JPH06331429A - Ultrasonic wave intensity sensor and detection method - Google Patents

Ultrasonic wave intensity sensor and detection method

Info

Publication number
JPH06331429A
JPH06331429A JP12386793A JP12386793A JPH06331429A JP H06331429 A JPH06331429 A JP H06331429A JP 12386793 A JP12386793 A JP 12386793A JP 12386793 A JP12386793 A JP 12386793A JP H06331429 A JPH06331429 A JP H06331429A
Authority
JP
Japan
Prior art keywords
ultrasonic
substrate
cleaned
cleaning
ultrasonic intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12386793A
Other languages
Japanese (ja)
Other versions
JP3037528B2 (en
Inventor
Tsugufumi Mitamura
承史 三田村
Hiroshi Ishibashi
博 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5123867A priority Critical patent/JP3037528B2/en
Publication of JPH06331429A publication Critical patent/JPH06331429A/en
Application granted granted Critical
Publication of JP3037528B2 publication Critical patent/JP3037528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To effectively optimize relation a filtering flow, fluctuating speed, a board pitch and kinds of cleaning liquid in an ultrasonic cleaner and ultrasonic intensity which a board surface receives and efficiently make possible the removal of particulates adhering to a board to be cleaned without causing nonconformity such as damage of the board to be cleaned, poor cleaning thereof and cleaning nonuniformity. CONSTITUTION:An ultrasonic intensity sensor 1 has a base board 2 and piezoelectric elements 3 which are a plurality of ultrasonic intensity detection elements are arranged and formed on the surface of the base board 2. And a plurality of the ultrasonic intensity sensors 1 are arranged in an ultrasonic cleaning vessel for the purpose of three-dimensionally detecting ultrasonic intensity an ultrasonically cleaned board receives on the surface of the board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、半導体デバイ
ス、液晶表示素子用ガラス基板、光学レンズなどの工業
材料や部品の洗浄処理に用いられる超音波洗浄槽の超音
波強度を検出する超音波強度センサ及び超音波強度検出
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ultrasonic waves for detecting the ultrasonic intensity of an ultrasonic cleaning tank used for cleaning industrial materials and parts such as semiconductor devices, glass substrates for liquid crystal display elements, and optical lenses. The present invention relates to an intensity sensor and an ultrasonic intensity detection method.

【0002】[0002]

【従来の技術】一般に、超音波洗浄は例えば油脂の付着
した被洗浄物の脱脂洗浄に用いられたり、あるいは、清
浄な表面が要求される半導体デバイスやガラス基板等の
超精密洗浄に用いられている。今日、半導体デバイスの
高集積化、液晶表示素子用ガラス基板の大型化に伴い、
基板洗浄プロセスにおける基板上の微粒子等の除去能力
の向上が強く望まれるなか、超音波洗浄は、その微粒子
の除去に効果ある方法の一つとして注目されている。
2. Description of the Related Art In general, ultrasonic cleaning is used, for example, for degreasing cleaning of an object to be cleaned with oil or fat, or for ultraprecision cleaning of semiconductor devices, glass substrates, etc., which require a clean surface. There is. Today, as semiconductor devices become highly integrated and glass substrates for liquid crystal display elements become larger,
While it is strongly desired to improve the ability of removing fine particles on the substrate in the substrate cleaning process, ultrasonic cleaning is drawing attention as one of the effective methods for removing the fine particles.

【0003】超音波洗浄を行う超音波洗浄装置の一例
を、図4に基づいて説明すると、超音波洗浄装置には、
洗浄液8を貯溜する超音波洗浄槽12が備えられてお
り、この超音波洗浄槽12の底部に、超音波を発生させ
る超音波振動子14が配設されている。また、超音波洗
浄槽12内部には、揺動かご13が配設されており、こ
の揺動かご13を揺動させることで、洗浄液8を撹拌す
るようになっている。そして、超音波洗浄槽12の上部
には、オーバー・フロー槽12aが設けられており、こ
のオーバー・フロー槽12aの底部と超音波洗浄槽12
とを、ポンプ16とフィルタ17とが設けられている連
通管15を介して連結することで、オーバー・フローシ
ステムが構成されている。このオーバー・フローシステ
ムにて、洗浄液中の微粒子等は、効率よくフィルタ17
にて濾過され、濾過後の清浄な洗浄液8は、再び超音波
洗浄槽12内へ戻され、循環利用されるようになってい
る。
An example of an ultrasonic cleaning device for performing ultrasonic cleaning will be described with reference to FIG.
An ultrasonic cleaning tank 12 that stores the cleaning liquid 8 is provided, and an ultrasonic vibrator 14 that generates ultrasonic waves is arranged at the bottom of the ultrasonic cleaning tank 12. Further, a rocking basket 13 is provided inside the ultrasonic cleaning tank 12, and the cleaning liquid 8 is agitated by rocking the rocking basket 13. An overflow tank 12a is provided above the ultrasonic cleaning tank 12, and the bottom of the overflow tank 12a and the ultrasonic cleaning tank 12 are provided.
An overflow system is configured by connecting and via the communication pipe 15 in which the pump 16 and the filter 17 are provided. With this over-flow system, fine particles and the like in the cleaning liquid are efficiently filtered by the filter 17.
The clean cleaning liquid 8 after being filtered in (1) is returned to the ultrasonic cleaning tank 12 and is recycled.

