JP3343775B2 - Ultrasonic cleaning equipment - Google Patents

Ultrasonic cleaning equipment

Info

Publication number
JP3343775B2
JP3343775B2 JP16187897A JP16187897A JP3343775B2 JP 3343775 B2 JP3343775 B2 JP 3343775B2 JP 16187897 A JP16187897 A JP 16187897A JP 16187897 A JP16187897 A JP 16187897A JP 3343775 B2 JP3343775 B2 JP 3343775B2
Authority
JP
Japan
Prior art keywords
cleaning
tank
diaphragms
sound pressure
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16187897A
Other languages
Japanese (ja)
Other versions
JPH10135176A (en
Inventor
勝利 杢尾
啓治 田口
重徳 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP16187897A priority Critical patent/JP3343775B2/en
Priority to KR1019970041360A priority patent/KR100347650B1/en
Priority to US08/921,328 priority patent/US5911232A/en
Priority to TW086112683A priority patent/TW411523B/en
Publication of JPH10135176A publication Critical patent/JPH10135176A/en
Application granted granted Critical
Publication of JP3343775B2 publication Critical patent/JP3343775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば半導体ウ
エハやLCD用ガラス基板等の被洗浄物を超音波を利用
して洗浄する超音波洗浄装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic cleaning apparatus for cleaning an object to be cleaned such as a semiconductor wafer or a glass substrate for an LCD using ultrasonic waves.

【0002】[0002]

【従来の技術】一般に、半導体製造装置の製造工程にお
いては、半導体ウエハやLCD用ガラス基板等を薬液や
リンス液(洗浄液)等の処理液が貯留された処理槽に順
次浸漬して洗浄を行う液処理方法が広く採用されてい
る。
2. Description of the Related Art Generally, in a manufacturing process of a semiconductor manufacturing apparatus, a semiconductor wafer, a glass substrate for an LCD, and the like are washed by sequentially immersing them in a processing tank in which a processing solution such as a chemical solution or a rinsing solution (cleaning solution) is stored. Liquid treatment methods are widely adopted.

【0003】このような液処理方法の一例として、図1
6に示すように、被洗浄物例えば半導体ウエハW(以下
にウエハという)及び洗浄液例えば純水1を収容する洗
浄槽2の例えば底部に複数の振動板3を接着剤等で接着
してなる超音波洗浄装置が知られている。この超音波洗
浄装置によれば、各振動板3に発振器4から出力電圧例
えば800KHz〜1MHzの高周波電圧を印加するこ
とにより、振動板3を励振させて、ウエハWに付着する
パーティクル等を除去することができる。ここで、パー
ティクルの除去率(A)と音圧(B)との関係は、 A∝T×B(但し、Tは比例定数である) となる。
FIG. 1 shows an example of such a liquid processing method.
As shown in FIG. 6, a plurality of diaphragms 3 are bonded to an object to be cleaned, for example, a semiconductor wafer W (hereinafter, referred to as a wafer) and a cleaning tank 2 for storing a cleaning liquid, for example, pure water 1 by, for example, an adhesive. A sonic cleaning device is known. According to this ultrasonic cleaning apparatus, an output voltage, for example, a high frequency voltage of 800 KHz to 1 MHz is applied from the oscillator 4 to each of the vibration plates 3 to excite the vibration plates 3 to remove particles and the like adhering to the wafer W. be able to. Here, the relationship between the particle removal rate (A) and the sound pressure (B) is as follows: A∝T × B 2 (where T is a proportional constant).

【0004】上記式から判るように振動板3の励振すな
わち音圧とパーティクルの除去率とは比例関係にあるこ
とから、振動板3を励振させて音圧を高めることによ
り、ウエハWに付着するパーティクル等を除去すること
ができる。
As can be seen from the above equation, the excitation of the vibration plate 3, that is, the sound pressure and the particle removal rate are in a proportional relationship. Therefore, the vibration plate 3 is excited and the sound pressure is increased to adhere to the wafer W. Particles and the like can be removed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
この種の洗浄装置においては、振動板3を複数の独立し
た発振器4で駆動しているため、振動板3は絶縁のため
に分離させなくてはならない。そのため、振動板間に隙
間が生じると共に、この隙間に超音波の干渉が生じて図
17(a)に示すように音圧に不均一な部分が生じる。
したがって、パーティクルの除去率が不均一となり、洗
浄むらが生じるという問題があった(図17(b)参
照)。
However, in this type of conventional cleaning apparatus, since the diaphragm 3 is driven by a plurality of independent oscillators 4, the diaphragm 3 does not have to be separated for insulation. Not be. Therefore, a gap is generated between the diaphragms, and interference of ultrasonic waves is generated in the gap, so that a portion having a non-uniform sound pressure is generated as shown in FIG.
Therefore, there is a problem that the removal rate of the particles becomes non-uniform and uneven cleaning occurs (see FIG. 17B).

【0006】この問題を解決する手段として、振動板の
取り付け面に段差を設け、この段差を隔てて両側にそれ
ぞれ振動板を取り付けるようにした超音波洗浄装置が提
案されている(特開平5−243203号公報参照)。
しかしながら、特開平5−243203号公報に記載の
技術においても、隣接する振動間に段差による隙間が生
じるため、超音波の干渉が生じ、音圧を均一にすること
ができず、結局、パーティクルの除去を均一にすること
ができず、洗浄むらが生じるという問題がある。また、
振動板の取り付け面に段差を設けて振動板を取り付ける
ため、組立に精度が要求されると共に、装置が複雑かつ
大型となるという問題もある。
As a means for solving this problem, there has been proposed an ultrasonic cleaning apparatus in which a step is provided on a mounting surface of a diaphragm, and the diaphragm is mounted on both sides with the step being separated (Japanese Unexamined Patent Publication No. Hei. 243203).
However, even in the technique described in Japanese Patent Application Laid-Open No. 5-243203, a gap is formed between adjacent vibrations due to a step, so that interference of ultrasonic waves occurs and the sound pressure cannot be made uniform. There is a problem that the removal cannot be made uniform, resulting in uneven cleaning. Also,
Since the diaphragm is attached by providing a step on the attachment surface of the diaphragm, there is a problem that accuracy is required for assembly and the device becomes complicated and large.

【0007】この発明は上記事情に鑑みなされたもの
で、隣接する振動板間の超音波の干渉を無くし、均一な
音圧分布によりパーティクルの除去率を均一にして洗浄
効率の向上を図れるようにした超音波洗浄装置を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and aims at eliminating the interference of ultrasonic waves between adjacent diaphragms and improving the cleaning efficiency by making the particle removal rate uniform with a uniform sound pressure distribution. It is an object of the present invention to provide an improved ultrasonic cleaning device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明の第1の超音波洗浄装置は、被洗浄物及び
洗浄液を収容する洗浄槽と、この洗浄槽に取り付けられ
る複数の振動板とを具備する超音波洗浄装置において、
上記各振動板を駆動する複数の電源ユニットの出力の位
相を同一の発振源により同位相をもつように制御するこ
とを特徴とするものである(請求項1)。
In order to achieve the above object, a first ultrasonic cleaning apparatus of the present invention comprises a cleaning tank for storing an object to be cleaned and a cleaning liquid, and a plurality of vibration tanks attached to the cleaning tank. An ultrasonic cleaning device comprising a plate and
The output phases of a plurality of power supply units for driving the respective diaphragms are controlled so as to have the same phase by the same oscillation source (claim 1).

