monovalent function for (%), Fe (%) can be uniquely estimated from λ. Also, the fluctuation is much smaller than that measured only in the (f) direction.
Further, by observing the width direction of the plate in this manner, it is possible to observe the entire width and the unevenness. Furthermore,
In the measurement by the conventional laser light scattering method, the measurement accuracy is significantly reduced due to the vibration of the steel sheet, but the first invention also has an advantage that the influence of the vibration of the steel sheet is reduced because the diffused light is used.

【0017】次に、第2発明に係る作用について説明す
る。第1発明では、少なくとも2個の光強度検出器を空
間的に正確に配置する必要があり、又、装置も複雑であ
り、更に、可視光領域の光であるため周囲からの光(迷
光)の影響を受け易く、その改善が望まれるが、第2発
明ではこれら問題点を軽減し得る。即ち、合金化処理直
後の鋼板への照射光として、長波長域赤外線及び近赤外
線(又は可視光線)を用いているので、周囲の照明等に
よる迷光の影響を受け難い。又、鋼板からの散乱光の強
度を測定しているので、その測定器の配置を厳密にしな
くてすむと共に、装置も簡単でよい。
Next, the operation of the second invention will be described. In the first invention, at least two light intensity detectors need to be spatially accurately arranged, the device is complicated, and since the light is in the visible light region, the light from the surroundings (stray light) However, in the second invention, these problems can be alleviated. That is, since long-wavelength infrared rays and near-infrared rays (or visible rays) are used as the irradiation light on the steel sheet immediately after the alloying treatment, it is less likely to be affected by stray light due to surrounding illumination. Further, since the intensity of the scattered light from the steel plate is measured, it is not necessary to strictly arrange the measuring device, and the device can be simple.

【0018】又、第2発明では、上記長波長域赤外線の
使用により、鋼板の表面粗度等の影響を受け難くなるた
め、精度が高くなる。即ち、Beckman の散乱の理論によ
れば、粗面の代表的寸法hとλとの間に或る一定の関係
があると、粗面内での干渉が増大し、散乱が共鳴的に大
きくなることが知られている。実際の鋼板表面では規則
正しい突起配列があるわけではなく、ランダムな粗度と
なっているため、散乱は波長に対して連続的に変化す
る。故に、第1発明で用いられる可視光よりも長波長の
長波長域赤外線を用いる方が合金化度に対する反応をよ
り明瞭にし得る。図11はこれをフーリエ分光により実験
的に証明した結果である。可視光領域では散乱光強度比
(照射光を100 とした時の散乱光強度の割合)は低く、
合金化度による差も小さいが、波数1000cm-1(:波長10μ
m)近辺になると散乱光強度比は急激に増大する。
Further, in the second aspect of the invention, the use of the infrared rays in the long wavelength range makes it less likely to be affected by the surface roughness of the steel sheet, thus improving the accuracy. That is, according to Beckman's theory of scattering, if there is a certain relation between the typical dimension h of the rough surface and λ, the interference in the rough surface increases and the scattering becomes resonantly large. It is known. The actual surface of the steel sheet does not have a regular array of protrusions but has a random roughness, so the scattering changes continuously with respect to the wavelength. Therefore, the reaction to the degree of alloying can be made clearer by using long-wavelength infrared light having a longer wavelength than visible light used in the first invention. Fig. 11 shows the result of experimentally proving this by Fourier spectroscopy. In the visible light region, the scattered light intensity ratio (ratio of scattered light intensity when the irradiation light is 100) is low,
The difference due to the degree of alloying is small, but the wavenumber is 1000 cm -1 (: wavelength 10 μ
At around m), the scattered light intensity ratio increases rapidly.