【0004】このような超音波洗浄装置を使用して、被
洗浄基板9の洗浄を行う際、複数枚の被洗浄基板9…を
所定の間隔で被洗浄基板用の保持部材であるキャリア1
1に収容し、これを超音波洗浄槽12内に備えられた揺
動かご13内部に入れる。キャリア11が超音波洗浄槽
12内部へ入れられると、超音波振動子14が作動し、
超音波が発せられ、同時に、揺動かご13の揺動が開始
する。超音波振動子14によって発せられた超音波は、
まず洗浄液8に伝播し、振動した洗浄液8を介して被洗
浄基板9に伝播し、発生周波数が数十kHz以下の場合
は主に浸食効果、またメガソニック領域になると振動加
速度効果により、被洗浄基板9の表面に付着した微粒子
等を解離する。解離された微粒子等は、超音波洗浄槽1
2のオーバー・フローシステムにより超音波洗浄槽12
外部へ排出され、フィルタ17により効率良く補足・濾
過されて除去される。
When the substrate 9 to be cleaned is cleaned by using such an ultrasonic cleaning apparatus, a plurality of substrates 9 to be cleaned are held at predetermined intervals and the carrier 1 is a holding member for the substrate to be cleaned.
1 and put it in an oscillating car 13 provided in the ultrasonic cleaning tank 12. When the carrier 11 is put into the ultrasonic cleaning tank 12, the ultrasonic vibrator 14 operates,
Ultrasonic waves are emitted, and at the same time, rocking of the rocking car 13 starts. The ultrasonic waves emitted by the ultrasonic transducer 14 are
First, the cleaning liquid 8 propagates to the substrate 9 to be cleaned through the vibrated cleaning liquid 8 and is mainly eroded when the generated frequency is several tens of kHz or less, and when the megasonic region is reached, the vibration acceleration effect causes the cleaning to be performed. The fine particles and the like attached to the surface of the substrate 9 are dissociated. Ultrasonic cleaning tank 1 for dissociated particles
Ultrasonic cleaning tank 12 with 2 overflow systems
It is discharged to the outside and is efficiently captured and filtered by the filter 17 to be removed.

【0005】ところで、このように超音波洗浄にて被洗
浄基板9に付着した微粒子等の除去を行う場合、微粒子
等の除去の観点から、オーバー・フローシステムの濾過
流量、揺動かご13の揺動速度、被洗浄基板9の基板ピ
ッチ、及び洗浄液8の種類等と、被洗浄基板9の表面が
受ける超音波強度との関係が最適化されていることが望
ましく、特に、被洗浄基板9が液晶表示素子用ガラス基
板の場合、現状でも300×400mm角程度の大きさ
を有し、将来さらに大型化され、500×600mm角
程度の大型基板が使用される可能性もあり、このように
被洗浄基板9のサイズが大型化すると、現状以上にそれ
らの関係の最適化が望まれている。なぜならば、それら
が最適化されておらず、被洗浄基板9に対する超音波強
度がそれらより相対的に強い場合は被洗浄基板9の破損
に、逆に弱い場合は洗浄むらや洗浄不良につながり、そ
して、被洗浄基板9の基板サイズが大型化するにつれて
その影響をより強く受けることとなるからである。
By the way, when the fine particles and the like adhering to the substrate 9 to be cleaned are removed by the ultrasonic cleaning as described above, from the viewpoint of removing the fine particles and the like, the filtration flow rate of the over-flow system and the shaking of the rocking basket 13 are considered. It is desirable that the relationship between the moving speed, the substrate pitch of the substrate 9 to be cleaned, the type of the cleaning liquid 8 and the ultrasonic intensity received by the surface of the substrate 9 to be cleaned be optimized. In the case of a glass substrate for a liquid crystal display element, it has a size of about 300 × 400 mm square at present, and it may be further enlarged in the future, and a large substrate of about 500 × 600 mm square may be used. As the size of the cleaning substrate 9 increases, it is desired to optimize the relationship between them even more than the current situation. This is because they are not optimized, and when the ultrasonic intensity for the substrate 9 to be cleaned is relatively higher than those, damage to the substrate 9 to be cleaned, and conversely if it is weak, uneven cleaning or poor cleaning is caused, Then, as the substrate size of the substrate to be cleaned 9 becomes larger, the influence thereof is more strongly influenced.

【0006】濾過流量、揺動速度、被洗浄基板9の基板
ピッチ、及び洗浄液8の種類等と、被洗浄基板9の表面
が受ける超音波強度との関係が最適化されていないため
に生じる不具合を詳細に説明すると、即ち、 超音波強度に対して相対的に濾過流量が少ない場合
は、超音波によって、一度は被洗浄基板9の基板表面か
ら微粒子等を解離することができても、それらの超音波
洗浄槽12外部への排出速度が遅いために、基板表面に
微粒子等が再付着する可能性が高くなり、これにより、
洗浄不良を生じ易い。反対に、超音波強度に対して相対
的に濾過流量が多い場合は、基板表面への超音波の伝播
が妨げられ、超音波による洗浄効果が得難くなるので、
基板表面に付着した微粒子等が解離し難くなり、洗浄む
らを生じ易い。
Problems caused by the fact that the relationship between the filtration flow rate, the rocking speed, the substrate pitch of the substrate 9 to be cleaned, the type of the cleaning liquid 8 and the ultrasonic intensity received by the surface of the substrate 9 to be cleaned is not optimized. That is, when the filtration flow rate is relatively small with respect to the ultrasonic intensity, the ultrasonic waves can dissociate the fine particles and the like from the substrate surface of the substrate 9 to be cleaned at one time. Since the discharging speed of the ultrasonic cleaning tank 12 to the outside is slow, the possibility that fine particles or the like will re-adhere to the substrate surface increases.
Poor cleaning is likely to occur. On the contrary, if the filtration flow rate is relatively large with respect to the ultrasonic intensity, the propagation of the ultrasonic waves to the substrate surface is hindered and the cleaning effect by the ultrasonic waves becomes difficult to obtain,
Fine particles and the like attached to the surface of the substrate are less likely to be dissociated, and uneven cleaning is likely to occur.

【0007】 超音波強度に対して相対的に揺動速度
が遅い場合は、単位面積・単位時間当たりの基板表面が
受ける超音波強度が増大するので、その程度が大きい場
合は、被洗浄基板9を破損させる可能性が高くなる。反
対に、超音波強度に対して相対的に揺動速度が速い場合
は、洗浄液8を必要以上に撹拌してしまうため、基板表
面への超音波の伝播が妨げられて超音波による洗浄効果
が得難くなり、これにより、基板表面に付着した微粒子
等が解離し難くなり、洗浄むらを生じ易い。
When the rocking speed is relatively slow with respect to the ultrasonic wave intensity, the ultrasonic wave intensity received by the substrate surface per unit area and unit time increases. The chances of damaging the On the other hand, when the rocking speed is relatively high with respect to the ultrasonic wave intensity, the cleaning liquid 8 is agitated more than necessary, so that the propagation of the ultrasonic waves to the substrate surface is hindered and the cleaning effect by the ultrasonic waves is increased. It becomes difficult to obtain the particles, which makes it difficult for the fine particles and the like adhering to the substrate surface to dissociate, and uneven cleaning is likely to occur.