【0009】また、この発明の第2の超音波洗浄装置
は、被洗浄物及び洗浄液を収容する洗浄槽と、この洗浄
槽の底面部に接する振動伝播用液体を収容する振動伝播
用槽と、この振動伝播用槽に取り付けられる複数の振動
板とを具備する超音波洗浄装置において、上記各振動板
を駆動する複数の電源ユニットの出力の位相を同一の発
振源により同位相を持つように制御することを特徴とす
るものである(請求項2)。
A second ultrasonic cleaning apparatus according to the present invention comprises: a cleaning tank for storing an object to be cleaned and a cleaning liquid; a vibration transmission tank for storing a vibration transmitting liquid in contact with a bottom portion of the cleaning tank; In an ultrasonic cleaning apparatus including a plurality of diaphragms attached to the vibration propagation tank, the phases of outputs of a plurality of power supply units for driving the respective diaphragms are controlled to have the same phase by the same oscillation source. (Claim 2).

【0010】この発明において、上記各振動板は同一の
制御手段により位相を合わせるようにするものであれ
ば、隣接する振動板間に隙間が生じてもよいが、好まし
くは隣接する振動板間の隙間を可及的に少なくする方が
よい(請求項3)。
In the present invention, a gap may be formed between adjacent diaphragms as long as the respective diaphragms are adjusted in phase by the same control means. It is better to make the gap as small as possible (claim 3).

【0011】また、上記各振動板の固有振動数のばらつ
きを周波数変調することにより制御する方が好ましい
(請求項4)。
It is preferable to control the variation of the natural frequency of each diaphragm by frequency modulation.

【0012】この発明の第1の超音波洗浄装置によれ
ば、各振動板を駆動する複数の電源ユニットの出力の位
相を同一の発振源により一致させることにより、隣接す
る振動板の間での位相のずれによる干渉をなくすことが
できるので、均一な音圧分布が得られると共に、パーテ
ィクルの除去率を均一にすることができる(請求項
1)。
According to the first ultrasonic cleaning apparatus of the present invention, the phases of the outputs of the plurality of power supply units for driving the respective diaphragms are matched by the same oscillation source, so that the phase of the phase between the adjacent diaphragms can be adjusted. Since the interference due to the displacement can be eliminated, a uniform sound pressure distribution can be obtained, and the particle removal rate can be made uniform.

【0013】また、この発明の第2の超音波洗浄装置に
よれば、被洗浄物及び洗浄液を収容する洗浄槽と、この
洗浄槽の底面部に接する振動伝播用液体を収容する振動
伝播用槽と、この振動伝播用槽に取り付けられる複数の
振動板とを具備する超音波洗浄装置において、各振動板
を駆動する複数の電源ユニットの出力の位相を同一の発
振源により同位相を持つように制御するので、パーティ
クルの除去率を均一にすることができると共に過度の超
音波振動によって洗浄槽が損傷を受けるのを防止するこ
とができる(請求項2)。
According to the second ultrasonic cleaning apparatus of the present invention, the cleaning tank for storing the object to be cleaned and the cleaning liquid, and the vibration transmitting tank for storing the vibration transmitting liquid in contact with the bottom of the cleaning tank. And an ultrasonic cleaning apparatus including a plurality of diaphragms attached to the vibration propagation tank, so that the phases of outputs of a plurality of power supply units for driving the respective diaphragms have the same phase by the same oscillation source. Since the control is performed, the removal rate of the particles can be made uniform, and the cleaning tank can be prevented from being damaged by excessive ultrasonic vibration (claim 2).

【0014】また、隣接する振動板間の隙間を可及的に
狭くすることにより、更に確実に音圧分布及びパーティ
クルの除去率を均一にすることができる(請求項3)。
Further, by making the gap between the adjacent diaphragms as narrow as possible, the sound pressure distribution and the particle removal rate can be more reliably made uniform.

【0015】また、発振源の周波数変調により、各振動
板の固有振動数のばらつきの範囲内で、振動板の超音波
出力を平均化することができ、これに伴い更に確実に音
圧分布及びパーティクルの除去率を均一にすることがで
きる(請求項4)。
Further, by the frequency modulation of the oscillation source, the ultrasonic output of the diaphragm can be averaged within the range of the variation of the natural frequency of each diaphragm. The particle removal rate can be made uniform (claim 4).

【0016】更には、洗浄槽に段差を設けることなく振
動板を取り付けることができるので、装置の組立を容易
にすることができ、しかも、同一の発振源によって複数
の振動板を制御するので、構成部材の削減が図れると共
に、装置の小型化を図ることができる。
Further, since the diaphragm can be attached without providing a step in the cleaning tank, the assembly of the apparatus can be facilitated. Further, since a plurality of diaphragms are controlled by the same oscillation source, The number of constituent members can be reduced, and the size of the apparatus can be reduced.

【0017】[0017]

【発明の実施の形態】以下に、この発明の実施の形態を
図面に基づいて詳細に説明する。この実施形態では半導
体ウエハの洗浄処理装置に適用した場合について説明す
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. In this embodiment, a case where the present invention is applied to a semiconductor wafer cleaning processing apparatus will be described.

【0018】図1はこの発明に係る超音波洗浄装置の第
一実施形態を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a first embodiment of the ultrasonic cleaning apparatus according to the present invention.

【0019】上記超音波洗浄装置は、被洗浄物である半
導体ウエハW(以下にウエハという)及び洗浄液例えば
純水1を収容する洗浄槽10と、この洗浄槽10の上端
開口部に連接し、洗浄槽10からオーバーフローした純
水1を受け止める外槽20と、洗浄槽10内においてウ
エハWを保持する保持手段例えばウエハボート30とを
具備してなる。なお、外槽20には排水口21が設けら
れており、この排水口21にドレン弁22を介してドレ
ン管23が接続されている。また、洗浄槽10の底部に
は、純水1を洗浄槽10内に供給する供給手段(図示せ
ず)が設けられている。
The ultrasonic cleaning apparatus is connected to a cleaning tank 10 containing a semiconductor wafer W (hereinafter, referred to as a wafer) to be cleaned and a cleaning liquid, for example, pure water 1, and is connected to an upper end opening of the cleaning tank 10. An outer tank 20 for receiving the pure water 1 overflowing from the cleaning tank 10, and holding means for holding the wafer W in the cleaning tank 10, for example, a wafer boat 30. The outer tub 20 is provided with a drain port 21, and a drain pipe 23 is connected to the drain port 21 via a drain valve 22. A supply unit (not shown) for supplying the pure water 1 into the cleaning tank 10 is provided at the bottom of the cleaning tank 10.

【0020】また、洗浄槽10の底部には、複数枚例え
ば2枚の振動板40a,40bが近接状態例えば0.1
〜0.2mmの間隔をおいて接着剤等で接着されてい
る。この場合、振動板40a,40bはセラミックス製
板材にて形成されており、一方の振動板40aは発振源
50と電源ユニットPU1とを具備する第1の発振器6
0aに接続され、他方の振動板40bは、電源ユニット
PU2を有する第2の発振器60bに接続され、かつ第
2の発振器60bは第1の発振器60aの発振源50に
よって駆動出力の位相が制御されるようになっている。
つまり、振動板40a,40bを励振する電源ユニット
PU1,PU2の出力の位相を合わせることにより均一
な音圧分布が得られるように構成されている。
At the bottom of the washing tank 10, a plurality of, for example, two diaphragms 40a, 40b are in close proximity, for example, 0.1.
It is bonded with an adhesive or the like at an interval of about 0.2 mm. In this case, the vibration plates 40a and 40b are formed of a ceramic plate material, and one of the vibration plates 40a is a first oscillator 6 having an oscillation source 50 and a power supply unit PU1.
0a, the other diaphragm 40b is connected to a second oscillator 60b having a power supply unit PU2, and the second oscillator 60b has its drive output phase controlled by the oscillation source 50 of the first oscillator 60a. It has become so.
That is, a power supply unit for exciting the diaphragms 40a and 40b
The configuration is such that a uniform sound pressure distribution can be obtained by matching the phases of the outputs of PU1 and PU2 .