【0019】第2発明の方法により合金化度を求め得る
ことは、下記説明により明らかである。即ち、図11を図
8と重ねてグラフ化したものが図12であり、この図から
判る如く散乱光強度より合金化度を容易に求め得る。詳
細には、可視光領域での波長λ1 における散乱光強度を
I1、長波長域赤外線領域での波長λ2 における散乱光強
度をI2、合金化度をFe% とすると、I1=f1(Fe%) 、I2
f2(Fe%) となる。ここで、f1, f2は図12でのFe% とI1,
I2との関係を示す関数を意味する。これら連立方程式を
解けばFe% を求め得る。即ち、長波長域赤外線と可視光
線又は近赤外線とを照射し、鋼板からの散乱光の強度を
測定し、それら測定値を代入し、連立方程式を解くこと
により、合金化度を求め得る。しかし、照射光としてい
ずれも長波長域赤外線を用いると、関数f1, f2が似た形
となるため、かかる手法ではFe%を求め難くなる。
It is apparent from the following explanation that the alloying degree can be obtained by the method of the second invention. That is, FIG. 12 is a graph obtained by superposing FIG. 11 and FIG. 8 on a graph, and as can be seen from this figure, the alloying degree can be easily obtained from the scattered light intensity. Specifically, the scattered light intensity at the wavelength λ 1 in the visible light region is
I 1, I 2 a scattered light intensity at a wavelength lambda 2 in the long wavelength region infrared region, when the alloying degree to Fe%, I 1 = f 1 (Fe%), I 2 =
It becomes f 2 (Fe%). Where f 1 and f 2 are Fe% and I 1 ,
It means a function that shows the relationship with I 2 . Fe% can be obtained by solving these simultaneous equations. That is, the degree of alloying can be obtained by irradiating long-wavelength infrared and visible light or near infrared, measuring the intensity of scattered light from the steel sheet, substituting the measured values, and solving the simultaneous equations. However, when long-wavelength infrared rays are used as the irradiation light, the functions f 1 and f 2 have similar shapes, and thus it is difficult to obtain Fe% by such a method.

【0020】第2発明において、照射する長波長域赤外
線の波長を5μm 以上としているのは、5μm 未満では
鋼板表面からの散乱強度が弱く、且つ表面鉄濃度との対
応が悪くなるからである。一方、照射する可視光線又は
近赤外線の波長を0.5 〜1μm としているのは、0.5 μ
m 未満では散乱光分布が狭くなりすぎると共に、光路中
での吸収が大きくなり、1μm 超では散乱光強度が再び
下がってくるからである。
In the second invention, the wavelength of the infrared rays in the long wavelength range to be irradiated is set to 5 μm or more because if it is less than 5 μm, the scattering intensity from the steel sheet surface is weak and the correspondence with the surface iron concentration is poor. On the other hand, the wavelength of visible light or near-infrared rays to be irradiated is 0.5 to 1 μm, which is 0.5 μm.
This is because if it is less than m 2, the scattered light distribution becomes too narrow, and the absorption in the optical path becomes large, and if it exceeds 1 μm, the scattered light intensity falls again.

【0021】次に、第3発明に係る作用について説明す
る。照射光として長波長域赤外線を用いているので迷光
の影響を受け難く、又、鋼板からの散乱光の強度を測定
しているので、その測定器の配置を厳密にしなくてすむ
と共に、装置も簡単でよい。又、上記長波長域赤外線の
使用に起因して、第2発明の場合と同様の理由により、
鋼板表面粗度の影響を受け難く、精度が高くなる。
Next, the operation of the third invention will be described. Since long-wavelength infrared rays are used as irradiation light, it is not easily affected by stray light.Because the intensity of scattered light from the steel plate is measured, it is not necessary to strictly arrange the measuring instrument and the device is also Easy and good. In addition, due to the use of the long-wavelength infrared ray, for the same reason as in the case of the second invention,
It is less affected by the surface roughness of the steel plate, resulting in higher accuracy.