【0008】 超音波強度に対して相対的に被洗浄基
板9の基板ピッチが狭い場合は、超音波強度の減衰の程
度が増大することから、基板表面が受ける超音波強度が
減少し、基板表面への超音波の伝播が妨げられて超音波
による洗浄効果が得難くなり、これにより、基板表面に
付着した微粒子等が解離し難くなり、洗浄むらを生じ易
い。
When the substrate pitch of the substrate 9 to be cleaned is relatively small with respect to the ultrasonic wave intensity, the degree of attenuation of the ultrasonic wave intensity increases, so that the ultrasonic wave intensity received by the substrate surface decreases and the substrate surface The propagation of ultrasonic waves to the substrate is hindered, and it becomes difficult to obtain the cleaning effect by the ultrasonic waves. This makes it difficult for the fine particles and the like adhering to the substrate surface to dissociate, and uneven cleaning is likely to occur.

【0009】 超音波により浸食作用が発生し易い洗
浄液8の場合、超音波強度が相対的に大きいと、浸食作
用による被洗浄基板9の破損につながる。
In the case of the cleaning liquid 8 in which the erosion effect is easily generated by the ultrasonic waves, if the ultrasonic wave intensity is relatively large, the substrate to be cleaned 9 is damaged by the erosion effect.

【0010】そこで、従来から、超音波強度センサを使
用して超音波洗浄槽12内部の洗浄液8の超音波強度を
検出し、これに基づいて、濾過流量、揺動速度、被洗浄
基板9の基板ピッチ、及び洗浄液8の種類等と、被洗浄
基板9の表面が受ける超音波強度との関係が最適化され
るように、ポンプ16のポンプ出力、揺動かご12を揺
動させるモータ出力、被洗浄基板9の基板ピッチ等を変
化させることで、被洗浄基板9の破損や、洗浄不良、洗
浄むら等を回避することが行われている。
Therefore, conventionally, an ultrasonic intensity sensor is used to detect the ultrasonic intensity of the cleaning liquid 8 in the ultrasonic cleaning tank 12, and based on this, the filtration flow rate, the rocking speed, and the substrate to be cleaned 9 are detected. The pump output of the pump 16 and the motor output for rocking the rocking basket 12 so that the relationship between the substrate pitch, the type of the cleaning liquid 8 and the like and the ultrasonic intensity received by the surface of the substrate 9 to be cleaned is optimized. By changing the substrate pitch or the like of the substrate 9 to be cleaned, damage to the substrate 9 to be cleaned, poor cleaning, uneven cleaning, etc. are avoided.

【0011】従来使用されている超音波強度センサ21
は、必要に応じて超音波洗浄槽12内部の洗浄液8に浸
漬させて使用されるもので、図5に示すように、棒状タ
イプで、保護管22の内部の先端側に、圧電素子からな
る洗浄液8の振動を振動強度に対応した電気信号強度に
変換する超音波強度検出素子24が設けられた構成を有
しており、この超音波強度検出素子24を挾持している
二つの電極部23・23とこれらに接続された電極線2
3a・23aにより、超音波強度検出素子24にて変換
された電気信号が、保護管22の後端側に接続されたケ
ーブル7まで導かれ、この電気信号が、ケーブル7を介
して、図4に示す電気信号処理装置18及びデータ処理
装置19に入力され、超音波強度を測定できるようにな
っている。
The ultrasonic intensity sensor 21 used conventionally
5 is used by immersing it in the cleaning liquid 8 inside the ultrasonic cleaning tank 12 as needed. As shown in FIG. 5, it is a rod-shaped type and is composed of a piezoelectric element on the tip side inside the protective tube 22. The ultrasonic wave intensity detecting element 24 for converting the vibration of the cleaning liquid 8 into the electric signal intensity corresponding to the vibration intensity is provided, and the two electrode portions 23 holding the ultrasonic wave intensity detecting element 24 are sandwiched therebetween. .23 and electrode wire 2 connected to them
The electric signal converted by the ultrasonic intensity detecting element 24 is guided to the cable 7 connected to the rear end side of the protective tube 22 by 3a and 23a, and the electric signal is transmitted via the cable 7 to the cable 7 shown in FIG. The electric signal processing device 18 and the data processing device 19 shown in FIG.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記従
来の超音波強度センサ21を使用しての超音波強度の検
出では、濾過流量、揺動速度、被洗浄基板9の基板ピッ
チ、及び洗浄液8の種類等と、被洗浄基板9の表面が受
ける超音波強度との関係を効果的に最適化させることが
できないという問題が生じている。
However, in the ultrasonic intensity detection using the conventional ultrasonic intensity sensor 21, the filtration flow rate, the rocking speed, the substrate pitch of the substrate 9 to be cleaned, and the cleaning liquid 8 are detected. There is a problem that the relationship between the type and the like and the ultrasonic intensity received by the surface of the substrate 9 to be cleaned cannot be effectively optimized.

【0013】即ち、従来の超音波強度センサ21は、必
要に応じて外部から超音波洗浄槽12内へ入れ、洗浄液
8に浸漬させることで、超音波洗浄槽12内部の洗浄液
8の超音波強度を検出するようになっており、被洗浄基
板9における基板周辺部や、基板間の洗浄液8の受ける
超音波強度を検出するようになっている。したがって、
被洗浄基板9の基板表面が直接受ける超音波強度を検出
することはできず、おおよそ、それに近い値しか検出す
ることができない。しかも、特に、液晶表示素子用ガラ
ス基板等の大型基板の超音波洗浄処理の場合など、超音
波振動子からの距離による減衰などで、基板表面が受け
る超音波強度の面内分布が発生し易いが、従来の超音波
強度センサ21にて、このような超音波強度の面内分布
を検出したい場合は、超音波強度センサ21を移動させ
ながら超音波強度を検出していかなければならず、甚だ
手間取る作業が必要である。しかも、キャリア11内に
収容されている被洗浄基板9の基板ピッチが、超音波強
度センサ21の外形寸法より狭い場合、基板間に超音波
強度センサ21を入れることができないので、基板間の
超音波強度も検出することができず、基板周辺部の超音
波強度しか検出できないこととなる。
That is, the conventional ultrasonic intensity sensor 21 is put into the ultrasonic cleaning tank 12 from the outside as necessary and immersed in the cleaning liquid 8 to obtain the ultrasonic intensity of the cleaning liquid 8 inside the ultrasonic cleaning tank 12. Is detected, and the ultrasonic intensity received by the cleaning liquid 8 between the substrates and the peripheral portion of the substrate 9 to be cleaned is detected. Therefore,
The ultrasonic wave intensity directly received by the substrate surface of the substrate to be cleaned 9 cannot be detected, and only a value close to it can be detected. Moreover, in particular, in the case of ultrasonic cleaning treatment of a large substrate such as a glass substrate for a liquid crystal display element, an in-plane distribution of ultrasonic intensity received by the substrate surface is likely to occur due to attenuation due to the distance from the ultrasonic transducer. However, if the conventional ultrasonic intensity sensor 21 wants to detect such an in-plane distribution of the ultrasonic intensity, the ultrasonic intensity must be detected while moving the ultrasonic intensity sensor 21, It takes a lot of time and effort. In addition, when the substrate pitch of the substrate 9 to be cleaned housed in the carrier 11 is narrower than the outer dimensions of the ultrasonic intensity sensor 21, the ultrasonic intensity sensor 21 cannot be inserted between the substrates, so that the ultrasonic force between the substrates is not increased. The sound wave intensity cannot be detected, and only the ultrasonic wave intensity around the substrate can be detected.