【0021】この場合、第1の発振器60aに設けられ
た発振源50によって第2の発振器60bの位相を制御
しているが、必しもこのような構造とする必要はなく、
図3に示すように、第1の発振器60aと第2の発振器
60bを共に電源ユニットPU1,PU2のみとし、こ
れら発振器60a,60bを同一の発振源50Aにて位
相を制御するようにしてもよい。
In this case, the phase of the second oscillator 60b is controlled by the oscillation source 50 provided in the first oscillator 60a, but it is not necessary to adopt such a structure.
As shown in FIG. 3, both the first oscillator 60a and the second oscillator 60b may include only the power supply units PU1 and PU2, and the phases of these oscillators 60a and 60b may be controlled by the same oscillation source 50A. .

【0022】上記のように、両振動板40a,40bを
同一の位相で駆動するため、両振動板40a,40bを
隙間無く配置、具体的には隙間を0.1〜0.2mmに
することができる。したがって、超音波の干渉による不
均一性が無くなり、図2(a)に示すように音圧分布を
均一にすることができると共に、図2(b)に示すよう
にパーティクルの除去率を均一にすることができる。
As described above, in order to drive both diaphragms 40a and 40b in the same phase, both diaphragms 40a and 40b are arranged without a gap, specifically, the gap is set to 0.1 to 0.2 mm. Can be. Therefore, the non-uniformity due to the interference of the ultrasonic wave is eliminated, and the sound pressure distribution can be made uniform as shown in FIG. 2A, and the particle removal rate can be made uniform as shown in FIG. 2B. can do.

【0023】上記実施形態では、振動板が2枚の場合に
ついて説明したが、振動板が3枚以上の場合にも同様に
各振動板の位相を同一の発振源で制御することができ
る。例えば、図4及び図5に示すように、洗浄槽10の
底部に振動板40を二列に適宜間隔をおいて配列し、例
えば左右2枚、計4枚の振動板40を1単位として振動
板群41a,41b,41c…41nを形成し、これら
各振動板群をそれぞれ電源ユニットPU1,PU2,P
U3…PUnを有する第1ないし第nの発振器60a〜
60nに接続し、かつ各発振器60a〜60nを同一の
発振源50で制御するように構成する。
In the above embodiment, the case where the number of diaphragms is two has been described. However, even when the number of diaphragms is three or more, the phase of each diaphragm can be similarly controlled by the same oscillation source. For example, as shown in FIGS. 4 and 5, the diaphragms 40 are arranged at appropriate intervals in two rows at the bottom of the cleaning tank 10 and, for example, two diaphragms 40 on the left and right are used as one unit for vibration. The plate groups 41a, 41b, 41c... 41n are formed, and these diaphragm groups are respectively connected to the power supply units PU1, PU2, P
U3... First to n-th oscillators 60a to 60n
60n, and each of the oscillators 60a to 60n is controlled by the same oscillation source 50.

【0024】上記のように構成することにより、各振動
板(具体的には、各振動板群41a〜41n)の位相を
合わせることができ、均一な音圧分布を得ることができ
る。したがって、洗浄槽10内に適宜間隔をおいて収容
された複数枚例えば50枚のウエハWに付着するパーテ
ィクル等を効率よく除去することができる。また、洗浄
槽10の底部に段差を設けることなく振動板40a,4
0bを取り付けることができるので、装置の組立を容易
にすることができ、しかも、同一の発振源50によって
複数の振動板40a,40bを制御するので、構成部材
の削減が図れると共に、装置の小型化を図ることができ
る。
With the above arrangement, the phases of the respective diaphragms (specifically, the respective diaphragm groups 41a to 41n) can be matched, and a uniform sound pressure distribution can be obtained. Therefore, particles and the like adhering to a plurality of, for example, 50 wafers W accommodated in the cleaning tank 10 at appropriate intervals can be efficiently removed. Further, the diaphragms 40a, 40a,
0b can be attached, so that assembly of the device can be facilitated. Further, since the plurality of diaphragms 40a, 40b are controlled by the same oscillation source 50, the number of constituent members can be reduced and the size of the device can be reduced. Can be achieved.

【0025】また、図6に更に別の実施形態(第四実施
形態)を示す。図6に示す超音波洗浄装置は、被洗浄物
であるウエハW及び洗浄液88を収容する例えば石英製
等の洗浄槽87と、この洗浄槽87の上端開口部に連接
し、洗浄槽87からオーバーフローした洗浄液88を受
け止める外槽20と、洗浄槽87内においてウエハWを
保持する保持手段例えばウエハボート30、及び振動伝
播用の液体例えば水86を収容する振動伝播用槽85と
を具備してなる。なお、上記洗浄槽87はその底面部が
振動伝播用槽85内において水浴する(振動伝搬用の液
体に接する)状態で配設されるように図示しない支持部
材によって支持されている。洗浄槽87を上記のように
配設することで、過度の超音波振動によって洗浄槽87
が損傷を受けるのを防止することができる。上記振動伝
播用槽85は、例えばPP(ポリプロピレン)樹脂製の
矩形状枠にて形成される槽本体85aと、この槽本体8
5aの下端に設けられた内向きフランジ85bに固着さ
れる例えばステンレス鋼製の振動伝達板84とで構成さ
れている。この場合、振動伝達板84は、例えば接着剤
等で槽本体85aに接着されるか、あるいはパッキン
(図示せず)を介してボルト止めすることによって固着
されている。
FIG. 6 shows still another embodiment (fourth embodiment). The ultrasonic cleaning apparatus shown in FIG. 6 is connected to a cleaning tank 87 made of, for example, quartz, which contains a wafer W to be cleaned and a cleaning liquid 88, and is connected to an upper end opening of the cleaning tank 87 and overflows from the cleaning tank 87. An outer tank 20 for receiving the cleaning liquid 88, a holding means for holding the wafer W in the cleaning tank 87, for example, the wafer boat 30, and a vibration propagation tank 85 for storing a liquid for vibration propagation, for example, water 86. . The washing tank 87 is supported by a support member (not shown) so that the bottom surface of the washing tank 87 is placed in a state of bathing in water (contacting the liquid for vibration propagation) in the tank 85 for vibration propagation. By arranging the cleaning tank 87 as described above, the cleaning tank 87 is caused by excessive ultrasonic vibration.
Can be prevented from being damaged. The vibration propagation tank 85 includes a tank body 85a formed of a rectangular frame made of, for example, PP (polypropylene) resin, and a tank body 8a.
The vibration transmission plate 84 is made of, for example, stainless steel and is fixed to an inward flange 85b provided at the lower end of the base 5a. In this case, the vibration transmission plate 84 is adhered to the tank main body 85a with, for example, an adhesive or the like, or is fixed by bolting via packing (not shown).

【0026】上記のように構成される振動伝播用槽85
の振動伝達板84の下面には、上記実施形態と同様に振
動板82が適宜間隔をおいて接着剤等で接着されてい
る。この場合、振動板82は、図7に示すように、2列
に配列されており、4枚1組としてそれぞれ振動板群8
3a,83b,83cを構成し、各振動板群83a,8
3b,83cはそれぞれ発振器(電源ユニット)81
a,81b,81cに接続されている。このうち、振動
板群83aは、主発振器81aに接続され、振動板群8
3b,83cは、それぞれ副発振器81b,81cに接
続されている。
The vibration propagation tank 85 configured as described above.
The vibration plate 82 is adhered to the lower surface of the vibration transmission plate 84 with an adhesive or the like at an appropriate interval as in the above-described embodiment. In this case, the diaphragms 82 are arranged in two rows as shown in FIG.
3a, 83b, and 83c, and each diaphragm group 83a, 8
3b and 83c are oscillators (power supply units) 81, respectively.
a, 81b, 81c. Among them, the diaphragm group 83a is connected to the main oscillator 81a, and the diaphragm group 8a
3b and 83c are connected to the sub oscillators 81b and 81c, respectively.

