JP7520409B2 - Method and device for detecting internal defects - Google Patents

Method and device for detecting internal defects Download PDF

Info

Publication number
JP7520409B2
JP7520409B2 JP2023013330A JP2023013330A JP7520409B2 JP 7520409 B2 JP7520409 B2 JP 7520409B2 JP 2023013330 A JP2023013330 A JP 2023013330A JP 2023013330 A JP2023013330 A JP 2023013330A JP 7520409 B2 JP7520409 B2 JP 7520409B2
Authority
JP
Japan
Prior art keywords
residual stress
stress distribution
distribution
internal defect
inherent strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023013330A
Other languages
Japanese (ja)
Other versions
JP2023052800A (en
Inventor
雅 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogakuin University
Original Assignee
Kogakuin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogakuin University filed Critical Kogakuin University
Priority to JP2023013330A priority Critical patent/JP7520409B2/en
Publication of JP2023052800A publication Critical patent/JP2023052800A/en
Application granted granted Critical
Publication of JP7520409B2 publication Critical patent/JP7520409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、内部欠陥の検出方法及び内部欠陥の検出装置に関する。 The present invention relates to a method and device for detecting internal defects.

従来の非破壊検査方法を示すものとして、超音波探傷装置(特許文献1参照)や、放射線を用いた検査システム(特許文献2参照)が開示されている。 Conventional non-destructive inspection methods include an ultrasonic flaw detector (see Patent Document 1) and an inspection system that uses radiation (see Patent Document 2).

特開2016-61760号公報JP 2016-61760 A 特開2017-219382号公報JP 2017-219382 A

上記した特許文献に係る非破壊検査方法は、検査対象の内部の空洞を特定する方法である。 The non-destructive testing method described in the above patent document is a method for identifying cavities inside an object to be tested.

しかしながら、溶接による接合時に生じる未溶着部のような欠陥で空洞が生じない場合は、従来の非破壊検査方法により検出することは困難であった。 However, defects such as unwelded areas that occur during welding that do not result in cavities are difficult to detect using conventional non-destructive testing methods.

本発明は、加工材に、空洞のない未溶着部等の内部欠陥が存在する場合に、その存在を非破壊で検出できるようにすることを目的とする。 The purpose of the present invention is to make it possible to non-destructively detect the presence of internal defects, such as unwelded areas without cavities, in processed materials.

第1の態様に係る内部欠陥の検出方法は、加工材の既知の固有ひずみ分布から、前記加工材の表面の残留応力分布を算出する算出ステップと、内部欠陥の検出の対象物である前記加工材の表面の残留応力分布を計測する計測ステップと、前記算出ステップで算出した残留応力分布の計算値と、前記計測ステップで計測した残留応力分布の実測値とを比較し、内部欠陥の有無を判定する判定ステップと、を有する。 The method for detecting internal defects according to the first aspect includes a calculation step of calculating the residual stress distribution on the surface of the processed material from the known inherent strain distribution of the processed material, a measurement step of measuring the residual stress distribution on the surface of the processed material, which is the object of internal defect detection, and a determination step of comparing the calculated value of the residual stress distribution calculated in the calculation step with the actual measured value of the residual stress distribution measured in the measurement step to determine the presence or absence of an internal defect.

この内部欠陥の検出方法は、力学的境界条件、幾何学的境界条件、材料特性のうち、どれか1つが未知である場合に、その未知の情報を他の情報を元に推定する方法である。具体的には、力学的境界条件として、残留応力の原因である固有ひずみが既知であり、材料特性(材質)がわかっている場合、加工材の残留応力分布は幾何学的境界条件に依存する。本方法は、計測した残留応力の値から未溶着部等の内部欠陥の有無を推定する。 This method of detecting internal defects is a method in which when any one of the mechanical boundary conditions, geometric boundary conditions, and material properties is unknown, the unknown information is estimated based on the other information. Specifically, when the inherent strain that causes residual stress is known as a mechanical boundary condition, and the material properties (material quality) are known, the residual stress distribution in the processed material depends on the geometric boundary conditions. This method estimates the presence or absence of internal defects such as unwelded areas from the measured residual stress values.

加工材が、溶接された接合材である場合において、溶接揺動のない接合により固有ひずみ分布が溶接線方向に均一となる場合には、溶接時に接合材の端の一部を抜き取って固有ひずみ分布を調べることにより、接合材全体の固有ひずみ分布が明らかとなる。このため、接合材全域の残留応力分布を知ることができる。また、各種溶接方法と固有ひずみ分布との関係がデータベースとして得られている場合は、溶接条件に対する固有ひずみ分布がわかる。算出ステップでは、このような既知の固有ひずみ分布から、加工材の表面の残留応力分布を得ることができる。 When the processed material is a welded joint material, and the inherent strain distribution is uniform in the weld line direction due to the joining without welding oscillation, the inherent strain distribution of the entire joint material can be determined by extracting a portion of the end of the joint material during welding and examining the inherent strain distribution. This makes it possible to know the residual stress distribution over the entire joint material. Furthermore, if the relationship between various welding methods and inherent strain distribution is available in a database, the inherent strain distribution for the welding conditions can be known. In the calculation step, the residual stress distribution on the surface of the processed material can be obtained from this known inherent strain distribution.

計測ステップにおいて、内部欠陥の検出の対象物である加工材の表面の残留応力分布は、例えば市販の可搬型X線回折装置を用いることで、例えば溶接の現場でも非破壊に計測することができる。 In the measurement step, the residual stress distribution on the surface of the processed material, which is the target of internal defect detection, can be measured non-destructively, for example, at the welding site, using, for example, a commercially available portable X-ray diffraction device.