【0014】したがって、上記したように、従来の超音
波強度センサ21を使用した超音波強度の検出では、濾
過流量、揺動速度、基板ピッチ、及び洗浄液の種類等と
基板表面が受ける超音波強度との関係を最適化すること
が、困難なこととなっている。
Therefore, as described above, in the detection of the ultrasonic intensity using the conventional ultrasonic intensity sensor 21, the filtering flow rate, the rocking speed, the substrate pitch, the type of the cleaning liquid, and the ultrasonic intensity received by the substrate surface. It has been difficult to optimize the relationship with.

【0015】そこで、本発明は、上記課題に鑑みなされ
たもので、被洗浄基板の基板表面が直接受ける超音波強
度を複数箇所にて検出できる超音波強度センサを提供
し、かつ、この超音波強度センサを使用して、被洗浄基
板の表面に付着した微粒子等を効率よく除去すべく、濾
過流量、揺動速度、基板ピッチ、及び洗浄液の種類等
と、基板表面が受ける超音波強度との関係の最適化を図
るのに必要な被洗浄基板の基板表面の超音波強度を、効
果的に検出できる検出方法を提案することを目的として
いる。
Therefore, the present invention has been made in view of the above problems, and provides an ultrasonic intensity sensor capable of detecting the ultrasonic intensity directly received by the substrate surface of the substrate to be cleaned at a plurality of points, and the ultrasonic intensity sensor In order to efficiently remove fine particles and the like adhering to the surface of the substrate to be cleaned using the intensity sensor, the filtration flow rate, the rocking speed, the substrate pitch, the type of cleaning liquid, and the ultrasonic intensity received by the substrate surface are used. It is an object of the present invention to propose a detection method that can effectively detect the ultrasonic intensity of the substrate surface of the substrate to be cleaned, which is necessary for optimizing the relationship.

【0016】[0016]

【課題を解決するための手段】本発明の請求項1記載の
超音波強度センサは、上記課題を解決するために、複数
個の超音波強度検出素子が基板表面に形成されているこ
とを特徴としている。
In order to solve the above-mentioned problems, the ultrasonic intensity sensor according to claim 1 of the present invention is characterized in that a plurality of ultrasonic intensity detecting elements are formed on the surface of the substrate. I am trying.

【0017】本発明の請求項2記載の超音波強度センサ
は、上記課題を解決するために、上記請求項1の超音波
強度センサにおいて、超音波強度検出素子が圧電素子か
らなることを特徴としている。
In order to solve the above-mentioned problems, the ultrasonic intensity sensor according to a second aspect of the present invention is characterized in that, in the ultrasonic intensity sensor according to the first aspect, the ultrasonic intensity detecting element is a piezoelectric element. There is.

【0018】本発明の請求項3記載の超音波強度センサ
は、上記課題を解決するために、上記請求項1又は2記
載の超音波強度センサにおいて、複数個の超音波強度検
出素子の上に保護膜が形成されていることを特徴として
いる。
In order to solve the above-mentioned problems, the ultrasonic intensity sensor according to claim 3 of the present invention is the ultrasonic intensity sensor according to claim 1 or 2, wherein a plurality of ultrasonic intensity detection elements are provided. It is characterized in that a protective film is formed.

【0019】本発明の請求項4記載の超音波強度検出方
法は、上記課題を解決するために、上記請求項1,2又
は3記載の超音波強度センサを複数枚配列し、超音波強
度を3次元的に検出することを特徴としている。
In order to solve the above-mentioned problems, an ultrasonic intensity detecting method according to a fourth aspect of the present invention arranges a plurality of the ultrasonic intensity sensors according to the above-mentioned first, second or third, and determines the ultrasonic intensity. It is characterized by three-dimensional detection.

【0020】本発明の請求項5記載の超音波強度検出方
法は、上記課題を解決するために、上記請求項4記載の
超音波強度検出方法において、被洗浄基板保持用の保持
部材の内部に、超音波強度センサを複数枚配列すること
を特徴としている。
In order to solve the above-mentioned problems, the ultrasonic intensity detecting method according to claim 5 of the present invention is the ultrasonic intensity detecting method according to claim 4, wherein the holding member for holding the substrate to be cleaned is provided inside. It is characterized by arranging a plurality of ultrasonic intensity sensors.

【0021】[0021]

【作用】上記の請求項1の構成によれば、超音波強度検
出素子が基板表面に形成されているので、基板表面が直
接受ける超音波強度を検出でき、しかも、超音波強度検
出素子が複数個設けられているので、基板表面における
中心部や周辺部など、複数箇所の超音波強度を検出でき
るようになる。そして、請求項2の構成を採用すれば、
上記超音波強度検出素子には、圧電素子を用いることが
でき、また、請求項3の構成を採用し、超音波強度検出
素子の上に保護膜を設けることで、超音波強度検出素子
が超音波にて剥離されるのを効果的に抑制し、超音波強
度センサの寿命を延ばすことができる。
According to the above-mentioned structure, since the ultrasonic wave intensity detecting element is formed on the substrate surface, the ultrasonic wave intensity directly received by the substrate surface can be detected, and more than one ultrasonic wave intensity detecting element is provided. Since the individual pieces are provided, it becomes possible to detect the ultrasonic wave intensity at a plurality of locations such as the central portion and the peripheral portion on the substrate surface. And if the configuration of claim 2 is adopted,
A piezoelectric element can be used as the ultrasonic intensity detecting element, and the ultrasonic intensity detecting element can be superposed by providing the protective film on the ultrasonic intensity detecting element. It is possible to effectively suppress the peeling by the sound wave and extend the life of the ultrasonic intensity sensor.