【0027】上記主発振器81aは、図8に示すよう
に、周波数変調(FM変調)のための発信回路51、こ
の発信回路51からの振動信号を増幅する初段増幅回路
52、振動信号を更に増幅する電力増幅回路53、この
電力増幅回路53で増幅された振動信号を上記振動板群
83aに出力するために整合するマッチング回路54を
具備する。また、主発振器81aには、電力増幅回路5
3の出力調整を行う出力調整回路58、この出力調整回
路58に制御信号を送る制御回路57及び出力調整ロー
タリーサムスイッチ56が具備されると共に、電源Aに
接続する電源回路55と、出力振動信号をモニタリング
する出力計59が具備されている。
As shown in FIG. 8, the main oscillator 81a includes a transmission circuit 51 for frequency modulation (FM modulation), a first-stage amplification circuit 52 for amplifying a vibration signal from the transmission circuit 51, and a further amplification of the vibration signal. And a matching circuit 54 that matches the vibration signal amplified by the power amplification circuit 53 to output the vibration signal to the diaphragm group 83a. The main oscillator 81a includes a power amplifier circuit 5
3, an output adjustment circuit 58 for adjusting the output, a control circuit 57 for sending a control signal to the output adjustment circuit 58, and an output adjustment rotary thumb switch 56, and a power supply circuit 55 connected to the power supply A; Is provided with an output meter 59 for monitoring.

【0028】一方、上記副発振器81b,81cは、主
発振器81aの出力側と同様の回路構成となっており、
主発振器81aの初段増幅回路52の出力側から分岐さ
れ、接続される電力増幅回路53、マッチング回路5
4、電力増幅回路53の出力調整回路58、この出力調
整回路58の制御回路57Aとを具備すると共に、電源
Aに接続する電源回路55と、出力振動信号をモニタリ
ングする出力計を具備する。また、主発振器81aの制
御回路57と副発振器81b,81cの制御回路57A
とはコネクタ61を介して接続されており、主発振器8
1aの制御回路57に接続するホストコンピュータHC
からの制御信号に基づいて各発振器81a,81b,8
1cの出力信号が制御されるように構成されている。な
お、図8において、符号62はショートコネクタ、63
はターミネーションである。
On the other hand, the sub oscillators 81b and 81c have the same circuit configuration as the output side of the main oscillator 81a.
The power amplifier 53 and the matching circuit 5 that are branched and connected from the output side of the first-stage amplifier 52 of the main oscillator 81a.
4. It includes an output adjustment circuit 58 of the power amplification circuit 53, a control circuit 57A of the output adjustment circuit 58, a power supply circuit 55 connected to the power supply A, and an output meter for monitoring an output vibration signal. Further, the control circuit 57 of the main oscillator 81a and the control circuit 57A of the sub oscillators 81b and 81c.
Are connected via a connector 61 to the main oscillator 8.
Host computer HC connected to the control circuit 57 of FIG.
Oscillators 81a, 81b, 8 based on a control signal from
1c is configured to be controlled. In FIG. 8, reference numeral 62 denotes a short connector, 63
Is termination.

【0029】上記のように構成される振動伝播用槽85
の底面部の振動伝達板84に振動板群83a,83b,
83cを接着し、これら振動板群83a〜83cに同一
の発信回路51を接続することにより、各振動板82の
固有振動数のばらつきの範囲内で振動板82の超音波出
力を平均化することができる。つまり、周波数変調のた
めの発信回路51を用いずに各振動板82に一定周波数
を印加した場合には、図9(a);(b)〜(d)に示
すように、各振動板群83a〜83cの固有振動数の違
いのための出力音圧にばらつきが生じるが、発信回路5
1を用いて固有周波数を周波数変調(FM変調)するこ
とで、時間平均で見た出力音圧を一定に制御することが
できる(図10(a),(b)参照)。
The vibration propagation tank 85 configured as described above.
A group of diaphragms 83a, 83b,
By bonding the same transmission circuit 51 to the diaphragm groups 83a to 83c, the ultrasonic output of the diaphragm 82 can be averaged within the range of variation in the natural frequency of each diaphragm 82. Can be. That is, when a constant frequency is applied to each diaphragm 82 without using the transmitting circuit 51 for frequency modulation, as shown in FIGS. 9A and 9B to 9D, each diaphragm group Although the output sound pressure varies due to the difference in the natural frequencies of 83a to 83c,
By performing frequency modulation (FM modulation) on the natural frequency using No. 1, the output sound pressure viewed as a time average can be controlled to be constant (see FIGS. 10A and 10B).

【0030】上述のようにして出力音圧が一定に制御さ
れた各振動板群83a〜83cの振動板82からの振動
が振動伝達板84に伝達されると共に、水86に伝達さ
れ、水86の伝播作用によって洗浄槽87の底面に伝播
され、そして洗浄槽87内に収容された洗浄液88に伝
播されて、洗浄槽87内のウエハWが洗浄処理される。
したがって、振動板82の固有振動数のばらつきの範囲
でFM変調することで、時間平均で見た超音波強度を一
定にすることができるので、パーティクルの除去率を更
に向上させることができる。
The vibration from the diaphragm 82 of each of the diaphragm groups 83a to 83c whose output sound pressure is controlled to be constant as described above is transmitted to the vibration transmitting plate 84 and also transmitted to the water 86, Is propagated to the bottom surface of the cleaning tank 87 and then to the cleaning liquid 88 contained in the cleaning tank 87, and the wafer W in the cleaning tank 87 is cleaned.
Therefore, by performing the FM modulation within the range of the variation of the natural frequency of the vibration plate 82, the ultrasonic intensity as viewed on a time average can be kept constant, so that the particle removal rate can be further improved.

【0031】なお、上記第四実施形態では、振動伝播用
槽85を介してウエハを超音波洗浄する場合について説
明したが、上記第一乃至第三実施形態と同様に洗浄槽8
7の底面に振動板82を接着する構造としてもよい。ま
た、第一乃至第三実施形態においても第四実施形態と同
様に振動伝播用槽85を介して洗浄するようにしてもよ
い。
In the fourth embodiment, the case where the wafer is ultrasonically cleaned through the vibration propagation tank 85 has been described. However, as in the first to third embodiments, the cleaning tank 8 is cleaned.
A structure may be adopted in which the diaphragm 82 is bonded to the bottom surface of the base 7. Further, in the first to third embodiments, the cleaning may be performed through the vibration propagation tank 85 as in the fourth embodiment.

【0032】上記のように構成される超音波洗浄装置は
単独の洗浄処理装置として使用できる他、ウエハの洗浄
・乾燥処理システムに組み込んで使用することができ
る。上記ウエハの洗浄・乾燥処理システムは、例えば図
11に示すように、未処理のウエハWを収容する搬入部
70aと、ウエハWの洗浄処理及び乾燥処理を行なう洗
浄・乾燥処理部71と、乾燥処理後のウエハWを収容す
る搬出部70bと、洗浄・乾燥処理部71の側方に配設
されて所定枚数例えば50枚のウエハWの搬送を行なう
複数例えば3基のウエハチャック80とで主要部が構成
されている。
The ultrasonic cleaning apparatus configured as described above can be used as a single cleaning processing apparatus, or can be used by being incorporated in a wafer cleaning / drying processing system. For example, as shown in FIG. 11, the wafer cleaning / drying processing system includes a carry-in section 70a for storing an unprocessed wafer W, a cleaning / drying processing section 71 for performing cleaning processing and drying processing for the wafer W, An unloading section 70b for accommodating the processed wafers W, and a plurality of, for example, three wafer chucks 80 disposed beside the cleaning / drying processing section 71 for transferring a predetermined number of, for example, 50 wafers W. Unit is configured.