【0022】第3発明の方法により合金化度を求め得る
ことは、下記説明により明らかである。即ち、図12から
判る如く、関数形は可視光領域とは異なるものの、やは
り散乱光強度より一意的に合金化度を求め得ないが、例
えば波長10及び12μm での散乱光強度の変化ΔIを縦軸
にとると図13の如き結果が得られ、これはFe% に対して
一様に増加する一価関数であるので、ΔIよりFe% を一
意的に決定し得る。従って、波長の異なる2種類の長波
長域赤外線を照射し、鋼板からの散乱光の強度を測定す
ると、それら測定値と、予め求めておいた散乱光強度と
合金化度との関係式とから合金化度を求め得る。
It will be apparent from the following explanation that the alloying degree can be obtained by the method of the third invention. That is, as can be seen from FIG. 12, although the function form is different from the visible light region, the alloying degree cannot be uniquely obtained from the scattered light intensity, but for example, the change ΔI in the scattered light intensity at wavelengths 10 and 12 μm is Along the ordinate, the result as shown in FIG. 13 is obtained. Since this is a monovalent function that uniformly increases with respect to Fe%, Fe% can be uniquely determined from ΔI. Therefore, when two types of long-wavelength infrared rays having different wavelengths are irradiated and the intensity of scattered light from the steel sheet is measured, the measured values and the relational expression between the scattered light intensity and the degree of alloying obtained in advance are used. The degree of alloying can be determined.

【0023】第3発明において、照射する波長の異なる
2種類の長波長域赤外線の波長を7μm 以上としている
のは、7μm 未満では表面粗度による散乱が大きく、且
つ波長に対する散乱光増加率も大きくなるからである。
In the third invention, the wavelengths of the two kinds of long-wavelength infrared rays having different wavelengths to be irradiated are set to 7 μm or more. When the length is less than 7 μm, the scattering due to the surface roughness is large and the increase rate of scattered light with respect to the wavelength is large. Because it will be.

【0024】[0024]

【実施例】以下、図面を参照しながら実施例を説明す
る。 (実施例1)実施例1は第1発明の実施例である。実施
例に係る測定装置は、従来と同じく図3に例示するよう
な位置、即ち合金化炉2の直上部に設置するが、もう少
し後方の位置に設けても差し支えない。図1は実施例1
に係る装置の概略示構造図であり、測定系統及び信号系
統を右片面のものについて示しているが、左片面につい
ては全く同じである。光源4は、リフレクタ型の白熱電
球60Wを2個板幅方向に取付け、その前面に光を拡散す
るための拡散板としてすりガラス8を配置して、これに
より拡散板付光源が形成される。この拡散板付光源はめ
っき鋼板1に対する角度、即ち、照射光軸の角度は60°
〜70°で、めっき鋼板1より 700〜900mm の位置に設け
られる。前記白熱電球には定電圧が供給される。この拡
散板付光源と組み合わせて、2個の光強度検出器5A,5B
が配置される。
Embodiments will be described below with reference to the drawings. (Embodiment 1) Embodiment 1 is an embodiment of the first invention. The measuring device according to the embodiment is installed at a position as illustrated in FIG. 3, that is, just above the alloying furnace 2 as in the conventional case, but may be installed at a slightly rear position. FIG. 1 shows the first embodiment.
FIG. 3 is a schematic structural diagram of the device according to FIG. 1, showing the measurement system and the signal system for the one side on the right side, but the same is true for the one side on the left side. As the light source 4, two reflector-type incandescent light bulbs 60W are attached in the plate width direction, and a frosted glass 8 is arranged on the front surface as a diffusion plate for diffusing light, whereby a light source with a diffusion plate is formed. The light source with the diffusion plate has an angle with respect to the plated steel plate 1, that is, the angle of the irradiation optical axis is 60 °.
It is provided at a position of 700 to 900 mm from the plated steel plate 1 at ~ 70 °. A constant voltage is supplied to the incandescent bulb. Two light intensity detectors 5A and 5B in combination with this light source with diffuser
Are placed.

【0025】一方の光強度検出器5Aは、めっき鋼板1の
法線に対して0°〜5°の位置に設け、他方の光強度検
出器5Bは、同じく20°〜25°の位置に設ける。この2個
の光強度検出器5A,5B間の角度は20°前後開いているこ
とが望ましい。両検出器5A,5Bからの出力L1、L2は変換
器6に与えられて、該変換器6内で前置増幅器を通じて
λ=L2/L1を計算する。
One light intensity detector 5A is provided at a position of 0 ° to 5 ° with respect to the normal line of the plated steel sheet 1, and the other light intensity detector 5B is similarly provided at a position of 20 ° to 25 °. .. It is desirable that the angle between these two light intensity detectors 5A and 5B be open around 20 °. The outputs L 1 , L 2 from both detectors 5A, 5B are applied to a converter 6 in which a λ = L 2 / L 1 is calculated through a preamplifier.