判定ステップでは、既知である固有ひずみ分布から求めた加工材の表面の残留応力分布の計算値と、計測した残留応力分布の実測値が等しい場合に、加工材に未溶着部等の内部欠陥がなく、正しく接合されていると判定できる。また、既知である固有ひずみ分布から求めた加工材の表面の残留応力分布の計算値と、計測した残留応力分布の実測値にギャップがある場合には、どこかに未溶着部などの内部欠陥があると判定できる。 In the judgment step, if the calculated residual stress distribution on the surface of the processed material obtained from the known inherent strain distribution is equal to the actual measured residual stress distribution, it can be judged that the processed material has no internal defects such as unwelded areas and is properly joined. Also, if there is a gap between the calculated residual stress distribution on the surface of the processed material obtained from the known inherent strain distribution and the actual measured residual stress distribution, it can be judged that there is an internal defect such as an unwelded area somewhere.

このように、この内部欠陥の検出方法によれば、内部欠陥の有無の判定を非破壊に行うことができる。 In this way, this method of detecting internal defects makes it possible to non-destructively determine whether or not there is an internal defect.

第2の態様は、第1の態様に係る内部欠陥の検出方法において、前記算出ステップでは、前記加工材の既知の固有ひずみ分布から、任意の位置及び大きさの内部欠陥を想定した前記加工材の表面の残留応力分布を算出し、前記判定ステップでは、更に、前記算出ステップで算出した残留応力分布の中から、前記計測ステップで計測した残留応力分布の実測値に近いものを見つけ出す最適計算により、前記内部欠陥の位置及び大きさを推定する。 In the second aspect, in the method for detecting internal defects according to the first aspect, the calculation step calculates the residual stress distribution on the surface of the processed material assuming an internal defect of any position and size from the known inherent strain distribution of the processed material, and the determination step further estimates the position and size of the internal defect by an optimal calculation that finds, from the residual stress distributions calculated in the calculation step, a residual stress distribution that is closest to the actual residual stress distribution measured in the measurement step.

この内部欠陥の検出方法では、算出ステップにおいて、加工材の既知の固有ひずみ分布から、任意の位置及び大きさの内部欠陥を想定した加工材の表面の残留応力分布を算出する。 In this internal defect detection method, in the calculation step, the residual stress distribution on the surface of the processed material is calculated from the known inherent strain distribution of the processed material, assuming an internal defect of any position and size.

判定ステップでは、算出ステップで算出した残留応力分布の中から、計測ステップで計測した残留応力分布の実測値に近いものを見つけ出す最適計算を行う。これにより、内部欠陥の位置及び大きさを推定することができる。 In the determination step, an optimal calculation is performed to find the residual stress distribution calculated in the calculation step that is closest to the actual residual stress distribution measured in the measurement step. This makes it possible to estimate the position and size of the internal defect.

第3の態様に係る内部欠陥の検出装置は、加工材の既知の固有ひずみ分布から、前記加工材の表面の残留応力分布を算出する算出部と、内部欠陥の検出の対象物である前記加工材の表面の残留応力分布を計測する計測部と、前記算出部で算出した残留応力分布の計算値と、前記計測部で計測した残留応力分布の実測値とを比較し、内部欠陥の有無を判定する判定部と、を有する。 The internal defect detection device according to the third aspect has a calculation unit that calculates the residual stress distribution on the surface of the processed material from the known inherent strain distribution of the processed material, a measurement unit that measures the residual stress distribution on the surface of the processed material that is the object of internal defect detection, and a determination unit that compares the calculated value of the residual stress distribution calculated by the calculation unit with the actual measured value of the residual stress distribution measured by the measurement unit to determine the presence or absence of an internal defect.

この内部欠陥の検出装置は、力学的境界条件、幾何学的境界条件、材料特性のうち、どれか1つが未知である場合に、その未知の情報を他の情報を元に推定する。具体的には、力学的境界条件として、残留応力の原因である固有ひずみが既知であり、材料特性(材質)がわかっている場合、加工材の残留応力分布は幾何学的境界条件に依存する。本検出装置は、計測した残留応力分布の実測値から未溶着部等の内部欠陥の有無を推定する。 When any one of the mechanical boundary conditions, geometric boundary conditions, or material properties is unknown, this internal defect detection device estimates the unknown information based on the other information. Specifically, when the inherent strain that causes residual stress is known as a mechanical boundary condition, and the material properties (material quality) are known, the residual stress distribution of the processed material depends on the geometric boundary conditions. This detection device estimates the presence or absence of internal defects such as unwelded areas from the actual measured values of the residual stress distribution.

加工材が、溶接された接合材である場合において、溶接揺動のない接合により固有ひずみ分布が溶接線方向に均一となる場合には、溶接時に接合材の端の一部を抜き取って固有ひずみ分布を調べることにより、接合材全体の固有ひずみ分布が明らかとなる。このため、接合材全域の残留応力分布を知ることができる。また、各種溶接方法と固有ひずみ分布との関係がデータベースとして得られている場合は、溶接条件に対する固有ひずみ分布がわかる。算出部では、このような既知の固有ひずみ分布から、加工材の表面の残留応力分布を得ることができる。 When the processed material is a welded joint material, and the inherent strain distribution is uniform in the weld line direction due to the joint not having welding oscillation, the inherent strain distribution of the entire joint material can be determined by extracting a portion of the end of the joint material during welding and examining the inherent strain distribution. This makes it possible to know the residual stress distribution over the entire joint material. Furthermore, if the relationship between various welding methods and inherent strain distribution is available in a database, the inherent strain distribution for the welding conditions can be known. The calculation unit can obtain the residual stress distribution on the surface of the processed material from this known inherent strain distribution.

計測部としては、例えば市販の可搬型X線回折装置を用いることができる。この計測部により、内部欠陥の検出の対象物である加工材の表面の残留応力分布を非破壊に計測することができる。 The measurement unit can be, for example, a commercially available portable X-ray diffraction device. This measurement unit can non-destructively measure the residual stress distribution on the surface of the processed material, which is the target for internal defect detection.