【0033】上記洗浄・乾燥処理部71には、搬入部7
0aから搬出部70bに向かって直線状に順に、第1の
チャック洗浄・乾燥ユニット72、第1の薬液処理ユニ
ット73、第1の水洗処理ユニット74、上記液処理装
置を具備する第2の薬液例えばアンモニア液処理ユニッ
ト75、第3の薬液例えばフッ化水素酸(HF水溶液)
処理ユニット76、この発明に係る超音波洗浄装置を用
いた第2の水洗処理ユニット77、第2のチャック洗浄
・乾燥ユニット78及び乾燥処理ユニット79が配設さ
れている。なお、第1の水洗処理ユニット73にこの発
明に係る超音波洗浄装置を用いることも可能である。
The cleaning / drying processing section 71 has a carry-in section 7
0a, a first chuck cleaning / drying unit 72, a first chemical processing unit 73, a first water cleaning processing unit 74, and a second chemical including the above-described liquid processing apparatus in a linear manner from the discharge unit 70b to the discharge unit 70b. For example, an ammonia solution processing unit 75, a third chemical solution such as hydrofluoric acid (aqueous HF solution)
A processing unit 76, a second water cleaning processing unit 77 using an ultrasonic cleaning apparatus according to the present invention, a second chuck cleaning / drying unit 78, and a drying processing unit 79 are provided. Note that the ultrasonic cleaning device according to the present invention can be used for the first water washing processing unit 73.

【0034】上記のように構成される洗浄・乾燥処理シ
ステムにおいて、未処理のウエハWは、ウエハチャック
80によって上記洗浄・乾燥処理部71の各処理ユニッ
ト73,74,75,76及び77に順次搬送されて、
所定の薬液処理及び洗浄処理が施された後、乾燥処理ユ
ニット79に搬送されて乾燥処理される。
In the cleaning / drying processing system configured as described above, the unprocessed wafer W is sequentially transferred to the processing units 73, 74, 75, 76, and 77 of the cleaning / drying processing section 71 by the wafer chuck 80. Conveyed,
After a predetermined chemical solution treatment and cleaning treatment are performed, the substrate is conveyed to the drying treatment unit 79 and dried.

【0035】なお、上記実施形態では、この発明の超音
波洗浄装置を半導体ウエハの洗浄処理装置に適用した場
合について説明したが、半導体ウエハ以外のLCD用ガ
ラス基板等の被洗浄物の洗浄処理にも適用できることは
勿論である。
In the above embodiment, the case where the ultrasonic cleaning apparatus of the present invention is applied to a semiconductor wafer cleaning processing apparatus has been described. Of course, it can also be applied.

【0036】[0036]

【実施例】次に、この発明の第一乃至第三実施形態に係
る超音波洗浄装置における振動板の境界部と、従来の超
音波洗浄装置における振動板の境界部についての超音波
音圧の低下を比較するための実験について説明する。
Next, the ultrasonic sound pressure at the boundary between the diaphragms in the ultrasonic cleaning apparatus according to the first to third embodiments of the present invention and the boundary between the diaphragms in the conventional ultrasonic cleaning apparatus will be described. An experiment for comparing the reduction will be described.

【0037】上記実験を行うに当って、図12に示すよ
うな実験装置を用意して以下のような条件の下で音圧測
定を行った。実験装置は、水90を収容するステンレス
鋼製の槽91の底面に振動子92(振動板)を取り付
け、この振動子92を2つの発振器93,93により駆
動可能に構成されており、また、槽91内に収容された
水90内に挿入された音圧センサ94を移動機構95に
よって水平移動させると共に、この音圧センサ94によ
って検出された音圧信号を超音波音圧計96で計測する
と共に、記録計97で記録し得るように構成されてい
る。
In conducting the above experiment, an experimental apparatus as shown in FIG. 12 was prepared, and the sound pressure was measured under the following conditions. The experimental apparatus is configured such that a vibrator 92 (diaphragm) is attached to the bottom of a stainless steel tank 91 containing water 90, and this vibrator 92 can be driven by two oscillators 93, 93. The sound pressure sensor 94 inserted in the water 90 accommodated in the tank 91 is horizontally moved by the moving mechanism 95, and the sound pressure signal detected by the sound pressure sensor 94 is measured by the ultrasonic sound pressure meter 96. , And a recorder 97.

【0038】測定方法 振動面における音圧分布を測定する。振動面の77
ポイントを測定する。音圧センサ94を振動面上を一
定速度でスキャンし音圧センサ94からの信号を記録計
97に記録する。
Measurement Method The sound pressure distribution on the vibrating surface is measured. 77 of the vibrating surface
Measure points. The sound pressure sensor 94 is scanned on the vibration surface at a constant speed, and the signal from the sound pressure sensor 94 is recorded in the recorder 97.

【0039】測定条件 液温:50℃(市水) 液深:220mm 測定ポンイント:振動面より150mm 超音波強度:2.7W/cm センサピックアップ径:7mmφ センサのスキャンスピード:2.7mm/sec 記録計の紙送りスピード:1.3mm/sec 上記測定方法、条件の下で図13(a)に示すような長
さ107.5mmの2枚の振動子92,92を隙間1m
mの間隔で配置して、A点からB点に向かって音圧セン
サ94をスキャンさせると共に、同期をかけて励振f
=985KHzの場合を測定したところ、図13(b)
に示すような結果が得られた。また、音圧センサ94
を同様にスキャンさせると共に、別々の周波数で励振f
1=983KHz,f2=982KHzの場合を測定し
たところ、図13(c)に示すような結果が得られた。
なお、同一周波数で逆位相で励振f3=983KHz
の場合を測定したところ、図13(d)に示すような結
果が得られた。
Measurement conditions Liquid temperature: 50 ° C. (city water) Liquid depth: 220 mm Measurement point: 150 mm from vibrating surface Ultrasonic strength: 2.7 W / cm 2 Sensor pickup diameter: 7 mmφ Scan speed of sensor: 2.7 mm / sec Paper feed speed of recorder: 1.3 mm / sec Under the above measuring method and conditions, two vibrators 92, 92 having a length of 107.5 mm as shown in FIG.
m, the sound pressure sensor 94 is scanned from point A to point B, and the excitation f
= 985 KHz, FIG. 13 (b)
The result as shown in FIG. The sound pressure sensor 94
Are scanned in the same manner, and excitation f
When a case where 1 = 983 KHz and f2 = 982 KHz was measured, a result as shown in FIG. 13C was obtained.
Excitation f3 = 983 KHz at the same frequency and opposite phase
As a result, a result as shown in FIG. 13D was obtained.

【0040】上記実験の結果、別々の周波数で励振した
場合(上記の場合)及び同一周波数で逆位相で励振し
た場合(上記の場合)には、振動子92,92間の隙
間部において、音圧がいずれも約0.6〜0.7V程度
低下することが判り、これに対して同期をかけて励振し
た場合(上記の場合)には振動子92,92間の隙間
において0.2Vの音圧低下が見られる程度であった。
As a result of the above experiment, when excited at different frequencies (the above case) and when excited at the same frequency and in the opposite phase (the above case), the sound was generated in the gap between the vibrators 92 and 92. It can be seen that the pressure decreases by about 0.6 to 0.7 V in all cases, and when excitation is performed in synchronization with the above (in the above case), 0.2 V is applied to the gap between the vibrators 92 and 92. The sound pressure was low.