【0026】めつき鋼板1の幅方向の一点について測定
する場合は、フォトダイオードやSiセルのようなものを
検出器とすればよいが、幅方向の分布も測定したい場合
は、固体撮像素子やフォトダイオードアレイのような一
次元的に観測可能なものを用いる。固体撮像素子、例え
ば CCD素子の場合は、可視域に感度を持たせるように、
赤外線カットフィルタの装着が必要となる。一点であ
れ、幅方向の多点測定であれ、ある程度視野を絞るため
に検出器の前面にレンズを付けた方が良い。
When measuring one point in the width direction of the plated steel plate 1, a detector such as a photodiode or a Si cell may be used, but when measuring the distribution in the width direction, a solid-state image sensor or A one-dimensionally observable one such as a photodiode array is used. In the case of a solid-state image sensor, such as a CCD element, in order to have sensitivity in the visible range,
It is necessary to install an infrared cut filter. Whether it is a single point or multi-point measurement in the width direction, it is better to attach a lens to the front surface of the detector in order to narrow the field of view to some extent.

【0027】このようにして、演算により求められた信
号は、外部の表示器7或いはプログラマブル・コントロ
ーラに制御用の信号として出力される。実施例の表示器
7は、バーグラフ表示器が用いられていて、幅方向の情
報を表示可能となしている。
In this way, the signal obtained by the calculation is output as a control signal to the external display 7 or programmable controller. The display device 7 of the embodiment uses a bar graph display device and can display information in the width direction.

【0028】尚、図1の実施例では、周囲からの迷光が
測定上に影響を与えることが予想される。従って、被い
(シールド)等によって迷光を充分に除去してノイズを
低減させる必要がある。もし、このシールドが充分に出
来ない場合は、光源及び拡散面の前面に光チョッパを取
付けて光を断続的に照射し、検出器側で直流検波するこ
とが望ましい。
In the embodiment of FIG. 1, stray light from the surroundings is expected to affect the measurement. Therefore, it is necessary to sufficiently remove stray light by a cover or the like to reduce noise. If this shield cannot be obtained sufficiently, it is desirable to attach an optical chopper to the front surface of the light source and the diffusing surface to irradiate light intermittently and perform DC detection on the detector side.

【0029】(実施例2)実施例2は第3発明の実施例
である。照射する赤外線としては分光器の出力を用いた
り、フィルタを通したものでもよいが、一般的に光量が
不足するため、図14に示す如く白熱電球を安定化電源に
より低圧点灯する。この光は広い波長範囲を持ち、その
ランプの直後にある不等倍レンズ又はシリンドリカル
(かまぼこ)レンズで鋼板の幅方向に広がるように拡大
され、拡散板を通り、更に回転式チョッパを経て鋼板に
照射される。このチョッパは検出器14と連動し、同期検
波される。その様子を図15に示す。鋼板は合金化炉、ジ
ェットクーラを出た後でも数百℃であるため、遠赤外線
光を有する。チョッパが開の時は照射光による散乱光と
鋼板から出る赤外線との和が検出器に、又、チョッパが
閉の時は鋼板から出る赤外光のみが検出されることか
ら、この差をとれば散乱光成分のみを検出し得る。尚、
上記拡散板は用いなくてもよい。
(Embodiment 2) Embodiment 2 is an embodiment of the third invention. As the infrared rays to be radiated, the output of a spectroscope may be used or a filter may be used. However, since the amount of light is generally insufficient, an incandescent light bulb is lit at a low voltage by a stabilized power source as shown in FIG. This light has a wide wavelength range, and is expanded so that it spreads in the width direction of the steel plate by an unequal magnification lens or cylindrical lens immediately after the lamp, passes through the diffuser plate, and further passes through a rotary chopper to the steel plate. Is irradiated. This chopper is interlocked with the detector 14 and is synchronously detected. The situation is shown in FIG. The steel sheet has a far infrared ray because it has a temperature of several hundred degrees Celsius even after it leaves the alloying furnace and the jet cooler. When the chopper is open, the detector detects the sum of the scattered light from the irradiation light and the infrared rays emitted from the steel sheet, and when the chopper is closed, only the infrared light emitted from the steel sheet is detected. For example, only the scattered light component can be detected. still,
The diffusion plate may not be used.