判定部では、既知である固有ひずみ分布から求めた加工材の表面の残留応力分布の計算値と、計測した残留応力分布の実測値が等しい場合に、加工材に未溶着部等の内部欠陥がなく、正しく接合されていると判定できる。また、既知である固有ひずみ分布から求めた加工材の表面の残留応力分布の計算値と、計測した残留応力分布の実測値にギャップがある場合には、どこかに未溶着部などの内部欠陥があると判定できる。 In the judgment section, if the calculated value of the residual stress distribution on the surface of the processed material obtained from the known inherent strain distribution is equal to the actual measured value of the residual stress distribution, it can be determined that the processed material has no internal defects such as unwelded areas and is properly joined. Also, if there is a gap between the calculated value of the residual stress distribution on the surface of the processed material obtained from the known inherent strain distribution and the actual measured value of the residual stress distribution, it can be determined that there is an internal defect such as an unwelded area somewhere.

このように、この内部欠陥の検出装置によれば、内部欠陥の有無の判定を非破壊に行うことができる。 In this way, this internal defect detection device can non-destructively determine whether or not there is an internal defect.

第4の態様は、第3の態様に係る内部欠陥の検出装置において、前記算出部では、前記加工材の既知の固有ひずみ分布から、任意の位置及び大きさの内部欠陥を想定した前記加工材の表面の残留応力分布を算出し、前記判定部では、更に、前記算出部で算出した残留応力分布の中から、前記計測部で計測した残留応力分布の実測値に近いものを見つけ出す最適計算により、前記内部欠陥の位置及び大きさを推定する。 In the fourth aspect, in the internal defect detection device according to the third aspect, the calculation unit calculates the residual stress distribution on the surface of the processed material assuming an internal defect of any position and size from the known inherent strain distribution of the processed material, and the determination unit further estimates the position and size of the internal defect by optimal calculation to find, from the residual stress distributions calculated by the calculation unit, a residual stress distribution that is closest to the actual residual stress distribution measured by the measurement unit.

この内部欠陥の検出装置では、算出部において、加工材の既知の固有ひずみ分布から、任意の位置及び大きさの内部欠陥を想定した加工材の表面の残留応力分布を算出する。 In this internal defect detection device, the calculation section calculates the residual stress distribution on the surface of the processed material assuming an internal defect of any position and size from the known inherent strain distribution of the processed material.

判定部では、算出部で算出した残留応力分布の中から、計測部で計測した残留応力分布の実測値に近いものを見つけ出す最適計算を行う。これにより、内部欠陥の位置及び大きさを推定することができる。 The determination unit performs an optimal calculation to find the residual stress distribution calculated by the calculation unit that is closest to the actual residual stress distribution measured by the measurement unit. This makes it possible to estimate the position and size of the internal defect.

本発明によれば、加工材に、空洞のない未溶着部等の内部欠陥が存在する場合に、その存在を非破壊で検出できるようにすることができる。 According to the present invention, when an internal defect such as an unwelded portion without a cavity is present in a processed material, its presence can be detected non-destructively.

内部欠陥の検出装置を示すブロック図である。FIG. 1 is a block diagram showing an internal defect detection device. (A)は、表面側に余盛が形成された接合材を示す斜視図である。(B)は、余盛が削り落とされ、表面側が平坦に加工された接合材を示す斜視図である。(C)は、図2(B)の接合材を溶接部の中心で切断した片側を示す斜視図である。2A is a perspective view showing a bonding material with a weld formed on the surface side, FIG. 2B is a perspective view showing a bonding material with the weld removed and the surface side processed to be flat, and FIG. 2C is a perspective view showing one side of the bonding material of FIG. 2B cut at the center of the weld. 図2(C)に示される接合材のFEMモデル図である。FIG. 3 is an FEM model diagram of the bonding material shown in FIG. 接合材における表面の残留応力の計測位置を示す平面図と、接合材の端面を示すFEMモデル図である。1 is a plan view showing measurement positions of surface residual stress in a bonding material, and an FEM model diagram showing an end face of the bonding material. FIG. 図4の各計測点における、残留応力分布の実測値と計算値との差の二乗平均平方根を示す線図である。FIG. 5 is a diagram showing the root mean square of the difference between the measured value and the calculated value of the residual stress distribution at each measurement point in FIG. 4 .

以下、本発明を実施するための形態を図面に基づき説明する。図面において、矢印FRは車両前方を示し、矢印UPは車両上方を示し、矢印RHは車両右方向を示している。 Below, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the arrow FR indicates the front of the vehicle, the arrow UP indicates the upper side of the vehicle, and the arrow RH indicates the right side of the vehicle.

図1において、本実施形態に係る内部欠陥の検出装置10は、算出部11と、計測部12と、判定部13とを有している。 In FIG. 1, the internal defect detection device 10 according to this embodiment has a calculation unit 11, a measurement unit 12, and a judgment unit 13.

算出部11は、加工材の一例としての溶接された接合材14の既知の固有ひずみ分布から、接合材14の表面14Aの残留応力分布を算出する、例えばコンピュータである。算出部11は、例えば有限要素法(FEM)を用いて、接合材14に内部欠陥の一例としての溶接欠陥がない場合の残留応力分布を算出する。これだけでなく、算出部11は、任意の位置及び大きさの溶接欠陥を想定した接合材14の表面14Aの残留応力分布の計算値を算出可能とされている。この場合、算出部11は、溶接欠陥の位置及び大きさを変化させながら、それぞれの条件での残留応力分布を求める。 The calculation unit 11 is, for example, a computer that calculates the residual stress distribution on the surface 14A of the welded joint material 14 from the known inherent strain distribution of the welded joint material 14, which is an example of a processed material. The calculation unit 11 calculates the residual stress distribution when the joint material 14 does not have a welding defect, which is an example of an internal defect, by using, for example, the finite element method (FEM). In addition, the calculation unit 11 is capable of calculating the calculated value of the residual stress distribution on the surface 14A of the joint material 14 assuming a welding defect of any position and size. In this case, the calculation unit 11 determines the residual stress distribution under each condition while changing the position and size of the welding defect.