【0041】また、図14(a)に示すような長さ1
23mmの4枚の振動子92を密着配置して、A点から
B点に向かって音圧センサ94をスキャンさせると共
に、同期をかけて励振f4=984KHzの場合を測定
したところ、図15(a)に示すような結果が得られ
た。また、図14(b)に示すような長さ123mm
の4枚の振動子92を短手方向に2mmの隙間を設けて
分割配置して、A点からB点に向かって音圧センサ94
をスキャンさせると共に、同期をかけて励振f5=98
3KHzの場合を測定したところ、図15(b)に示す
ような結果が得られた。更に、上記と同様に長さ1
23mmの4枚の振動子92を短手方向に2mmの隙間
を設けて分割配置して、音圧センサ94を同様にA点か
らB点に向かってスキャンさせると共に、別々の周波数
で励振f6=983KHz,f7=984KHzの場合
を測定したところ、図15(c)に示すような結果が得
られた。
Further, as shown in FIG.
When four 23 mm vibrators 92 of 23 mm were arranged in close contact with each other, the sound pressure sensor 94 was scanned from point A to point B, and the case where excitation f4 = 984 KHz was measured in synchronization with FIG. ) Were obtained. Further, the length is 123 mm as shown in FIG.
Are arranged separately with a gap of 2 mm in the widthwise direction, and the sound pressure sensor 94 is moved from the point A to the point B.
Is scanned and synchronized with excitation f5 = 98
When the measurement was performed at a frequency of 3 KHz, a result as shown in FIG. 15B was obtained. In addition, the length 1
Four 23 mm vibrators 92 are divided and arranged with a gap of 2 mm in the transverse direction, and the sound pressure sensor 94 is similarly scanned from point A to point B, and excitation f6 = When the case of 983 KHz and f7 = 984 KHz was measured, the result as shown in FIG. 15C was obtained.

【0042】上記実験の結果、隙間2mmを設け、同期
をかけて励振した場合(上記の場合)には、振動子9
2,92間の隙間において、音圧が約0.5V程度低下
することが判り、また、隙間2mmを設け、別々の周波
数で励振した場合(上記の場合)には、振動子92,
92間の隙間部において、音圧が約0.75V低下する
ことが判った。これに対し、振動子92,92を密着し
て同期をかけて励振した場合(上記の場合)には、振
動子92,92間において、0.15Vの音圧低下が見
られる程度であった。したがって、振動子92,92間
の隙間を可及的に少なくする方が好適である。
As a result of the above experiment, when a gap of 2 mm was provided and the excitation was performed synchronously (the above case), the vibrator 9
It can be seen that the sound pressure drops by about 0.5 V in the gap between the oscillators 92 and 92, and when the gap 2 mm is provided and excited at different frequencies (the above case),
It was found that the sound pressure dropped by about 0.75 V in the gap between the 92. On the other hand, when the vibrators 92, 92 were closely contacted and excited in synchronization (the above case), a sound pressure drop of 0.15 V was observed between the vibrators 92, 92. . Therefore, it is preferable to reduce the gap between the vibrators 92, 92 as much as possible.

【0043】[0043]

【発明の効果】以上に説明したように、この発明によれ
ば、上記のように構成されているので、以下のような優
れた効果が得られる。
As described above, according to the present invention, because of the above-described configuration, the following excellent effects can be obtained.

【0044】1)請求項1記載の発明によれば、各振動
板を駆動する複数の電源ユニットの出力の位相を同一の
発振源により同位相をもつように制御することにより、
隣接する振動板の間での位相のずれによる干渉をなくす
ことができるので、均一な音圧分布が得られると共に、
パーティクルの除去率を均一にすることができる。した
がって、洗浄むらを無くし、洗浄効率の向上を図ること
ができる。また、洗浄槽に段差を設けることなく振動板
を取り付けることができるので、装置の組立を容易にす
ることができ、しかも、同一の発振源によって複数の振
動板を制御することができるので、構成部材の削減が図
れると共に、装置の小型化を図ることができる。
1) According to the first aspect of the present invention, the phases of the outputs of a plurality of power supply units for driving each diaphragm are controlled by the same oscillation source so as to have the same phase.
Since it is possible to eliminate interference due to phase shift between adjacent diaphragms, a uniform sound pressure distribution can be obtained,
The particle removal rate can be made uniform. Therefore, it is possible to eliminate uneven cleaning and improve the cleaning efficiency. Further, since the diaphragm can be attached without providing a step in the cleaning tank, assembly of the apparatus can be facilitated, and moreover, a plurality of diaphragms can be controlled by the same oscillation source. The number of members can be reduced, and the size of the apparatus can be reduced.

【0045】2)請求項2記載の発明によれば、洗浄槽
の底面部に接する振動伝播用液体を収容する振動伝播用
槽に複数の振動板を取り付け、各振動板を駆動する複数
電源ユニットの出力の位相を同一の発振源により同位
相を持つように制御するので、パーティクルの除去率を
均一にすることができると共に、過度の超音波振動によ
って洗浄槽が損傷を受けるのを防止することができる。
[0045] 2) According to the second aspect of the present invention, fitted with a plurality of diaphragm-chamber vibration propagation that houses the vibration propagation liquid in contact with the bottom portion of the cleaning tank, to drive the vibrating plate more
The output phase of the power supply unit is controlled to have the same phase by the same oscillation source, so that the particle removal rate can be made uniform and the cleaning tank is not damaged by excessive ultrasonic vibration. Can be prevented.

【0046】3)請求項3記載の発明によれば、隣接す
る振動板間の隙間を可及的に狭くすることにより、更に
音圧分布及びパーティクルの除去率を均一にすることが
できる。したがって、上記1)及び2)に加えて更に確
実に洗浄むらを無くすことができると共に、洗浄効率の
向上及び洗浄装置の信頼性の向上を図ることができる。
3) According to the third aspect of the present invention, the sound pressure distribution and the particle removal rate can be made more uniform by making the gap between the adjacent diaphragms as narrow as possible. Therefore, in addition to the above 1) and 2), it is possible to more reliably eliminate the uneven cleaning, and it is possible to improve the cleaning efficiency and the reliability of the cleaning apparatus.

【0047】4)請求項4記載の発明によれば、発振源
において周波数変調することにより、各振動板間の固有
振動数のばらつきの範囲内で振動板の超音波出力を平均
化できるので、更に音圧分布及びパーティクルの除去率
を均一にすることができる。
4) According to the fourth aspect of the invention, the ultrasonic output of the diaphragm can be averaged within the range of the variation of the natural frequency between the diaphragms by performing frequency modulation in the oscillation source. Further, the sound pressure distribution and the particle removal rate can be made uniform.

【0048】したがって、上記1)ないし3)に加えて
更に確実に洗浄むらをなくすことができると共に、洗浄
効率及び洗浄装置の信頼性の向上を図ることができる。
Therefore, in addition to the above 1) to 3), it is possible to more reliably eliminate unevenness in cleaning, and it is possible to improve the cleaning efficiency and the reliability of the cleaning apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る超音波洗浄装置の第一実施形態
を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a first embodiment of an ultrasonic cleaning device according to the present invention.

【図2】第一実施形態における振動板の音圧と位置との
関係を示すグラフ(a)及びパーティクル除去率と位置
との関係を示すグラフ(b)である。
FIGS. 2A and 2B are a graph (a) showing a relationship between a sound pressure and a position of a diaphragm and a graph (b) showing a relationship between a particle removal rate and a position in the first embodiment.

【図3】この発明に係る超音波洗浄装置の第二実施形態
を示す概略断面図である。
FIG. 3 is a schematic sectional view showing a second embodiment of the ultrasonic cleaning apparatus according to the present invention.

【図4】この発明に係る超音波洗浄装置の第三実施形態
を示す概略平面図である。
FIG. 4 is a schematic plan view showing a third embodiment of the ultrasonic cleaning apparatus according to the present invention.

【図5】図4の概略断面図である。FIG. 5 is a schematic sectional view of FIG.

【図6】この発明に係る超音波洗浄装置の第四実施形態
を示す概略断面図である。
FIG. 6 is a schematic sectional view showing a fourth embodiment of the ultrasonic cleaning apparatus according to the present invention.