【0030】さて、上記照射された光は鋼板表面で散乱
され、コリメータ15によりフィルタ16に達する。フィル
タは波長λ1 とλ2 とを透過するためのものであり、干
渉フィルタが適している。この後、赤外線検出器で検出
する。この検出器はサーモパイル又はHgCdTeの様な化合
物半導体を用いるが、これら検出器は1次元や2次元の
アレイセンサではないため、板幅方向の検出を行うには
機械的に幅方向に走査する機構が必要となる。或いは、
赤外インテンシファィア(赤外線を受けた部分が可視光
を発光し、赤外線を検出するもの)を用いて幅方向の合
金化度を計測してもよい。これらの装置は図16のような
位置に設置することができる。
The irradiated light is scattered on the surface of the steel plate and reaches the filter 16 by the collimator 15. The filter is for transmitting wavelengths λ 1 and λ 2 , and an interference filter is suitable. After that, it is detected by an infrared detector. This detector uses a thermopile or a compound semiconductor such as HgCdTe, but these detectors are not one-dimensional or two-dimensional array sensors, so a mechanism that mechanically scans in the width direction is used to detect the plate width direction. Is required. Alternatively,
The degree of alloying in the width direction may be measured using an infrared intensifier (a part that receives infrared rays emits visible light and detects infrared rays). These devices can be installed at the positions shown in FIG.

【0031】以上は散乱光の検出について述べたが、反
射光を用いても同様の結果が得られる。但し、鋼板に対
して検出器と光源とを角度をもって対向させる様な仕方
(例えば図17に示す方式)では、板の振動の影響をまと
もに受けるため、検出器を鋼板に直角に対向させ、その
背後より光を照射する方式(例えば図18に示す方式)に
してもよい。
Although the detection of scattered light has been described above, similar results can be obtained by using reflected light. However, in a method in which the detector and the light source are opposed to the steel plate at an angle (for example, the method shown in FIG. 17), since the influence of the vibration of the plate is applied, the detector is opposed to the steel plate at a right angle. A method of irradiating light from behind (for example, the method shown in FIG. 18) may be used.

【0032】[0032]

【発明の効果】以上の如く第1発明によれば、鋼板の連
続めっき合金化ラインでの合金化処理直後の鋼板に対
し、可視光光源からの光を拡散板により拡散させた拡散
光を照射して、その散乱反射光を測定する方法であるか
ら、鋼板の表面粗度等の影響を受けることが極めて少な
くて、安定した散乱反射光強度を得ることができる。更
に、鋼板からの反射光を少なくとも2個の光強度検出器
により反射角度の異なる位置で受光して反射光強度をそ
れぞれ求め、それらの散乱反射光の強度比より合金化度
を測定する方法であるから、鋼板表面の鉄濃度(即ち、
合金化度)に対して一価関数で比例関係を有する散乱反
射光強度比が短時間で得られる。従って、オンライン下
で連続的に高精度で且つ安定して鋼板表面層の合金化度
を測定し得るようになる。又、従来のレーザ光散乱法に
よる測定では鋼板の振動により測定精度が著しく低下す
るが、第1発明では拡散光を用いるので鋼板の振動によ
る影響が軽減される利点もある。
As described above, according to the first aspect of the present invention, the steel plate immediately after the alloying treatment in the continuous plating alloying line for the steel plate is irradiated with the diffused light in which the light from the visible light source is diffused by the diffuser plate. Since this is a method of measuring the scattered reflected light, the influence of the surface roughness of the steel sheet is extremely small, and stable scattered reflected light intensity can be obtained. Furthermore, by a method in which the reflected light from the steel plate is received by at least two light intensity detectors at positions with different reflection angles, the reflected light intensities are obtained, and the alloying degree is measured from the intensity ratio of the scattered reflected light. Therefore, the iron concentration on the steel plate surface (that is,
The intensity ratio of scattered reflected light having a monovalent function with respect to the alloying degree) can be obtained in a short time. Therefore, it becomes possible to continuously and accurately measure the alloying degree of the steel sheet surface layer online. Further, in the measurement by the conventional laser light scattering method, the measurement accuracy is remarkably lowered due to the vibration of the steel sheet, but in the first invention, there is an advantage that the influence of the vibration of the steel sheet is reduced because the diffused light is used.