【0022】そして、このような超音波強度センサを、
請求項4に記載されているように、複数枚配列すること
により、超音波強度を3次元的に検出することができ、
例えば、その配列方法として、請求項5に記載されてい
るように、被洗浄基板保持用の保持部材の内部に複数枚
設置することにより、保持部材に保持された被洗浄基板
が受ける超音波強度を3次元的に検出することができ
る。具体的に説明すると、保持部材に保持される被洗浄
基板の数枚、もしくは全部を、上記超音波強度センサに
置き換えることで、保持部材に保持される各被洗浄基板
の基板表面が受ける超音波強度を検出することができ
る。
Then, such an ultrasonic intensity sensor is
As described in claim 4, by arranging a plurality of sheets, the ultrasonic intensity can be three-dimensionally detected,
For example, as an arrangement method thereof, as described in claim 5, by installing a plurality of substrates inside the holding member for holding the substrate to be cleaned, the ultrasonic intensity received by the substrate to be cleaned held by the holding member is increased. Can be detected three-dimensionally. More specifically, by replacing some or all of the substrates to be cleaned held by the holding member with the ultrasonic intensity sensors, ultrasonic waves received by the substrate surface of each substrate to be cleaned held by the holding member can be received. The intensity can be detected.

【0023】したがって、このような超音波強度センサ
を使用して、超音波強度を3次元的に検出することで、
例えば超音波洗浄装置における、濾過流量、揺動速度、
基板ピッチ、及び洗浄液の種類等と、基板表面が受ける
超音波強度との関係を効果的に最適化することが可能と
なり、被洗浄基板の破損や、被洗浄基板の洗浄不良・洗
浄むら等の不具合を引き起こすことなく、効率よく被洗
浄基板に付着している微粒子等を除去することができ
る。
Therefore, by using such an ultrasonic intensity sensor to detect ultrasonic intensity three-dimensionally,
For example, in an ultrasonic cleaning device, the filtration flow rate, the rocking speed,
It is possible to effectively optimize the relationship between the substrate pitch, the type of cleaning liquid, and the ultrasonic wave intensity received on the substrate surface, and to prevent damage to the substrate to be cleaned, poor cleaning of the substrate to be cleaned, uneven cleaning, etc. It is possible to efficiently remove the fine particles and the like adhering to the substrate to be cleaned without causing a problem.

【0024】[0024]

【実施例】本発明の一実施例について図1ないし図3に
基づいて説明すれば、以下の通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following will describe one embodiment of the present invention with reference to FIGS.

【0025】本発明に係る超音波強度センサ1が適用さ
れる超音波洗浄装置は、半導体デバイスの洗浄に用いら
れる装置であり、図3に示すように、洗浄液8を貯溜す
る超音波洗浄槽12が備えられており、この超音波洗浄
槽12の底部に、超音波を発生させる超音波振動子14
が配設されている。また、超音波洗浄槽12内部には、
図示しないモータのモータ出力にて揺動される揺動かご
13が配設されており、この揺動かご13を揺動させる
ことで、洗浄液8を撹拌するようになっている。そし
て、超音波洗浄槽12の上部には、オーバー・フロー槽
12aが設けられており、このオーバー・フロー槽12
aの底部と超音波洗浄槽12とを、ポンプ16とフィル
タ17とが設けられている連通管15を介して連結する
ことで、超音波洗浄槽12内部の洗浄液8が下方から上
方へと流れるオーバー・フローシステムが構成されてい
る。このオーバー・フローシステムにて、洗浄液中の微
粒子等は、微粒子の粒子径を考慮したフィルタ17にて
効率よく捕捉・濾過されて洗浄液中から排出される。そ
して、濾過後の洗浄液8は、再び超音波洗浄槽12内へ
戻され、循環利用されるようになっている。
An ultrasonic cleaning apparatus to which the ultrasonic intensity sensor 1 according to the present invention is applied is an apparatus used for cleaning semiconductor devices, and as shown in FIG. 3, an ultrasonic cleaning tank 12 for storing a cleaning liquid 8 therein. Is provided, and an ultrasonic transducer 14 for generating ultrasonic waves is provided at the bottom of the ultrasonic cleaning tank 12.
Is provided. In addition, inside the ultrasonic cleaning tank 12,
An oscillating car 13 that is oscillated by the motor output of a motor (not shown) is provided, and the cleaning liquid 8 is agitated by oscillating the oscillating car 13. An overflow tank 12a is provided above the ultrasonic cleaning tank 12, and the overflow tank 12a is provided.
By connecting the bottom portion of a and the ultrasonic cleaning tank 12 via the communication pipe 15 provided with the pump 16 and the filter 17, the cleaning liquid 8 in the ultrasonic cleaning tank 12 flows from the lower side to the upper side. Overflow system is configured. In this over-flow system, the fine particles and the like in the cleaning liquid are efficiently captured and filtered by the filter 17 in consideration of the particle diameter of the fine particles and discharged from the cleaning liquid. Then, the cleaning liquid 8 after filtering is returned to the ultrasonic cleaning tank 12 again and is circulated and used.