【図7】図6の振動板部の下面図である。FIG. 7 is a bottom view of the diaphragm section of FIG. 6;

【図8】第四実施形態における電源部の回路構成を示す
ブロック図である。
FIG. 8 is a block diagram illustrating a circuit configuration of a power supply unit according to a fourth embodiment.

【図9】発振源に周波数変調を施さない場合の音圧と固
有振動数の関係を示すグラフ(a)及び音圧と各振動板
の位置との関係を示すグラフ(b)〜(d)である。
FIG. 9 is a graph (a) showing the relationship between the sound pressure and the natural frequency when no frequency modulation is applied to the oscillation source, and graphs (b) to (d) showing the relationship between the sound pressure and the position of each diaphragm. It is.

【図10】発振源に周波数変調を施した場合の音圧と位
置の関係を示す具体的なグラフ(a)及び(a)のグラ
フを簡略化して示すグラフ(b)である。
FIGS. 10A and 10B are specific graphs (a) showing the relationship between sound pressure and position when an oscillation source is frequency-modulated, and graphs (b) showing simplified graphs of (a).

【図11】この発明に係る超音波洗浄装置を組み込んだ
洗浄・乾燥処理システムの一例を示す概略平面図であ
る。
FIG. 11 is a schematic plan view showing an example of a cleaning / drying processing system incorporating the ultrasonic cleaning device according to the present invention.

【図12】振動板の音圧測定の実験装置を示す概略構成
図である。
FIG. 12 is a schematic configuration diagram showing an experimental device for measuring sound pressure of a diaphragm.

【図13】上記実験装置で実験される振動板の配置状態
を示す概略平面図(a)及び周波数を適宜変えて実験し
た場合の音圧と位置の関係を示すグラフ(b)〜(c)
である。
FIG. 13 is a schematic plan view (a) showing an arrangement state of a diaphragm to be tested by the above-described experimental apparatus, and graphs (b) to (c) showing a relationship between a sound pressure and a position when the test is performed by appropriately changing a frequency.
It is.

【図14】上記実験装置で実験される振動板の別の配置
状態を示す概略平面図で、(a)は振動子を密着した場
合、(b)は振動子を隙間2mmをおいて配置した場合
である。
FIGS. 14A and 14B are schematic plan views showing another arrangement state of a diaphragm to be tested by the above-described experimental apparatus. FIG. 14A shows a case where a vibrator is closely attached, and FIG. 14B shows a case where a vibrator is disposed with a gap of 2 mm. Is the case.

【図15】上記図14(a),(b)の状態で同一周波
数で励振した場合(a),(b)及び図14(b)の状
態で別々の周波数で励振した場合(c)の音圧と位置と
の関係を示すグラフである。
15 (a) and (b) when excited at the same frequency in the states of FIGS. 14 (a) and 14 (b) and (c) when excited at different frequencies in the state of FIG. 14 (b). It is a graph which shows the relationship between a sound pressure and a position.

【図16】従来の超音波洗浄装置を示す概略断面図であ
る。
FIG. 16 is a schematic sectional view showing a conventional ultrasonic cleaning device.

【図17】従来の超音波洗浄装置における振動板の音圧
と位置との関係を示すグラフ(a)及びパーティクル除
去率と位置との関係を示すグラフ(b)である。
FIG. 17 is a graph (a) showing the relationship between the sound pressure and the position of the diaphragm in the conventional ultrasonic cleaning apparatus, and a graph (b) showing the relationship between the particle removal rate and the position.

【符号の説明】[Explanation of symbols]

W 半導体ウエハ(被洗浄物) 1 純水(洗浄液) 10 洗浄槽 40,40a,40b,82 振動板 41a〜41n,83a〜83c 振動板群 50,50A 発振源 51 周波数変調(FM変調)発信回路 58 制御回路 60a〜60n 発振器 81a 主発振器(電源ユニット) 81b,81c 副発振器(電源ユニット) 85 振動伝搬用槽 86 振動伝搬用液体 A 電源 PU1〜PUn 電源ユニット W Semiconductor wafer (object to be cleaned) 1 Pure water (cleaning liquid) 10 Cleaning tank 40, 40a, 40b, 82 Vibration plates 41a to 41n, 83a to 83c Vibration plate group 50, 50A Oscillation source 51 Frequency modulation (FM modulation) transmission circuit 58 Control circuit 60a-60n Oscillator 81a Main oscillator (power supply unit) 81b, 81c Sub-oscillator (power supply unit) 85 Vibration propagation tank 86 Vibration propagation liquid A power supply PU1-PUn power supply unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−283835(JP,A) 特開 平8−192123(JP,A) 特開 平7−171526(JP,A) 実開 昭62−123289(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 B08B 3/12 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-283835 (JP, A) JP-A-8-192123 (JP, A) JP-A-7-171526 (JP, A) 123289 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/304 B08B 3/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被洗浄物及び洗浄液を収容する洗浄槽
と、この洗浄槽に取り付けられる複数の振動板とを具備
する超音波洗浄装置において、 上記各振動板を駆動する複数の電源ユニットの出力の位
相を同一の発振源により同位相をもつように制御するこ
とを特徴とする超音波洗浄装置。
1. An ultrasonic cleaning apparatus comprising: a cleaning tank containing an object to be cleaned and a cleaning liquid; and a plurality of diaphragms attached to the cleaning tank, wherein an output of a plurality of power supply units for driving the respective diaphragms is provided. An ultrasonic cleaning apparatus characterized in that the same oscillation source controls the same phase to have the same phase.
【請求項2】 被洗浄物及び洗浄液を収容する洗浄槽
と、この洗浄槽の底面部に接する振動伝播用液体を収容
する振動伝播用槽と、この振動伝播用槽に取り付けられ
る複数の振動板とを具備する超音波洗浄装置において、 上記各振動板を駆動する複数の電源ユニットの出力の位
相を同一の発振源により同位相を持つように制御するこ
とを特徴とする超音波洗浄装置。
2. A cleaning tank for storing an object to be cleaned and a cleaning liquid, a vibration transmitting tank for storing a vibration transmitting liquid in contact with a bottom surface of the cleaning tank, and a plurality of diaphragms attached to the vibration transmitting tank. An ultrasonic cleaning apparatus, comprising: controlling the phases of outputs of a plurality of power supply units for driving each of the vibration plates so that the same oscillation source has the same phase.
【請求項3】 請求項1又は2記載の超音波洗浄装置に
おいて、 隣接する振動板間の隙間を可及的に少なくすることを特
徴とする超音波洗浄装置。
3. The ultrasonic cleaning apparatus according to claim 1, wherein a gap between adjacent diaphragms is reduced as much as possible.
【請求項4】 請求項1ないし3のいずれかに記載の超
音波洗浄装置において、 上記各振動板の固有振動数のばらつきを、発振源の周波
数変調により制御することを特徴とする超音波洗浄装
置。
4. The ultrasonic cleaning apparatus according to claim 1, wherein a variation in the natural frequency of each of said diaphragms is controlled by frequency modulation of an oscillation source. apparatus.
JP16187897A 1996-09-04 1997-06-04 Ultrasonic cleaning equipment Expired - Lifetime JP3343775B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16187897A JP3343775B2 (en) 1996-09-04 1997-06-04 Ultrasonic cleaning equipment
KR1019970041360A KR100347650B1 (en) 1996-09-04 1997-08-27 Ultrasonic Cleaner
US08/921,328 US5911232A (en) 1996-09-04 1997-08-29 Ultrasonic cleaning device
TW086112683A TW411523B (en) 1996-09-04 1997-09-03 Ultrasonic cleaning device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25392396 1996-09-04
JP8-253923 1996-09-04
JP16187897A JP3343775B2 (en) 1996-09-04 1997-06-04 Ultrasonic cleaning equipment

Publications (2)

Publication Number Publication Date
JPH10135176A JPH10135176A (en) 1998-05-22
JP3343775B2 true JP3343775B2 (en) 2002-11-11