接合材14の固有ひずみ分布は、例えば、溶接欠陥がない接合材14の端の一部14B(図2(B))を抜き取って調べることで得ることができる。各種溶接方法と固有ひずみ分布との関係がデータベースとして得られている場合は、溶接条件に対する固有ひずみ分布を容易に得ることができる。 The inherent strain distribution of the joining material 14 can be obtained, for example, by extracting and examining a portion 14B (Figure 2 (B)) of the end of the joining material 14 that has no welding defects. If the relationship between various welding methods and the inherent strain distribution is available as a database, the inherent strain distribution for the welding conditions can be easily obtained.

図2において、本実施形態における接合材14は、例えば2枚の金属板16,18が突合せ溶接されたものである。図2(A)では、溶接部20に直線状に延びる溶接ビードが形成され、接合材14の表面14A側に余盛が形成されている。図2(B)は、この余盛が削り落とされ、接合材14の表面14A側が平坦に加工された状態を示している。図2(C)は、図2(B)の接合材14が溶接部20の中心(一点鎖線L)で切断された片側、例えば金属板18側を示している。 In FIG. 2, the joining material 14 in this embodiment is, for example, two metal plates 16, 18 butt-welded together. In FIG. 2(A), a linear weld bead is formed at the welded portion 20, and an excess is formed on the surface 14A side of the joining material 14. FIG. 2(B) shows the state in which this excess has been scraped off and the surface 14A side of the joining material 14 has been machined flat. FIG. 2(C) shows one side of the joining material 14 in FIG. 2(B) cut at the center (dotted line L) of the welded portion 20, for example the metal plate 18 side.

なお、溶接された接合材14には、溶融溶接材、抵抗スポット溶接材、レーザースポット溶接材、プロジェクション溶接材、シーム溶接材が含まれる。 The welded joining material 14 includes fusion welded material, resistance spot welded material, laser spot welded material, projection welded material, and seam welded material.

溶接欠陥とは、内部欠陥の一例であり、例えば溶接部20に空洞を伴わずに形成される未溶着部や、溶接部20に生じた空洞(空隙)等の溶接が不十分な部位である。本実施形態では、溶接欠陥の一例を未溶着部として説明する。 A welding defect is an example of an internal defect, such as an unwelded portion formed without a cavity in the welded portion 20, or a portion where the welding is insufficient, such as a cavity (gap) that occurs in the welded portion 20. In this embodiment, an example of a welding defect will be described as an unwelded portion.

計測部12は、接合材14の表面14Aの残留応力分布を計測する部位である。計測部12は、例えば市販の可搬型X線回折装置であってもよいし、固定型のX線回折装置であってもよい。 The measuring unit 12 is a part that measures the residual stress distribution on the surface 14A of the joining material 14. The measuring unit 12 may be, for example, a commercially available portable X-ray diffraction device, or a fixed X-ray diffraction device.

判定部13は、算出部11で算出した残留応力分布の計算値と、計測部12で計測した残留応力分布の実測値とを比較し、溶接欠陥の有無を判定する、例えばコンピュータである。判定部13は、更に、算出部11で溶接欠陥の位置及び大きさを変化させながら算出した多くの残留応力分布の中から、計測部12で計測した残留応力分布の実測値に近いものを見つけ出す最適計算により、溶接欠陥の位置及び大きさを推定してもよい。 The determination unit 13 is, for example, a computer that compares the calculated value of the residual stress distribution calculated by the calculation unit 11 with the actual measured value of the residual stress distribution measured by the measurement unit 12 to determine the presence or absence of a welding defect. The determination unit 13 may further estimate the position and size of the welding defect by an optimal calculation that finds one that is closest to the actual measured value of the residual stress distribution measured by the measurement unit 12 from among the many residual stress distributions calculated by the calculation unit 11 while changing the position and size of the welding defect.

(作用)
本実施形態は、上記のように構成されており、以下その作用について説明する。本実施形態に係る内部欠陥の検出装置10は、力学的境界条件、幾何学的境界条件、材料特性のうち、どれか1つが未知である場合に、その未知の情報を他の情報を元に推定する。具体的には、力学的境界条件として、残留応力の原因である固有ひずみが既知であり、材料特性(材質)がわかっている場合、接合材14の残留応力分布は幾何学的境界条件に依存する。本検出装置は、計測した残留応力分布の実測値から、未溶着部等の溶接欠陥の有無を推定する。
(Action)
This embodiment is configured as described above, and its operation will be described below. When any one of the mechanical boundary conditions, the geometric boundary conditions, and the material properties is unknown, the internal defect detection device 10 according to this embodiment estimates the unknown information based on the other information. Specifically, when the inherent strain that causes the residual stress is known as the mechanical boundary condition, and the material properties (material quality) are known, the residual stress distribution of the joining material 14 depends on the geometric boundary condition. This detection device estimates the presence or absence of a welding defect such as an unwelded portion from the actual measured value of the residual stress distribution.

溶接揺動のない接合材14においては、固有ひずみ分布が溶接線方向に概ね均一となることがあるため、この場合には溶接時に接合材14の端の一部14B(図2(B))を抜き取って固有ひずみ分布を調べることにより、接合材14全体の固有ひずみ分布が明らかとなる。このため、接合材14全域の残留応力分布を知ることができる。また、各種溶接方法と固有ひずみ分布との関係がデータベースとして得られている場合は、溶接条件に対する固有ひずみ分布を容易に得ることができる。算出部11では、このような既知の固有ひずみ分布から、接合材14の表面14Aの残留応力分布を得ることができる。 In a joining material 14 without welding oscillation, the inherent strain distribution may be roughly uniform in the direction of the weld line. In this case, the inherent strain distribution of the entire joining material 14 can be determined by extracting a portion 14B (FIG. 2(B)) of the end of the joining material 14 during welding and examining the inherent strain distribution. This makes it possible to know the residual stress distribution over the entire joining material 14. Furthermore, if the relationship between various welding methods and inherent strain distribution is available as a database, the inherent strain distribution for the welding conditions can be easily obtained. The calculation unit 11 can obtain the residual stress distribution on the surface 14A of the joining material 14 from such a known inherent strain distribution.

計測部12としては、例えば市販の可搬型X線回折装置を用いることができる。可搬型X線回折装置は、溶接の現場で計測を行う場合に好適である。なお、固定式のX線回折装置を用いてもよい。この計測部12により、接合材14の表面14Aの残留応力分布を非破壊に計測することができる。 The measurement unit 12 can be, for example, a commercially available portable X-ray diffraction device. Portable X-ray diffraction devices are suitable for performing measurements at the welding site. Note that a fixed X-ray diffraction device may also be used. This measurement unit 12 can non-destructively measure the residual stress distribution on the surface 14A of the joining material 14.

判定部13では、既知である固有ひずみ分布から求めた接合材14の表面14Aの残留応力分布の計算値と、計測した残留応力分布の実測値が等しい場合に、接合材14に未溶着部等の欠陥がなく、正しく接合されていると判定できる。また、既知である固有ひずみ分布から求めた接合材14の表面14Aの残留応力分布の計算値と、計測した残留応力分布の実測値にギャップがある場合には、どこかに未溶着部などの溶接欠陥があると判定できる。 When the calculated value of the residual stress distribution on the surface 14A of the joining material 14 obtained from the known inherent strain distribution is equal to the actual measured value of the residual stress distribution, the judgment unit 13 can judge that the joining material 14 has no defects such as unwelded parts and is properly joined. Also, when there is a gap between the calculated value of the residual stress distribution on the surface 14A of the joining material 14 obtained from the known inherent strain distribution and the actual measured value of the residual stress distribution, it can be judged that there is a welding defect such as an unwelded part somewhere.

なお、算出部11において、接合材14の既知の固有ひずみ分布から、任意の位置及び大きさの溶接欠陥を想定した接合材14の表面14Aの残留応力分布を算出してもよい。この場合、溶接欠陥の位置及び大きさを変化させながら、それぞれの条件での残留応力分布を求める。 The calculation unit 11 may calculate the residual stress distribution on the surface 14A of the joining material 14 assuming a welding defect of any position and size from the known inherent strain distribution of the joining material 14. In this case, the residual stress distribution is obtained under each condition while changing the position and size of the welding defect.

また、判定部13では、算出部11で溶接欠陥の位置及び大きさを変化させながら算出した多くの残留応力分布の中から、計測部12で計測した残留応力分布の実測値に近いものを見つけ出す最適計算を行ってもよい。これにより、溶接欠陥の有無だけでなく、その位置及び大きさを推定することができる。 The determination unit 13 may also perform an optimal calculation to find a residual stress distribution that is closest to the actual residual stress distribution measured by the measurement unit 12 from among the many residual stress distributions calculated by the calculation unit 11 while changing the position and size of the welding defect. This makes it possible to estimate not only the presence or absence of a welding defect, but also its position and size.

このように、内部欠陥の検出装置10によれば、接合材14における溶接欠陥の有無の判定を非破壊に行うことができる。一例として、スポット溶接材は、溶接面の反対側から見た際、目視では適切に溶着されているかどうかわからない場合がある。しかしながら、本実施形態によれば、スポット溶接材についても、適切に溶着されているかどうか非破壊で検査することができ、未溶着部がある場合にその位置及び大きさまで推定できる。 In this way, the internal defect detection device 10 can non-destructively determine whether or not there is a welding defect in the joining material 14. As an example, when spot-welded material is viewed from the opposite side of the welded surface, it may be difficult to tell by visual inspection whether it is properly welded. However, according to this embodiment, it is possible to non-destructively inspect whether spot-welded material is properly welded, and if there is an unwelded portion, its position and size can be estimated.

(内部欠陥の検出方法)
図1において、内部欠陥の検出方法は、溶接された接合材14の既知の固有ひずみ分布から、接合材14の表面14A(図2)の残留応力分布を算出する算出ステップS1と、接合材14の表面14Aの残留応力分布を計測する計測ステップS2と、算出ステップS1で算出した残留応力分布の計算値と、計測ステップS2で計測した残留応力分布の実測値とを比較し、内部欠陥の有無を判定する判定ステップS3と、を有する。
(Method of detecting internal defects)
In FIG. 1, the method for detecting internal defects includes a calculation step S1 for calculating a residual stress distribution on a surface 14A (FIG. 2) of the joining material 14 from a known inherent strain distribution of the welded joining material 14, a measurement step S2 for measuring the residual stress distribution on the surface 14A of the joining material 14, and a determination step S3 for comparing the calculated value of the residual stress distribution calculated in the calculation step S1 with the actual measured value of the residual stress distribution measured in the measurement step S2 to determine the presence or absence of an internal defect.

算出ステップS1では、接合材14の既知の固有ひずみ分布から、任意の位置及び大きさの内部欠陥を想定した接合材14の表面14Aの残留応力分布を算出してもよい。また、判定ステップS3では、更に、算出ステップS1で算出した残留応力分布の中から、計測ステップS2で計測した残留応力分布の実測値に近いものを見つけ出す最適計算により、内部欠陥の位置及び大きさを推定してもよい。 In the calculation step S1, the residual stress distribution on the surface 14A of the joining material 14 may be calculated assuming an internal defect of any position and size from the known inherent strain distribution of the joining material 14. In addition, in the determination step S3, the position and size of the internal defect may be estimated by an optimal calculation that finds, from the residual stress distributions calculated in the calculation step S1, a residual stress distribution that is close to the actual measurement value of the residual stress distribution measured in the measurement step S2.

(試験例)
図3は、図2(C)に示される接合材14のFEMモデルを示している。図4は、接合材14の表面14Aにおける残留応力の計測位置22と、接合材14の端面のFEMモデルを示している。接合材14は、長さが110mm、片側の幅が40mm、厚さが5mmである。x軸、y軸及びz軸の原点が接合材14の底面側、左側、手前側の角に設定されるとして、表面14Aから見て0≦y≦8mmの範囲が溶接部20に相当する。これらの図に基づいて、内部欠陥の検出方法の具体例について述べる。
(Test Example)
Fig. 3 shows an FEM model of the joining material 14 shown in Fig. 2(C). Fig. 4 shows a measurement position 22 of residual stress on the surface 14A of the joining material 14, and an FEM model of the end surface of the joining material 14. The joining material 14 has a length of 110 mm, a width of 40 mm on one side, and a thickness of 5 mm. The origins of the x-axis, y-axis, and z-axis are set at the corners on the bottom side, left side, and front side of the joining material 14, and the range of 0 ≤ y ≤ 8 mm as viewed from the surface 14A corresponds to the welded part 20. Based on these figures, a specific example of a method for detecting internal defects will be described.

ここで、未溶着部24(図4)が25mm≦x≦30mm、y=8mm、3mm≦z≦4mmの位置に生じていることが未知であるとする。接合材14の固有ひずみ分布は既知である。算出ステップS1(図1)において、例えばy=8mm、3mm≦z≦4mm、15mm≦x≦100mm(5mm刻み)の位置に未溶着部が生じている場合の接合材14の表面14A(y=10mm、z=5mm)の残留応力分布をそれぞれ算出する。この残留応力は、x方向の複数の計測位置22で算出する。具体的には、x=10mm、x=20mm、x=30mm、x=40mm、x=50mm、x=60mm、x=70mm、x=80mm、x=90mm及びx=100mmの位置で、残留応力を算出する。その計算値は、表1及び表2に示される通りである。表1及び表2においてσxはx軸方向の残留応力を示し、σyはy軸方向の残留応力を示している。 Here, it is unknown that the unwelded portion 24 (FIG. 4) occurs at a position of 25 mm≦x≦30 mm, y=8 mm, 3 mm≦z≦4 mm. The inherent strain distribution of the joining material 14 is known. In the calculation step S1 (FIG. 1), the residual stress distribution of the surface 14A (y=10 mm, z=5 mm) of the joining material 14 when the unwelded portion occurs at a position of, for example, y=8 mm, 3 mm≦z≦4 mm, 15 mm≦x≦100 mm (in 5 mm increments) is calculated. This residual stress is calculated at multiple measurement positions 22 in the x direction. Specifically, the residual stress is calculated at the positions of x=10 mm, x=20 mm, x=30 mm, x=40 mm, x=50 mm, x=60 mm, x=70 mm, x=80 mm, x=90 mm, and x=100 mm. The calculated values are as shown in Tables 1 and 2. In Tables 1 and 2, σx indicates the residual stress in the x-axis direction, and σy indicates the residual stress in the y-axis direction.

一方、計測ステップS2(図1)において、残留応力分布を測定し、各々の計測位置22の実測値を求める。残留応力の計算値と実測値とは、互いに比較することができる。判定ステップS3において、実測値が未溶着部なしの計算値と異なっていれば、接合材14に未溶着部が存在することが推定できる。また、判定ステップS3において、計算値と実測値の差の二乗平均平方根(RMS:Root Mean Square)を得ることも可能である。算出ステップS1(図1)において、未溶着部が生じていると考えられる箇所を変えた場合、つまり未溶着部の位置条件を変えた場合の残留応力分布を多数計算しておき、実測値との違い(RMS)が一番小さい位置条件を選ぶことにより、未溶着部の位置を推定することができる。 Meanwhile, in the measurement step S2 (Fig. 1), the residual stress distribution is measured, and the actual measurement value is obtained for each measurement position 22. The calculated and actual measurements of the residual stress can be compared with each other. In the judgment step S3, if the actual measurement value differs from the calculated value without the unwelded portion, it can be estimated that an unwelded portion exists in the joining material 14. In the judgment step S3, it is also possible to obtain the root mean square (RMS) of the difference between the calculated value and the actual measurement value. In the calculation step S1 (Fig. 1), a large number of residual stress distributions are calculated when the location where the unwelded portion is thought to exist is changed, that is, when the positional conditions of the unwelded portion are changed, and the positional conditions with the smallest difference (RMS) from the actual measurement value are selected, so that the positional conditions of the unwelded portion can be estimated.

図5には、未溶着部の位置を15mm≦x≦20mm(x=17.5mm)、20mm≦x≦25mm(x=22.5mm)、25mm≦x≦30mm(x=27.5mm)、30mm≦x≦35mm(x=32.5mm)、35mm≦x≦40mm(x=37.5mm)、40mm≦x≦45mm(x=42.5mm)のように変化させた際のy=10mm、z=5mmの位置における残留応力分布の実測値と計算値との差のRMSが示されている。この図では、25mm≦x≦30mm(x=27.5mm)において、RMSが 0 MPaとなっている。つまり、25mm≦x≦30mm、y=8mm、3mm≦z≦4mmの位置に未溶着部が生じているとした場合の計算値が、実測値に最も近いことになる。これより、未溶着部24の位置は、25mm≦x≦30mm(x=27.5mm)、y=8mm、3mm≦z≦4mmであることがわかる。 Figure 5 shows the RMS of the difference between the measured and calculated residual stress distribution at the position y=10mm, z=5mm when the position of the unwelded part is changed to 15mm≦x≦20mm (x=17.5mm), 20mm≦x≦25mm (x=22.5mm), 25mm≦x≦30mm (x=27.5mm), 30mm≦x≦35mm (x=32.5mm), 35mm≦x≦40mm (x=37.5mm), 40mm≦x≦45mm (x=42.5mm). In this figure, the RMS is 0 MPa at 25mm≦x≦30mm (x=27.5mm). In other words, the calculated value when the unwelded part is assumed to be at the position 25mm≦x≦30mm, y=8mm, 3mm≦z≦4mm is closest to the measured value. From this, it can be seen that the position of the unwelded portion 24 is 25 mm≦x≦30 mm (x = 27.5 mm), y = 8 mm, and 3 mm≦z≦4 mm.

このように、算出部11で溶接欠陥の位置及び大きさを変化させながら算出した多くの残留応力分布の中から、計測部12で計測した残留応力分布の実測値に近いものを見つけ出す最適計算により、溶接欠陥の位置及び大きさを推定することができる。 In this way, the position and size of the weld defect can be estimated by optimal calculation, which finds the residual stress distribution closest to the actual measured value measured by the measurement unit 12 from among the many residual stress distributions calculated by the calculation unit 11 while changing the position and size of the weld defect.


本実施形態は、幾何学的境界条件を決定するアプローチであるため、必ずしも未溶着部の検出だけに留まるものではなく、内部形状の未知な構造物の寸法評価にも応用することができる。例えば、次の通りである。 Since this embodiment is an approach that determines geometric boundary conditions, it is not limited to the detection of unwelded parts, but can also be applied to the dimensional evaluation of structures with unknown internal shapes. For example, as follows.

(溶接構造物の品質評価)
新幹線の台車や航空機材料など、人命に直結する分野では安全性に対する要求が高い。そのため、比較的高度な品質保証が要求される。溶接部に未溶着部が存在すると、未溶着部は一種のき裂とみなすことができるため、き裂により応力が拡大され、き裂進展速度が比較的大きくなるという問題がある。本実施形態により、品質を非破壊に評価することができることで、新幹線や自動車などの高度な安全性が要求される構造物に対して、より一層の信頼性を確保することができる。
(Quality evaluation of welded structures)
In fields directly related to human life, such as bullet train bogies and aircraft materials, there is a high demand for safety. Therefore, a relatively high level of quality assurance is required. If an unwelded portion exists in a welded portion, the unwelded portion can be regarded as a type of crack, and there is a problem that the crack expands the stress and the crack growth rate becomes relatively high. This embodiment makes it possible to nondestructively evaluate quality, thereby ensuring even greater reliability for structures that require a high level of safety, such as bullet trains and automobiles.

(工業製品の内部欠陥の非破壊検出)
本実施形態は、残留応力の原因となる非弾性ひずみ分布が既知の場合に、対象物の幾何学境界条件を求める方法であり、内部形状についても特定することができる。また、本実施形態によれば、接合材の形状に依存せずに溶接欠陥を検出可能であるので、超音波計測が比較的困難な形状であっても、検査が可能である。更に、部材の表面からはわからない内部の剥離についても、超音波計測は難しいと考えられるが、本実施形態によればその検出が可能である。また、溶接部に生じた空隙についても特定することも可能である。
(Non-destructive detection of internal defects in industrial products)
This embodiment is a method for determining the geometric boundary conditions of an object when the inelastic strain distribution that causes residual stress is known, and the internal shape can also be identified. Furthermore, according to this embodiment, welding defects can be detected regardless of the shape of the joining material, so inspection is possible even for shapes that are relatively difficult to measure with ultrasonic waves. Furthermore, internal peeling that cannot be seen from the surface of a component is difficult to measure with ultrasonic waves, but this embodiment makes it possible to detect it. It is also possible to identify voids that occur in welds.

[他の実施形態]
以上、本発明の実施形態の一例について説明したが、本発明の実施形態は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
[Other embodiments]
An example of an embodiment of the present invention has been described above, but the embodiment of the present invention is not limited to the above, and it goes without saying that various modifications can be made without departing from the spirit and scope of the present invention.

加工材は溶接された接合材14に限られず、圧接材、表面改質材、塑性加工材、局所入熱加工材(撓鉄)、熱処理材、強加工材等も含まれる。圧接材には、摩擦攪拌接合材、重ね抵抗溶接材、突き合わせ抵抗溶接材が含まれる。表面改質材には、ピーニング加工材、浸炭材、窒化材、溶射材、スパッタ皮膜材が含まれる。塑性加工材には、冷間加工材、熱間加工材が含まれる。そして、熱処理材には、焼き入れ材、焼き戻し材、焼きなまし材が含まれる。上記実施形態では、このような各種加工材の内部欠陥を検出することが可能である。 The processed materials are not limited to the welded joint material 14, but also include pressure-welded materials, surface-modified materials, plastically processed materials, localized heat-input processed materials (flexural iron), heat-treated materials, and heavily processed materials. Pressure-welded materials include friction stir welded materials, lap resistance welded materials, and butt resistance welded materials. Surface-modified materials include peened materials, carburized materials, nitriding materials, thermal sprayed materials, and sputter-coated materials. Plastically processed materials include cold-worked materials and hot-worked materials. And heat-treated materials include quenched materials, tempered materials, and annealed materials. In the above embodiment, it is possible to detect internal defects in such various processed materials.

10 内部欠陥の検出装置
11 算出部
12 計測部
13 判定部
14 接合材(加工材)
14A 表面
24 未溶着部(内部欠陥)
S1 算出ステップ
S2 計測ステップ
S3 判定ステップ
10: Internal defect detection device 11: Calculation unit 12: Measurement unit 13: Determination unit 14: Joining material (processed material)
14A Surface 24 Unwelded area (internal defect)
S1: Calculation step S2: Measurement step S3: Judgment step

Claims (2)

加工材の既知の固有ひずみ分布から、任意の位置及び大きさの内部欠陥を想定した前記加工材の表面の残留応力分布を算出する算出ステップと、
内部欠陥の検出の対象物である前記加工材の表面の残留応力分布を計測する計測ステップと、
前記算出ステップで算出した残留応力分布の計算値と、前記計測ステップで計測した残留応力分布の実測値とを比較し、内部欠陥の有無を判定する判定ステップと、
を有する内部欠陥の検出方法。
A calculation step of calculating a residual stress distribution on a surface of the processed material assuming an internal defect of any position and size from a known inherent strain distribution of the processed material;
A measuring step of measuring a residual stress distribution on a surface of the processed material which is an object of internal defect detection;
a determination step of comparing the calculated value of the residual stress distribution calculated in the calculation step with the actual measured value of the residual stress distribution measured in the measurement step to determine whether or not there is an internal defect;
A method for detecting an internal defect comprising:
加工材の既知の固有ひずみ分布から、任意の位置及び大きさの内部欠陥を想定した前記加工材の表面の残留応力分布を算出する算出部と、
内部欠陥の検出の対象物である前記加工材の表面の残留応力分布を計測する計測部と、
前記算出部で算出した残留応力分布の計算値と、前記計測部で計測した残留応力分布の実測値とを比較し、内部欠陥の有無を判定する判定部と、
を有する内部欠陥の検出装置。
A calculation unit that calculates a residual stress distribution on a surface of a processed material assuming an internal defect of any position and size from a known inherent strain distribution of the processed material;
A measuring unit that measures a residual stress distribution on a surface of the processed material which is an object of internal defect detection;
a determination unit that compares the calculated value of the residual stress distribution calculated by the calculation unit with the actual measured value of the residual stress distribution measured by the measurement unit to determine whether or not there is an internal defect;
An internal defect detection device having
JP2023013330A 2018-12-14 2023-01-31 Method and device for detecting internal defects Active JP7520409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023013330A JP7520409B2 (en) 2018-12-14 2023-01-31 Method and device for detecting internal defects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018234397A JP7290213B2 (en) 2018-12-14 2018-12-14 Internal defect detection method and internal defect detection apparatus
JP2023013330A JP7520409B2 (en) 2018-12-14 2023-01-31 Method and device for detecting internal defects