【0033】更に、第2発明又は第3発明によれば、第
1発明の場合よりも、周囲からの光(迷光)の影響を受
け難くなるため、精度が高くなり、又、測定器の空間的
配置の厳密性が緩やかになる共に、装置も簡単でよくな
るという利点がある。
Further, according to the second invention or the third invention, it is more difficult to be affected by the light (stray light) from the surroundings than in the case of the first invention, so that the accuracy is high and the space of the measuring instrument is high. There is an advantage that the strictness of the physical arrangement becomes gentle and the device becomes simple and easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係る装置の概略示構造図である。FIG. 1 is a schematic structural diagram of an apparatus according to a first embodiment.

【図2】第1発明に係る方法を説明する原理図である。FIG. 2 is a principle diagram illustrating a method according to the first invention.

【図3】連続めっき合金化ラインの概略示構造図であ
る。
FIG. 3 is a schematic structural diagram of a continuous plating alloying line.

【図4】鋼板に拡散光を照射した際の反射光拡散分布を
示す図である。
FIG. 4 is a diagram showing a reflected light diffusion distribution when a steel sheet is irradiated with diffused light.

【図5】第1発明に係る方法を説明する鉄濃度と散乱光
強度比λとの関係を示す線図である。
FIG. 5 is a diagram showing the relationship between the iron concentration and the scattered light intensity ratio λ for explaining the method according to the first invention.

【図6】めっき鋼板におけるめっき層中の鉄濃度分布線
図である。
FIG. 6 is an iron concentration distribution diagram in a plated layer of a plated steel sheet.

【図7】従来の合金層中の鉄濃度測定原理図である。FIG. 7 is a principle diagram of iron concentration measurement in a conventional alloy layer.

【図8】従来の鉄濃度測定における鉄濃度と散乱光強度
との関係を示す線図である。
FIG. 8 is a diagram showing the relationship between iron concentration and scattered light intensity in conventional iron concentration measurement.

【図9】鋼板にビーム状の光を照射した際に生じる散乱
光の分布特性図である。
FIG. 9 is a distribution characteristic diagram of scattered light generated when a steel sheet is irradiated with beam-shaped light.

【図10】鋼板にビーム状の光を照射した際に生じる拡
散光の分布特性図である。
FIG. 10 is a distribution characteristic diagram of diffused light generated when a steel sheet is irradiated with beam-shaped light.

【図11】実験により求めた照射光の波数と散乱光強度
比との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the wave number of irradiation light and the scattered light intensity ratio obtained by experiments.

【図12】図8及び図11から得られた合金化度と散乱光
強度との関係を示す図である。
FIG. 12 is a diagram showing the relationship between the degree of alloying and the scattered light intensity obtained from FIGS. 8 and 11.

【図13】合金化度と、波長10及び12μm での散乱光強
度の変化ΔIとの関係を示す図である。
FIG. 13 is a diagram showing the relationship between the degree of alloying and the change ΔI in scattered light intensity at wavelengths of 10 and 12 μm.

【図14】実施例2に係る装置の概略示構造図である。FIG. 14 is a schematic structural diagram of an apparatus according to a second embodiment.

【図15】チョッパを用いた場合の検出信号の時間変化
を示す図である。
FIG. 15 is a diagram showing a change over time of a detection signal when a chopper is used.

【図16】実施例2に係る装置の設置位置の一例を示す
図である。
FIG. 16 is a diagram illustrating an example of an installation position of the device according to the second embodiment.

【図17】反射光の検出器と光源との配置関係を説明す
るための図である。
FIG. 17 is a diagram for explaining an arrangement relationship between a reflected light detector and a light source.