【0026】このような超音波洗浄装置を使用して、半
導体デバイスである被洗浄基板9の洗浄を行う際、複数
の被洗浄基板9…を被洗浄基板保持用の保持部材である
キャリア11に所定間隔で収容した状態で、超音波洗浄
槽12内に備えられた揺動かご13内部に入れる。キャ
リア11が超音波洗浄槽12内部へ入れられると、超音
波振動子14が作動し、超音波が発せられ、同時に、揺
動かご13の揺動が開始する。超音波振動子14によっ
て発せられた超音波は、まず洗浄液8に伝播し、振動し
た洗浄液8を介して被洗浄基板9に伝播し、発生周波数
が数十kHz以下の場合は主に浸食効果、またメガソニ
ック領域になると振動加速度効果より、被洗浄基板9の
表面に付着した微粒子等を解離する。解離された微粒子
等は、超音波洗浄槽12のオーバー・フローシステムに
より超音波洗浄槽12外部へ排出され、フィルタ17に
より効率良く補足・濾過され、除去される。濾過後の清
浄な洗浄液8は、再び超音波洗浄槽12内部へ戻され
る。
When the substrate 9 to be cleaned, which is a semiconductor device, is cleaned using such an ultrasonic cleaning apparatus, a plurality of substrates 9 to be cleaned are mounted on a carrier 11 which is a holding member for holding the substrate to be cleaned. In a state where the ultrasonic cleaning tank 12 is housed at a predetermined interval, the ultrasonic cleaning tank 12 is placed in an oscillating cage 13. When the carrier 11 is put into the ultrasonic cleaning tank 12, the ultrasonic vibrator 14 is activated and ultrasonic waves are emitted, and at the same time, the swing of the swing cage 13 is started. The ultrasonic wave generated by the ultrasonic oscillator 14 first propagates to the cleaning liquid 8 and then to the substrate 9 to be cleaned through the vibrated cleaning liquid 8. When the generated frequency is several tens of kHz or less, the erosion effect is mainly generated. Further, in the megasonic region, fine particles and the like adhering to the surface of the substrate 9 to be cleaned are dissociated due to the vibration acceleration effect. The dissociated fine particles and the like are discharged to the outside of the ultrasonic cleaning tank 12 by the overflow system of the ultrasonic cleaning tank 12, and are efficiently captured / filtered by the filter 17 and removed. The filtered clean cleaning liquid 8 is returned to the inside of the ultrasonic cleaning tank 12 again.

【0027】このような超音波洗浄装置に備えられる本
発明に係る超音波強度センサ1は、図1に示すように、
上記被洗浄基板9と同じ大きさのベース基板2を有して
おり、このベース基板2の基板表面のほぼ全領域を埋め
尽くすように、複数の超音波強度を電気変換するための
超音波強度検出素子である圧電素子3が配列して形成さ
れている。尚、実際には、圧電素子3がベース基板2の
表面に直接形成されているのではなく、図2の断面図に
示すように、ベース基板2の表面に電極4が形成されて
おり、この上に圧電素子3が、そして、さらにその上に
もう一方の電極4が形成された構成となっている。これ
ら一対の電極4・4には、ベース基板2の一端部に設け
られたアダプター6にまで圧電素子3で検出された電気
信号を導くための電極線部4a・4aが一体に形成され
ている。上記ベース基板2の一端部に設けられたアダプ
ター6には、ケーブル7が接続されており、このケーブ
ル7を介して、図3に示す電気信号処理装置18、デー
タ処理装置19、モニタ20が順に接続されている。
The ultrasonic intensity sensor 1 according to the present invention provided in such an ultrasonic cleaning apparatus is, as shown in FIG.
The base substrate 2 has the same size as the substrate 9 to be cleaned, and the ultrasonic intensity for electrically converting a plurality of ultrasonic intensities so as to fill almost the entire area of the substrate surface of the base substrate 2. Piezoelectric elements 3 that are detection elements are arranged and formed. In reality, the piezoelectric element 3 is not directly formed on the surface of the base substrate 2, but the electrode 4 is formed on the surface of the base substrate 2 as shown in the sectional view of FIG. The piezoelectric element 3 is formed on the upper side, and the other electrode 4 is further formed thereon. Electrode wire portions 4a, 4a for guiding an electric signal detected by the piezoelectric element 3 to an adapter 6 provided at one end of the base substrate 2 are integrally formed with the pair of electrodes 4, 4. . A cable 7 is connected to an adapter 6 provided at one end of the base substrate 2, and an electric signal processing device 18, a data processing device 19, and a monitor 20 shown in FIG. It is connected.

【0028】上記電極4・4,…、電極線部4a・4
a,…、及び圧電素子3…の形成は、ベース基板2の表
面に、電極4・4,…、電極線部4a・4a,…はスパ
ッタ法等、圧電素子3…はスパッタまたはCVD法等に
より、所望の膜厚で薄膜を形成した後、エッチング等の
微細加工を施し、所望の大きさにパターニングすること
で形成されており、本実施例においては、さらにその上
を、保護膜5で覆うことで、圧電素子3…や電極4・
4,…、電極線部4a・4a,…が剥離されることを抑
制し、超音波強度センサ1の寿命を延ばすような処理が
施されている。
.., electrode wire portions 4a, 4
, and the piezoelectric elements 3 are formed on the surface of the base substrate 2 by the sputtering method or the like for the electrodes 4, 4, the electrode wire portions 4a, 4a ,. By forming a thin film with a desired film thickness, and then performing fine processing such as etching and patterning to a desired size. In this embodiment, a protective film 5 is further formed on the thin film. By covering it, the piezoelectric element 3 ...
, And the electrode wire portions 4a, 4a, ... Are prevented from being peeled off, and a treatment is performed to extend the life of the ultrasonic intensity sensor 1.

【0029】上記超音波強度センサ1を、図3に示すよ
うに、例えばキャリア11内に保持した状態で、上記超
音波洗装置の超音波洗浄槽12内部へ配設すると、超音
波振動子14によって発せられた超音波は、洗浄液8を
伝播することにより、洗浄液8の振動を発生させる。洗
浄液8の振動は超音波強度センサ1におけるベース基板
2上に形成された個々の圧電素子3…により、振動強度
に対応した電気信号に変換される。電気信号は、圧電素
子3の両面に形成された電極4・4,…、及び電極線部
4a・4a,…によりベース基板2の端部のアダプター
6に導かれ、アダプター6に接続されたケーブル7を介
して、電気信号処理装置18に伝送される。電気信号処
理装置18からの電気信号出力は、データ処理装置19
に入力されてデータ処理され、ベース基板2の基板表面
の各圧電素子3で検出される超音波強度が、電気信号強
度としてモニタ20に表示され、超音波強度を検出して
測定する。これにより、この超音波強度センサ1と同じ
状態で超音波洗浄槽12内部に配される被洗浄基板9が
受ける超音波強度を、平面的(2次元的)に検出して測
定することができる。
As shown in FIG. 3, when the ultrasonic intensity sensor 1 is installed inside the ultrasonic cleaning tank 12 of the ultrasonic cleaning device while being held in the carrier 11, for example, the ultrasonic vibrator 14 is installed. The ultrasonic waves generated by the ultrasonic wave propagate through the cleaning liquid 8 to generate vibration of the cleaning liquid 8. The vibration of the cleaning liquid 8 is converted into an electric signal corresponding to the vibration intensity by the individual piezoelectric elements 3 ... Formed on the base substrate 2 in the ultrasonic intensity sensor 1. The electric signal is guided to the adapter 6 at the end of the base substrate 2 by the electrodes 4 and 4 formed on both surfaces of the piezoelectric element 3 and the electrode wire portions 4a and 4a, and the cable connected to the adapter 6. It is transmitted to the electric signal processing device 18 via 7. The electric signal output from the electric signal processing device 18 is the data processing device 19
The ultrasonic intensity detected by each piezoelectric element 3 on the substrate surface of the base substrate 2 after being input to and processed is displayed on the monitor 20 as an electric signal intensity, and the ultrasonic intensity is detected and measured. As a result, in the same state as the ultrasonic intensity sensor 1, the ultrasonic intensity received by the substrate 9 to be cleaned placed inside the ultrasonic cleaning tank 12 can be detected and measured two-dimensionally (two-dimensionally). .