Family

ID=26487837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16187897A Expired - Lifetime JP3343775B2 (en) 1996-09-04 1997-06-04 Ultrasonic cleaning equipment

Country Status (4)

Country Link
US (1) US5911232A (en)
JP (1) JP3343775B2 (en)
KR (1) KR100347650B1 (en)
TW (1) TW411523B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102849A (en) * 1997-09-17 1999-04-13 Lsi Logic Corp Method and device for removing particles on semiconductor wafer
US6138698A (en) * 1997-11-20 2000-10-31 Tokyo Electron Limited Ultrasonic cleaning apparatus
DE19758267A1 (en) * 1997-12-31 1999-07-08 Steag Micro Tech Gmbh Method and device for treating substrates
US6662812B1 (en) * 1999-07-24 2003-12-16 Allen David Hertz Method for acoustic and vibrational energy for assisted drying of solder stencils and electronic modules
FR2797405B1 (en) * 1999-08-12 2001-10-26 Coillard Sa Ets ULTRA CLEAN LIQUID RINSING BIN
US6554003B1 (en) * 1999-10-30 2003-04-29 Applied Materials, Inc. Method and apparatus for cleaning a thin disc
US6619305B1 (en) 2000-01-11 2003-09-16 Seagate Technology Llc Apparatus for single disc ultrasonic cleaning
US6532977B2 (en) * 2000-03-16 2003-03-18 Bridgestone Corporation Cleaning vessel and silicon carbide sintered body used therefor
JP2002093765A (en) * 2000-09-20 2002-03-29 Kaijo Corp Method and equipment for cleaning substrate
AU2002251717A1 (en) * 2000-10-23 2002-08-12 James Tyson Improved sound-based vessel cleaner inspection
JP2002186920A (en) * 2000-12-20 2002-07-02 Shimada Phys & Chem Ind Co Ltd Ultrasonic cleaning device
US6595224B2 (en) * 2001-06-20 2003-07-22 P.C.T. Systems, Inc. Bath system with sonic transducers on vertical and angled walls
JP2003031535A (en) * 2001-07-11 2003-01-31 Mitsubishi Electric Corp Ultrasonic cleaning method of semiconductor manufacturing apparatus
JP3948960B2 (en) * 2002-01-16 2007-07-25 東京エレクトロン株式会社 Ultrasonic cleaning equipment
KR20060061343A (en) * 2003-07-31 2006-06-07 에프 에스 아이 인터내셔날,인코포레이티드 Controlled growth of highly uniform, oxide layers, especially ultrathin layers
US20050072625A1 (en) * 2003-09-11 2005-04-07 Christenson Kurt K. Acoustic diffusers for acoustic field uniformity
TW200517192A (en) * 2003-09-11 2005-06-01 Fsi Int Inc Semiconductor wafer immersion systems and treatments using modulated acoustic energy
US20060027248A1 (en) * 2004-08-09 2006-02-09 Applied Materials, Inc. Megasonic cleaning with minimized interference
DE102005012244B4 (en) * 2005-03-15 2008-12-24 Rena Sondermaschinen Gmbh Method for cleaning objects by means of ultrasound
TWI393595B (en) 2006-03-17 2013-04-21 Michale Goodson J Megasonic processing apparatus with frequencey sweeping of thickness mode transducers
US7250087B1 (en) 2006-05-16 2007-07-31 James Tyson Clogged nozzle detection
KR101049300B1 (en) * 2006-09-22 2011-07-13 가부시끼가이샤가이죠 Ultrasonic Cleaner
KR100852396B1 (en) * 2006-10-20 2008-08-14 한국기계연구원 Cleaning device using ultrasonic
JP4493675B2 (en) * 2007-03-14 2010-06-30 株式会社カイジョー Ultrasonic cleaning equipment
DE102008018068A1 (en) * 2008-04-09 2009-05-28 Siltronic Ag Method for cleaning semiconductor wafer, involves introducing megasonic energy in cleaning basin which contains wafer holder for receiving semiconductor wafers, where maximum megasonic pressure on wafer holder is determined
EP2703094B1 (en) * 2012-08-27 2019-10-02 IMEC vzw A system for delivering ultrasonic energy to a liquid and its use for cleaning of solid parts
WO2016018878A1 (en) 2014-07-30 2016-02-04 Corning Incorporated Ultrasonic tank and methods for uniform glass substrate etching
CN104576455A (en) * 2014-12-19 2015-04-29 无锡德鑫太阳能电力有限公司 Device for cleaning black silicon cell piece
DE102015106343A1 (en) * 2015-04-24 2016-10-27 Weber Ultrasonics Gmbh Device and method for deburring components by means of ultrasound
CN105057273A (en) * 2015-08-27 2015-11-18 苏州凯锝微电子有限公司 Ultrasonic lens cleaning device
DE102015226300A1 (en) 2015-12-21 2017-07-06 Siltronic Ag Method and device for cleaning slices of semiconductor material
JP7094544B2 (en) * 2018-06-26 2022-07-04 本多電子株式会社 Ultrasonic cleaning device and method, wave generator
CN112992740A (en) * 2021-03-01 2021-06-18 李军平 Cleaning equipment for cutting wafer
CN117711991A (en) * 2024-02-05 2024-03-15 苏州智程半导体科技股份有限公司 Wafer groove type cleaning equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891176A (en) * 1955-07-13 1959-06-16 Branson Instr Compressional wave generating apparatus
GB2097890B (en) * 1981-05-01 1985-06-12 Boulton Ltd William Ultrasonic cleaning
JPH05243203A (en) * 1992-02-28 1993-09-21 Fujitsu Ltd Ultrasonic washer

Also Published As

Publication number Publication date
US5911232A (en) 1999-06-15
JPH10135176A (en) 1998-05-22
KR100347650B1 (en) 2002-10-25
TW411523B (en) 2000-11-11
KR19980024188A (en) 1998-07-06

Similar Documents

Publication Publication Date Title
JP3343775B2 (en) Ultrasonic cleaning equipment
US4869278A (en) Megasonic cleaning apparatus
JPH06103678B2 (en) Semiconductor substrate processing method
JP2003340386A (en) Ultrasonic cleaning apparatus and method therefor
JPH0855827A (en) Wafer cassette and cleaning equipment using it
US8551251B2 (en) Ultrasonic treatment method and apparatus
JP3463028B2 (en) Ultrasonic cleaning device and cleaning method
US7111517B2 (en) Apparatus and method for in-situ measuring of vibrational energy in a process bath of a vibrational cleaning system
JP3927936B2 (en) Single wafer cleaning method and cleaning apparatus
JP3343781B2 (en) Ultrasonic cleaning equipment
JP4123746B2 (en) Fluid processing equipment
US7836769B2 (en) Apparatus and method of measuring acoustical energy applied to a substrate
JP3839527B2 (en) Ultrasonic processing method and ultrasonic processing apparatus
JPH0919665A (en) Ultrasonic washing device
JP3309749B2 (en) Ultrasonic cleaning equipment
JP7330053B2 (en) Cleaning apparatus, substrate processing apparatus, and abnormality determination method
JPH0810732A (en) Ultrasonic washing device
JP3808951B2 (en) Ultrasonic vibration device and ultrasonic cleaning device using the same
JP3037528B2 (en) Ultrasonic intensity sensor and ultrasonic intensity detection method
JPH0994544A (en) Ultrasonic cleaning device
JPH1144677A (en) Measuring apparatus for intensity of ultrasonic wave
JP2831334B2 (en) Ultrasonic vibration device and ultrasonic cleaning device using the same
JP2004259983A (en) Device and method for ultrasonic cleaning
JPH09330899A (en) Ultrasonic shower device and ultrasonic washer provided with the same device
JPH09330898A (en) Ultrasonic shower device and ultrasonic washer provided with the same device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140830

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term