【図18】反射光の検出器と光源との配置関係を説明す
るための図である。
FIG. 18 is a diagram for explaining an arrangement relationship between a reflected light detector and a light source.

【符号の説明】[Explanation of symbols]

1--めっき鋼板、2--合金化炉、3--めっきポット、4
--光源、5A--光強度検出器、5B--光強度検出器、6--変
換器、7--表示器、8--すりガラス、12--レーザ光、13
--カメラ、14--検出器、15--コリメータ、16--フィル
タ、17--安定化電源、18--ランプ、19--レンズ、20--拡
散板、21--チョッパ、22--照射光、23--散乱光、24--演
算器。
1--plated steel plate, 2--alloying furnace, 3--plating pot, 4
--Light source, 5A--Light intensity detector, 5B--Light intensity detector, 6--Converter, 7--Display, 8--Frosted glass, 12--Laser light, 13
--Camera, 14--Detector, 15--Collimator, 16--Filter, 17--Stabilized power supply, 18--Lamp, 19--Lens, 20--Diffuser, 21--Chopper, 22- -Illuminated light, 23--scattered light, 24-- calculator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板を連続的にめっきした後、合金化処
理する鋼板の連続めっき合金化ラインにおいて合金化処
理直後の鋼板に、可視光光源からの光を拡散板により拡
散させた拡散光を照射し、鋼板からの反射光を少なくと
も2個の光強度検出器により反射角度の異なる位置で受
光して反射光強度をそれぞれ求め、それらの強度比より
合金化度を測定することを特徴とする鋼板の連続めっき
合金化ラインでの合金化度測定方法。
1. Continuous plating of a steel sheet, and then continuous plating of the steel sheet to be alloyed A diffused light obtained by diffusing light from a visible light source by a diffusion plate is applied to the steel sheet immediately after the alloying treatment in an alloying line. Irradiation, reflected light from the steel plate is received by at least two light intensity detectors at positions with different reflection angles, the reflected light intensities are respectively obtained, and the alloying degree is measured from the intensity ratio thereof. A method for measuring the degree of alloying on a continuous plating alloying line for steel sheets.
【請求項2】 鋼板を連続的にめっきした後、合金化処
理する鋼板の連続めっき合金化ラインにおいて合金化処
理後の鋼板に、波長5μm 以上の長波長域赤外線と波長
0.5 〜1μm の可視光線又は近赤外線とを照射し、鋼板
から各々反射してくる散乱光の強度を測定し、それら散
乱光の強度と、予め求めておいた散乱光強度と合金化度
との関係式とから前記合金化処理後の鋼板の合金化度を
求めることを特徴とする鋼板の連続めっき合金化ライン
での合金化度測定方法。
2. A continuous plating of a steel sheet, which is continuously plated, and a continuous plating of a steel sheet to be alloyed.
The intensity of scattered light reflected from the steel sheet is measured by irradiating with 0.5 to 1 μm of visible light or near-infrared light, and the intensity of the scattered light and the intensity of scattered light and the degree of alloying obtained in advance are measured. A method for measuring the degree of alloying in a continuous plating alloying line of a steel sheet, characterized in that the degree of alloying of the steel sheet after the alloying treatment is obtained from a relational expression.
【請求項3】 鋼板を連続的にめっきした後、合金化処
理する鋼板の連続めっき合金化ラインにおいて合金化処
理後の鋼板に、波長7μm 以上の波長の異なる2種類の
長波長域赤外線を照射し、鋼板から各々反射してくる散
乱光の強度を測定し、それら散乱光の強度と、予め求め
ておいた散乱光強度と合金化度との関係式とから前記合
金化処理後の鋼板の合金化度を求めることを特徴とする
鋼板の連続めっき合金化ラインでの合金化度測定方法。
3. Continuous plating of a steel sheet, followed by continuous plating of the steel sheet to be alloyed. The alloyed steel sheet is irradiated with two types of long-wavelength infrared rays having a wavelength of 7 μm or more and different wavelengths. Then, the intensity of the scattered light reflected from the steel sheet is measured, and the intensity of the scattered light, and the relational expression between the scattered light intensity and the degree of alloying obtained in advance of the steel sheet after the alloying treatment. A method for measuring the degree of alloying in a continuous plating alloying line for steel plates, which comprises determining the degree of alloying.
JP14936892A 1992-03-12 1992-06-09 Measuring method for alloying rate in continuous plating and alloying line for steel plate Withdrawn JPH05312723A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5372492 1992-03-12
JP4-53724 1992-03-12

Publications (1)

Publication Number Publication Date
JPH05312723A true JPH05312723A (en) 1993-11-22

Family

ID=12950785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14936892A Withdrawn JPH05312723A (en) 1992-03-12 1992-06-09 Measuring method for alloying rate in continuous plating and alloying line for steel plate

Country Status (1)

Country Link
JP (1) JPH05312723A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331565A (en) * 1993-05-18 1994-12-02 Kobe Steel Ltd Dignostic method of welded part of thin plate
JP2008157753A (en) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp Inspection device, annealing device, and inspection method
JP2012505401A (en) * 2008-10-09 2012-03-01 マイクロフルイド エイビー Fluid film measuring instrument
JP2018013487A (en) * 2010-11-26 2018-01-25 株式会社リコー Optical sensor and image forming apparatus
JP2020085770A (en) * 2018-11-29 2020-06-04 株式会社日立ビルシステム Scattered light detection device, and nondestructive inspection device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331565A (en) * 1993-05-18 1994-12-02 Kobe Steel Ltd Dignostic method of welded part of thin plate
JP2008157753A (en) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp Inspection device, annealing device, and inspection method
JP2012505401A (en) * 2008-10-09 2012-03-01 マイクロフルイド エイビー Fluid film measuring instrument
US8618484B2 (en) 2008-10-09 2013-12-31 Microfluid Ab Fluid film indicator
JP2018013487A (en) * 2010-11-26 2018-01-25 株式会社リコー Optical sensor and image forming apparatus
JP2020085770A (en) * 2018-11-29 2020-06-04 株式会社日立ビルシステム Scattered light detection device, and nondestructive inspection device using the same

Similar Documents

Publication Publication Date Title
DE69932165T2 (en) A SENSOR FOR MEASURING A SUBSTRATE TEMPERATURE
JP3268599B2 (en) Surface photothermal inspection equipment
US7995195B2 (en) Method of optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body
GB2172397A (en) Determination of the thickness of transparent layers of lacquer
GB1599949A (en) Method and an apparatus for simultaneous measurement of both temperature and emissivity of a heated material
JPH09119887A (en) Method and device for measuring optical characteristic of transparence-reflectivity and/or reflective object
US5220168A (en) Method and apparatus for determining moisture content of materials
US4733078A (en) Measurement of moisture-stratified sheet material
US3854044A (en) A method and apparatus for measuring a transmission spectrum of a film
JP2012255781A (en) Device for referenced measurement of reflected light and method for calibrating the device
EP0682243A1 (en) Equipment and procedure for the measurement of the degree of brown colour of pastry-cooked products
WO1999015881A1 (en) Monitoring oil films
US4682897A (en) Light scattering measuring apparatus
JPH05312723A (en) Measuring method for alloying rate in continuous plating and alloying line for steel plate
US7566894B2 (en) Device and method for the quantified evaluation of surface characteristics
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JPS6186621A (en) Method and apparatus for simultaneously measuring emissivity and temperature
CN112611746A (en) Absorption spectrum detection device and detection method for material micro-area
US6137583A (en) Method of measuring the degree of alloying of a galvanized steel sheet using laser beams
JPH0833359B2 (en) Total reflection X-ray fluorescence analyzer
RU2710009C1 (en) Apparatus for determining moisture content of deciduous plants
CN214749784U (en) Absorption spectrum detection device for material micro-area
RU2017084C1 (en) Device for indication and visual observation of ir-range electromagnetic radiation
JPH05209792A (en) Method and device for simultaneous measurement of emissivity and surface temperature
US3517203A (en) Optical apparatus and method for determination of pore dimensions in sheet material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831