【0030】また、このような超音波強度センサ1を複
数枚用意し、キャリア11内に保持されている被洗浄基
板9の数枚と入れ換えて、もしくは、保持されている全
ての被洗浄基板9と入れ換えてセットして、上記超音波
洗装置の超音波洗浄槽12内部へ配設することで、キャ
リア11内に保持される複数の被洗浄基板9の各基板表
面が受ける超音波強度を、キャリア11内で空間的(3
次元的)に検出して測定することができる。
Further, a plurality of such ultrasonic intensity sensors 1 are prepared and replaced with several substrates 9 to be cleaned held in the carrier 11, or all the substrates 9 to be cleaned held. The ultrasonic intensity received by each substrate surface of the plurality of substrates 9 to be cleaned held in the carrier 11 is set by replacing the above with the ultrasonic cleaning tank 12 of the ultrasonic cleaning device. Spatial (3
It can be detected and measured (dimensionally).

【0031】したがって、このようにして検出された各
超音波強度に基づいて、濾過流量を制御するポンプ16
のポンプ出力、揺動速度を制御する揺動かご13のモー
タ出力の調整を行い、その基板ピッチでの濾過流量、揺
動速度を最適化することができる。また、基板ピッチを
変化させると、これらの関係も変化するが、上述のよう
に、再びその基板ピッチにて超音波強度センサ1…を配
置し、超音波強度を検出することで、基板ピッチ変更後
もこれらの関係を容易に最適化することができる。
Therefore, the pump 16 for controlling the filtration flow rate based on each ultrasonic intensity detected in this way.
The pump output and the motor output of the rocking cage 13 for controlling the rocking speed can be adjusted to optimize the filtration flow rate and rocking speed at the substrate pitch. Further, when the board pitch is changed, these relationships also change. However, as described above, the ultrasonic wave intensity sensors 1 ... Are arranged again at the board pitch, and the ultrasonic wave intensity is detected to change the board pitch. Later, these relationships can be easily optimized.

【0032】これにより、さらなる被洗浄基板9の大型
化が図られたとしても、本発明にかかる上記超音波強度
センサ1を使用することで、濾過流量、揺動速度、基板
ピッチ、及び洗浄液8の種類等と、被洗浄基板9の基板
表面が受ける超音波強度との関係を効果的に最適化する
ことができ、被洗浄基板9の破損や、被洗浄基板9の洗
浄不良・洗浄むら等の不具合を引き起こすことなく、効
率よく被洗浄基板9に付着している微粒子等を除去する
ことができる。
As a result, even if the size of the substrate 9 to be cleaned is further increased, by using the ultrasonic intensity sensor 1 according to the present invention, the filtration flow rate, the rocking speed, the substrate pitch, and the cleaning liquid 8 can be obtained. It is possible to effectively optimize the relationship between the type of the substrate 9 and the ultrasonic intensity received by the substrate surface of the substrate 9 to be cleaned, damage to the substrate 9 to be cleaned, poor cleaning of the substrate 9 to be cleaned, uneven cleaning, etc. The fine particles and the like adhering to the substrate 9 to be cleaned can be efficiently removed without causing the above problem.

【0033】尚、本実施例においては、超音波強度検出
素子として、圧電素子3を例示したが、超音波強度を検
出できるものであればよく、これに限定されるものでは
ない。同様に、ベース基板2の表面に形成した圧電素子
3の配列状態も、これに限定されるものではなく、ベー
ス基板2の基板表面に受ける超音波強度を全体的に検出
できる配列であればよい。
In this embodiment, the piezoelectric element 3 is exemplified as the ultrasonic wave intensity detecting element, but it is not limited to this as long as it can detect the ultrasonic wave intensity. Similarly, the array state of the piezoelectric elements 3 formed on the surface of the base substrate 2 is not limited to this, as long as the ultrasonic intensity received on the substrate surface of the base substrate 2 can be entirely detected. .

【0034】[0034]

【発明の効果】以上のように、本発明は、複数個の超音
波強度検出素子が基板表面に形成されている超音波強度
センサを構成し、この超音波強度センサを、被洗浄基板
保持用の保持部材の内部に、複数枚配列して、保持部材
の内部に保持される被洗浄基板の基板表面が直接受ける
超音波強度を、3次元的に検出するものである。
As described above, the present invention constitutes an ultrasonic wave intensity sensor in which a plurality of ultrasonic wave intensity detecting elements are formed on the surface of a substrate, and the ultrasonic wave intensity sensor is used for holding a substrate to be cleaned. The ultrasonic intensity received directly by the substrate surface of the substrate to be cleaned held inside the holding member is three-dimensionally detected by arranging a plurality of sheets inside the holding member.

【0035】したがって、このような超音波強度センサ
を使用することで、例えば超音波洗浄装置における、濾
過流量、揺動速度、基板ピッチ、及び洗浄液の種類等
と、基板表面が受ける超音波強度との関係を効果的に最
適化することが可能となり、被洗浄基板の破損や、被洗
浄基板の洗浄不良・洗浄むら等の不具合を引き起こすこ
となく、効率よく被洗浄基板に付着している微粒子等を
除去することができるという効果を奏する。
Therefore, by using such an ultrasonic intensity sensor, for example, in the ultrasonic cleaning apparatus, the filtration flow rate, the rocking speed, the substrate pitch, the type of the cleaning liquid, the ultrasonic intensity received by the substrate surface, and the like. It is possible to effectively optimize the relationship between the substrate to be cleaned, and the fine particles etc. that adhere efficiently to the substrate to be cleaned without causing damage to the substrate to be cleaned and defects such as defective cleaning and uneven cleaning of the substrate to be cleaned. There is an effect that can be removed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、保護膜を除い
た状態の超音波強度センサの平面図である。
FIG. 1 shows an embodiment of the present invention and is a plan view of an ultrasonic intensity sensor without a protective film.