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018234397A Division JP7290213B2 (en) 2018-12-14 2018-12-14 Internal defect detection method and internal defect detection apparatus

Publications (2)

Publication Number Publication Date
JP2023052800A JP2023052800A (en) 2023-04-12
JP7520409B2 true JP7520409B2 (en) 2024-07-23

Family

ID=71084902

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018234397A Active JP7290213B2 (en) 2018-12-14 2018-12-14 Internal defect detection method and internal defect detection apparatus
JP2023013330A Active JP7520409B2 (en) 2018-12-14 2023-01-31 Method and device for detecting internal defects

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018234397A Active JP7290213B2 (en) 2018-12-14 2018-12-14 Internal defect detection method and internal defect detection apparatus

Country Status (1)

Country Link
JP (2) JP7290213B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290213B2 (en) 2018-12-14 2023-06-13 学校法人 工学院大学 Internal defect detection method and internal defect detection apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194782A (en) 2005-01-14 2006-07-27 Toshiba Corp Defect evaluation method for structure
JP2013130588A (en) 2009-12-25 2013-07-04 Mitsubishi Heavy Ind Ltd Soundness evaluation system of nuclear power plant
JP2017161981A (en) 2016-03-07 2017-09-14 株式会社東芝 Analyzer, analysis method and analysis program
JP7290213B2 (en) 2018-12-14 2023-06-13 学校法人 工学院大学 Internal defect detection method and internal defect detection apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180271A (en) * 1992-12-15 1994-06-28 Hitachi Ltd Estimating method for residual stress and deformation
JP6516323B2 (en) * 2015-03-05 2019-05-22 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device
JP6650328B2 (en) * 2016-04-06 2020-02-19 株式会社神戸製鋼所 Residual stress estimation method and residual stress estimation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194782A (en) 2005-01-14 2006-07-27 Toshiba Corp Defect evaluation method for structure
JP2013130588A (en) 2009-12-25 2013-07-04 Mitsubishi Heavy Ind Ltd Soundness evaluation system of nuclear power plant
JP2017161981A (en) 2016-03-07 2017-09-14 株式会社東芝 Analyzer, analysis method and analysis program
JP7290213B2 (en) 2018-12-14 2023-06-13 学校法人 工学院大学 Internal defect detection method and internal defect detection apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小川雅,固有ひずみ理論に基づく3次元残留応力推定手法を用いた溶接配管のき裂進展量の確率論的評価,日本機械学会論文集,2017年,Vol.83 No.852,pp.1-6,DOI: 10.1299/transjsme.16-00066

Also Published As

Publication number Publication date
JP7290213B2 (en) 2023-06-13
JP2023052800A (en) 2023-04-12
JP2020094967A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US9839979B2 (en) System for evaluating weld quality using eddy currents
JP5263178B2 (en) Nondestructive inspection method for steel rails for tracks
CN102721742A (en) Ultrasonic flaw detection method of weld joint at U-shaped angle of rib of steel bridge plate unit
JP7520409B2 (en) Method and device for detecting internal defects
Palanichamy et al. Measurement of residual stresses in austenitic stainless steel weld joints using ultrasonic technique
JP6197391B2 (en) Fatigue life evaluation method for structures
TWI692640B (en) Factory inspection method
JP3639958B2 (en) Quantitative nondestructive evaluation method of cracks
Santoro et al. Infrared in-line monitoring of flaws in steel welded joints: a preliminary approach with SMAW and GMAW processes
CN112461920B (en) Method and device for judging high-temperature alloy spot welding defects based on ultrasonic measurement
Dell'Avvocato et al. Thermographic procedure for the assessment of Resistance Projection Welds (RPW): Investigating parameters and mechanical performances
Eshtayeh et al. Nondestructive evaluation of welded joints using digital image correlation
JP2003130789A (en) Method for evaluating life of metallic material
Brown et al. Quantifying performance of ultrasonic immersion inspection using phased arrays for curvilinear disc forgings
Naumkin et al. The assessment of the individual resource of the welded joint during repairs of the technological pipeline
KR100325353B1 (en) An apparatus and method of estimating welding quality by detecting width of the heat effective region in a flash butt welding device
JP5641242B2 (en) Friction stir welded joint diameter measuring method and apparatus, and friction stir weld quality inspection method and apparatus
Romito et al. Total Focusing Method for the Ultrasonic Testing of drawn arc stud welding
TWI715112B (en) Repair welding method
JP7459835B2 (en) Evaluation method for steel pipe joints
CN109885930B (en) Safety grading method for hazardous defects in welding line
US11860082B1 (en) Method of determining an index of quality of a weld in a formed object through mechanical contact testing
CN116539202A (en) Method for measuring residual stress of welded joint based on hardness-stress coefficient
Dell’Avvocato et al. Journal of Advanced Joining Processes
Ghaffari et al. Non-destructive evaluation of spot-weld quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240703

R150 Certificate of patent or registration of utility model

Ref document number: 7520409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150