【図2】上記超音波強度センサにおける要部の断面図で
ある。
FIG. 2 is a sectional view of a main part of the ultrasonic intensity sensor.

【図3】上記超音波強度センサが使用されている状態
の、超音波洗浄装置の模式図である。
FIG. 3 is a schematic view of an ultrasonic cleaning device in a state where the ultrasonic intensity sensor is used.

【図4】従来の超音波強度センサが使用されている状態
の、超音波洗浄装置の模式図である。
FIG. 4 is a schematic view of an ultrasonic cleaning device in a state where a conventional ultrasonic intensity sensor is used.

【図5】従来の超音波強度センサの断面模式図である。FIG. 5 is a schematic sectional view of a conventional ultrasonic intensity sensor.

【符号の説明】[Explanation of symbols]

1 超音波強度センサ 2 ベース基板(基板) 3 圧電素子(超音波強度検出素子) 4 電極 4a 電極線部 5 保護膜 6 アダプター 7 ケーブル 8 洗浄液 9 被洗浄基板 11 キャリア(被洗浄基板保持用の保持部材) 12 超音波洗浄槽 13 揺動かご 14 超音波振動子 18 電気信号処理装置 19 データ処理装置 20 モニタ 1 Ultrasonic Strength Sensor 2 Base Substrate (Substrate) 3 Piezoelectric Element (Ultrasonic Strength Detection Element) 4 Electrode 4a Electrode Wire Part 5 Protective Film 6 Adapter 7 Cable 8 Cleaning Liquid 9 Cleaning Substrate 11 Carrier (Holding to Hold Cleaning Substrate) Member) 12 Ultrasonic cleaning tank 13 Oscillating basket 14 Ultrasonic transducer 18 Electric signal processing device 19 Data processing device 20 Monitor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04R 17/02 7103−5H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H04R 17/02 7103-5H

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数個の超音波強度検出素子が基板表面に
形成されていることを特徴とする超音波強度センサ。
1. An ultrasonic intensity sensor, wherein a plurality of ultrasonic intensity detecting elements are formed on a surface of a substrate.
【請求項2】上記超音波強度検出素子が圧電素子からな
ることを特徴とする上記請求項1記載の超音波強度セン
サ。
2. The ultrasonic intensity sensor according to claim 1, wherein the ultrasonic intensity detecting element is a piezoelectric element.
【請求項3】複数個の超音波強度検出素子の上に保護膜
が形成されていることを特徴とする上記請求項1又は2
記載の超音波強度センサ。
3. The protective film is formed on a plurality of ultrasonic intensity detecting elements, as described above.
The ultrasonic intensity sensor described.
【請求項4】上記請求項1,2又は3記載の超音波強度
センサを複数枚配列し、超音波強度を3次元的に検出す
ることを特徴とする超音波強度検出方法。
4. An ultrasonic intensity detecting method, comprising arranging a plurality of ultrasonic intensity sensors according to claim 1, 2 or 3 and detecting ultrasonic intensity three-dimensionally.
【請求項5】被洗浄基板保持用の保持部材の内部に、超
音波強度センサを複数枚配列することを特徴とする上記
請求項4記載の超音波強度検出方法。
5. The ultrasonic intensity detecting method according to claim 4, wherein a plurality of ultrasonic intensity sensors are arranged inside the holding member for holding the substrate to be cleaned.
JP5123867A 1993-05-26 1993-05-26 Ultrasonic intensity sensor and ultrasonic intensity detection method Expired - Fee Related JP3037528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123867A JP3037528B2 (en) 1993-05-26 1993-05-26 Ultrasonic intensity sensor and ultrasonic intensity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123867A JP3037528B2 (en) 1993-05-26 1993-05-26 Ultrasonic intensity sensor and ultrasonic intensity detection method

Publications (2)

Publication Number Publication Date
JPH06331429A true JPH06331429A (en) 1994-12-02
JP3037528B2 JP3037528B2 (en) 2000-04-24

Family

ID=14871348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123867A Expired - Fee Related JP3037528B2 (en) 1993-05-26 1993-05-26 Ultrasonic intensity sensor and ultrasonic intensity detection method

Country Status (1)

Country Link
JP (1) JP3037528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038903A (en) * 2018-09-04 2020-03-12 株式会社ディスコ Separation method for wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038903A (en) * 2018-09-04 2020-03-12 株式会社ディスコ Separation method for wafer

Also Published As

Publication number Publication date
JP3037528B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
JP3343775B2 (en) Ultrasonic cleaning equipment
US5071776A (en) Wafer processsing method for manufacturing wafers having contaminant-gettering damage on one surface
US5681396A (en) Method and apparatus for utilizing acoustic coaxing induced microavitation for submicron particulate eviction
US5037208A (en) Immersible transducer assembly
KR20090014974A (en) Cleaning apparatus, cleaning tank, cleaning method and cleaning-control program
JPH0459086A (en) Cleaning device
KR100526192B1 (en) Apparatus and Method For Cleaning Wafer
JPH06331429A (en) Ultrasonic wave intensity sensor and detection method
JPH05326474A (en) Cleaning equipment
JPH0234923A (en) Ultrasonic cleaner
JP3153717B2 (en) Batch type brush cleaning device
JPH0810732A (en) Ultrasonic washing device
JPH0314230A (en) Cleaning of semiconductor wafer and device therefor
JP2000294528A (en) Cleaning device and its method
JP3343781B2 (en) Ultrasonic cleaning equipment
KR19980065775A (en) Multi Oscillation Ultrasonic Cleaner
JP3307869B2 (en) Multi-tank ultrasonic cleaning equipment
JPH09164374A (en) Ultrasonic cleaner
JPH0969506A (en) Ultrasonic cleaning system
JP4209167B2 (en) Cleaning device and cleaning method
JP2883844B2 (en) High frequency cleaning method
JP3326310B2 (en) Ultrasonic cleaning equipment
JP2006198525A (en) Substrate cleaning device
JPH04281884A (en) Washing method for washing brush
JP3066574B2 (en) Cleaning device for rack and its hanging member after aluminum surface treatment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees